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ABSTRACT

Fuzzy sets are used to deal with data that are vague or imprecise. The

intuitionistic fuzzy set, developed by Atanassov, is a generalization of a fuzzy

set. It is characterized by two functions expressing degrees of belongingness

and nonbelongingness, respectively.

Ordering fuzzy numbers and fuzzy sets are vital for fuzzy logic and

decision-making. In classical fuzzy set theory, there are several ranking meth-

ods for fuzzy numbers and intuitionistic fuzzy numbers. In 1985, the fuzzy

max order for fuzzy numbers was introduced and since then, many researchers

have extended this order for fuzzy sets. In 2016, a ranking method for intu-

itionistic fuzzy numbers was introduced which used a total ordering.

On the other hand, Ike and Tanaka introduced a new evaluation method

via level sets of two fuzzy sets in 2018. The method is based on set-relations

proposed by Kuroiwa, Tanaka, and Ha using a vector ordering by a convex

cone.

In this study, we present new evaluation methods for intuitionistic fuzzy

sets derived through a partial ordering defined on their cut mappings. From

the viewpoint of set optimization, eight types of intuitionistic fuzzy-set rela-

tions based on set relations in a vector space are proposed as a new compar-

ison criteria of intuitionistic fuzzy sets. Moreover, an evaluation measure of

the difference between two intuitionistic fuzzy sets are introduced and related

properties are investigated.
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Chapter 1

Introduction

A fuzzy set is a mathematical concept introduced by Lotfi Zadeh [17] in

1965 as an extension of classical set theory. While classical sets allow an

element to either fully belong or not belong to a set, fuzzy sets introduce the

concept of partial membership. In other words, fuzzy sets allow for degrees

of membership between 0 and 1, representing the extent to which an element

belongs to a set.

When comparing fuzzy numbers, an inequality relation can be defined

to determine the relative ordering between them. The most commonly used

inequality relation for fuzzy numbers is the α-cut-based inequality relation,

where the comparison is made based on the α-cut values of the fuzzy num-

bers. These inequality relations can be used to compare fuzzy numbers and

establish their relative order in terms of their membership degrees.

In this research, we study evaluation methods for intuitionistic fuzzy sets
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which is a generalization of a fuzzy set. The concept of intuitionistic fuzzy

set was introduced by Atanassov [1] and it is characterized by two functions

expressing degree of belongingness and the degree of nonbelongingness, re-

spectively. This kind of general fuzzy sets seems to be powerful in modeling

mathematical problems by means of fuzzy set theory.

Intuitionistic fuzzy sets provide a more comprehensive representation of

uncertainty compared to traditional fuzzy sets and find applications in vari-

ous fields, including decision-making, pattern recognition, classification, and

expert systems. They allow for a more nuanced handling of incomplete and

imprecise information, making them a valuable tool in dealing with real-world

uncertainties.

There are several ranking methods for fuzzy numbers and intuitionis-

tic fuzzy numbers, which are specific concepts of fuzzy set; see Ramı́k and

R̆imánek [10] in 1985. In [10], the fuzzy max order for fuzzy numbers is

introduced, and then several researchers have extended this order for fuzzy

vectors. In [6], the fuzzy max order is extended for fuzzy sets by using order-

ings of level sets of fuzzy sets. In 2016, Nayagam, Jeevaraj, and Sivaraman [5]

introduce a ranking method for intuitionistic fuzzy numbers which is a total

ordering for intuitionistic fuzzy numbers.

Ike and Tanaka [4] in 2018 give a new evaluation method via level sets

of two fuzzy sets which is similar to the approach of Kon [6] in 2014. The

method is based on set-relations proposed by Kuroiwa, Tanaka, and Ha [13]

using a vector ordering by a convex cone, and related studies are made in [3,

16, 11]. Convex cones play an essential role in convex optimization, as many
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optimization problems involve finding the minimum of a convex function

over a convex cone. The convexity of the cone ensures that the optimization

problem is well-structured, and efficient algorithms can be employed to find

the optimal solution. Additionally, convex cones have applications in various

fields, such as economics, engineering, and computer science.

Most of the results are derived in a similar way as in [4] but we do

not require the norm structure in the topological vector space, and we use

general concepts of upper and lower continuity along with Hausdorff upper

and lower continuity. Also, Pareto minimal and maximal points in a partially

ordered set are considered instead of singleton sets. Detailed descriptions

with complete proofs are given as a self-contained paper for the convenience

of readers.

The main results of this research are the correspondences between the

eight types of intuitionistic fuzzy-set relations and their difference evaluation

functions. The proofs for the eight theorems are narrowed down to four

distinct proofs using established relationships and properties of set relations.

This thesis is organized as follows. We present a recollection of basic con-

cepts and terminology in Chapter 2. The notions of intuitionistic fuzzy-set

relations and their difference evaluation functions are introduced in Chap-

ter 3. Related properties as well as the correspondences between them are

discussed in the same chapter. Finally, summary and recommendations are

provided in Chapter 4.
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Chapter 2

Mathematical preliminaries

We begin by recalling some fundamental concepts and related properties

in the areas of topological vector spaces, fuzzy set theory, and set optimiza-

tion.

2.1 Topological vector spaces

Let Z be a real vector space and P(Z) denote the set of all nonempty

subsets of Z. The addition and scalar multiplication are defined respectively

by

A+B := {a+ b | a ∈ A, b ∈ B}, λA := {λa | a ∈ A}

for A,B ∈ P(Z) and λ ∈ R. A real topological vector space Z is a vector

space equipped with a topology such that the addition Z × Z ∋ (z, z′) 7→
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z + z′ ∈ Z and scalar multiplication R × Z ∋ (λ × Z) 7→ λz ∈ Z are both

continuous. The topological interior, topological closure, and complement of

a set A are denoted by intA, clA, and Ac, respectively.

For a topological space X and x0 ∈ X, we denote by NX(x0) the set of

all neighborhoods of x0 in X.

Remark 2.1.1. The topological structure of a topological vector space Z about

any point is determined by a base of neighborhoods of θZ . If U is a base of

neighborhoods of θZ , then the sets z+U constitute a base of neighborhoods

of z for some U ∈ U and then U is called the local base in Z. Also, every

U ∈ U is absorbing, and for U ∈ U , there exists a balanced neighborhood

V ∈ U such that V + V ⊂ U ; V is called a balanced set when tV ⊂ V for

|t| ≤ 1. V is balanced if and only if V is symmetric (−V = V ) and tV ⊂ V

for 0 ≤ t < 1. See [2] for more details.

Definition 2.1.1 (Continuity notions for set-valued map, [18]). Let Z be

a topological vector space and X a topological space. A set-valued map

F : X → P(Z) is said to be

(i) upper continuous (u.c.) at x0 ∈ X if

∀W ∈ P(Z),W open, F (x0) ⊂ W,∃U ∈ NX(x0),∀x ∈ U, F (x) ⊂ W ;

(ii) lower continuous (l.c.) at x0 ∈ X if

∀W ∈ P(Z),W open, F (x0) ∩W ̸= ∅,∃U ∈ NX(x0),∀x ∈ U, F (x) ∩W ̸= ∅;
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(iii) Hausdorff upper continuous (H-u.c.) at x0 ∈ X if

∀W ∈ U ,∃U ∈ NX(x0),∀x ∈ U, F (x) ⊂ F (x0) +W ;

(iv) Hausdorff lower continuous (H-l.c.) at x0 ∈ X if

∀W ∈ U ,∃U ∈ NX(x0),∀x ∈ U, F (x0) ⊂ F (x) +W ;

(v) upper continuous (resp., l.c, H-u.c, H-l.c.) if F is so at every x ∈ X.

Remark 2.1.2. If a set-valued map F : X → P(Z) is u.c. at x0 ∈ X, then

F is H-u.c. at x0; the converse is true when F (x0) is compact. If F is H-l.c.

at x0 ∈ X, then F is l.c. at x0; the converse is true when F (x0) is compact;

see [18].

Lemma 2.1.1 ([4, Lemma 3.1]). Let ∅ ≠ K ⊂ Z be compact and ∅ ≠ O ⊂ Z

be open. Then
⋂
v∈K

(v +O) is open.

For a topological space X, a function f : X → R ∪ {±∞} is said to be

lower semicontinuous at x0 ∈ X if for any s < f(x0), there exists U ∈ NX(x0)

such that s ≤ f(x) for all x ∈ U . f is lower semicontinuous, denoted by l.s.c.,

if it is so at every x ∈ X. As is well known, a lower semicontinuous function

defined on a compact space always has a minimum.
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2.2 Intuitionistic fuzzy sets

The concept of a fuzzy set introduced by Zadeh [17] is a generalization

of an ordinary set or crisp set. A fuzzy set Ã on Z is uniquely determined

by its membership function µÃ : Z → [0, 1] which represents the grade of

membership of an element z in Ã.

Definition 2.2.1 (intuitionistic fuzzy set, [1]). A pair Ã = (µÃ, νÃ) is called

an intuitionistic fuzzy set or IFS on Z, where

µÃ : Z → [0, 1] and νÃ : Z → [0, 1]

are the membership and non-membership functions, respectively, if for all

z ∈ Z, 0 ≤ µÃ(z) + νÃ(z) ≤ 1. When µÃ(z) + νÃ(z) = 1, Ã is called a fuzzy

set.

1st form 2nd form 3rd form

Geometrical interpretations of an IFS

Example 2.2.1. Let z be a natural number and τ be the function that de-

termines the number of the natural numbers smaller than a fixed number z,

which do not divide z. Hence for z ≥ 2, define the set

F (z) := {x ∈ N : 1 ≤ x < z and x ∤ z},
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and τ(z) := n(F (z)), where n(X) is the cardinality of X. Let

µ1(z) := n({x ∈ N : 1 < x ≤ z and x | z})

and ν1(z) = τ(z). Then we can define the function Ã that associates each

natural number z ≥ 2 with the pair

Ã(z) =

(
µ1(z)

z
,
ν1(z)

z

)
.

Thus, Ã is an IFS. ◀

Example 2.2.2. Let φ be the Euler’s totient function that determines the

number of the natural numbers smaller than a fixed number z ∈ N, which

do not have common divisors with z. For z ≥ 2, let

G(z) := {y ∈ N : 1 ≤ y < z and (y, z) = 1},

and φ(z) := n(G(z)), where (p, q) is the greatest common divisor of the

natural numbers p and q. Define

µ2(z) := n({y ∈ N : 1 < y ≤ z and y | z}),

and ν2(z) = φ(z). Then we can define the function B̃ that associates each

natural number z ≥ 2 with the pair

B̃(z) =

(
µ2(z)

z
,
ν2(z)

z

)
.

Hence, B̃ is an IFS. ◀
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Let ℓ = {(α, β) ∈ [0, 1]2 | α + β ≤ 1} be the set which is used to give

values for α, β in the (α, β)-cut of Ã defined as

Ã(α,β) :=

{z ∈ Z | µÃ(z) ≥ α and νÃ(z) ≤ β} if (α, β) ∈ ℓ \ {(0, 1)};

cl {z ∈ Z | µÃ(z) > 0 and νÃ(z) < 1} if (α, β) = (0, 1).

Ã is said to be normal if Ã(1,0) ̸= ∅ (or equivalently, Ã(α,β) ̸= ∅ for all

(α, β) ∈ ℓ). We denote by FN(Z) the set of all normal intuitionistic fuzzy

sets on Z. For convenience, the set-valued mapping

ℓ ∋ (α, β) 7→ Ã(α,β) ∈ P(Z)

is referred to as the cut mapping of Ã.

Example 2.2.3. Let U = {x, y, z} and Ã be an IFS on U defined as follows:

Ã(x) = (0.7, 0.1), Ã(y) = (0.1, 0.1), Ã(z) = (0.4, 0.5)

Then Ã(0.1,0.7) = {x, y, z}, Ã(0.2,0.8) = {x, z}, Ã(0.4,0.2) = {x}. ◀
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For each IFS Ã, we define the translation Ã+ z for z ∈ Z by

µÃ+z(z
′) := µÃ(z

′ − z) and νÃ+z(z
′) := νÃ(z

′ − z)

and the scalar multiplication λÃ for λ ̸= 0 by

µλÃ(z
′) := µÃ

(
1
λ
z′
)
and νλÃ(z

′) := νÃ
(
1
λ
z′
)
.

By definition, it follows that

(Ã+ z)(α,β) = Ã(α,β) + z and (λÃ)(α,β) = λÃ(α,β)

for any (α, β) ∈ ℓ.

For any intuitionistic fuzzy sets Ã and B̃ defined on Z, their union and

intersection are defined respectively as

Ã ∪ B̃ =
(
µÃ∪B̃, νÃ∪B̃

)
=
(
max{µÃ, µB̃},min{νÃ, νB̃}

)
and

Ã ∩ B̃ =
(
µÃ∩B̃, νÃ∩B̃

)
=
(
min{µÃ, µB̃},max{νÃ, νB̃}

)
.

By definition, it can be shown that

(Ã ∪ B̃)(α,β) ⊃ Ã(α,β) ∪ B̃(α,β) and (Ã ∩ B̃)(α,β) = Ã(α,β) ∩ B̃(α,β).
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2.3 Set relations in set optimization

Let X be nonempty set and ≼ a binary relation on X. The relation ≼ is

said to be reflexive if for all x ∈ X, x ≼ x; irreflexive if for all x ∈ X, x ̸≼ x;

transitive if for all x, y, z ∈ X, x ≼ y and y ≼ z imply x ≼ z; antisymmetric

if for all x, y ∈ X, x ≼ y and y ≼ x imply x = y; and complete if for all

x, y ∈ X, x ≼ y or y ≼ x. The relation ≼ is called a preorder if it is reflexive

and transitive; a strict order if it is irreflexive and transitive; a partial order

if it is reflexive, transitive, and antisymmetric; a linear or total order if it is

reflexive, transitive, antisymmetric, and complete.

A nonempty subset C of a linear space Z is called convex if for all x, y ∈ C,

[x, y] := {λx + (1 − λ)y | λ ∈ [0, 1]} ⊂ C. A set C ∈ P(Z) is called a cone

if tz ∈ C for every z ∈ C and t > 0. A cone C is convex if z1 + z2 ∈ C, for

any z1, z2 ∈ C. The transitive relation ≤C is induced by a convex cone C as

follows: for z, z′ ∈ Z,

z ≤C z′ ⇐⇒ z′ − z ∈ C.

If C is a convex cone in Z, then C+C = C. Moreover, intC and clC are also

convex cones. In addition, assuming that C is pointed (i.e., C∩(−C) = {θZ}),

we have x ≤C y, y ≤C x =⇒ y − x ∈ C ∩ (−C) = {θY } =⇒ y = x. Hence,

≤C is antisymmetric and becomes a partial order.

We define ⪯ as the partial order where (α1, β1) ⪯ (α2, β2) means α1 ≤ α2

and β1 ≥ β2. Let K := {(x, y) ∈ R2 | x ≥ 0 and y ≤ 0}. Then K is pointed

and (α2, β2) ∈ (α1, β1) +K if and only if (α1, β1) ⪯ (α2, β2).

11



It can be seen that ⪯ is a partial order on ℓ and for any (α1, β1), (α2, β2) ∈ ℓ,

Ã(α2,β2) ⊂ Ã(α1,β1) whenever (α1, β1) ⪯ (α2, β2). (2.1)

For ∆ ⊂ ℓ, the sets of Pareto minimal points and Pareto maximal points of

∆ with respect to K as

Min∆ := {(α, β) ∈ ∆ | ∆ ∩ ((α, β)−K) = {(α, β)}}

and

Max∆ := {(α, β) ∈ ∆ | ∆ ∩ ((α, β) +K) = {(α, β)}},

respectively. Every point of ∆ is said to be dominated by a minimal (resp.,

maximal) point of ∆ if ∆ ⊂ Min ∆+K (resp., ∆ ⊂ Max∆−K), and this is

called the domination property with respect to K (resp., −K).
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Definition 2.3.1 (set relations, [13]). Let C ⊂ Z be a convex cone. For

A,B ∈ P(Z), the eight types of set relations are defined by

A ≤(1)
C B

def⇐⇒ ∀a ∈ A, ∀b ∈ B, a ≤C b ⇐⇒ A ⊂
⋂
b∈B

(b− C);

A ≤(2L)
C B

def⇐⇒ ∃a ∈ A s.t. ∀b ∈ B, a ≤C b ⇐⇒ A ∩

(⋂
b∈B

(b− C)

)
̸= ∅;

A ≤(2U)
C B

def⇐⇒ ∃b ∈ B s.t. ∀a ∈ A, a ≤C b ⇐⇒

(⋂
a∈A

(a+ C)

)
∩B ̸= ∅;

A ≤(2)
C B

def⇐⇒ A ≤(2L)
C B and A ≤(2U)

C B;

A ≤(3L)
C B

def⇐⇒ ∀b ∈ B, ∃a ∈ A, a ≤C b ⇐⇒ B ⊂ A+ C;

A ≤(3U)
C B

def⇐⇒ ∀a ∈ A, ∃b ∈ B, a ≤C b ⇐⇒ A ⊂ B − C;

A ≤(3)
C B

def⇐⇒ A ≤(3L)
C B and A ≤(3U)

C B;

A ≤(4)
C B

def⇐⇒ ∃a ∈ A,∃b ∈ B, a ≤C b ⇐⇒ A ∩ (B − C) ̸= ∅.
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Optimization problems with set-valued functions become more convenient

to deal with when we convert vectors or sets into a scalar value. Hence, scalar-

ization plays a key role in vector and set optimization. Many researchers in-

vestigated scalarization functions for sets related to relations based on Tam-

mer’s sublinear scalarization function for vectors [14, 11, 16] given by

hC(v; d) := inf{t ∈ R | v ∈ td− C},

where C is a convex cone and d ∈ C.
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Chapter 3

Evaluation methods for

intuitionistic fuzzy sets

3.1 Intutionistic fuzzy-set relations

By considering the set relations between (α, β)-cuts of two intuitionistic

fuzzy sets, the intuitionistic fuzzy-set relations are defined as follows.

Definition 3.1.1 (intuitionistic fuzzy-set relations). Let C ⊂ Z be a convex

cone and ∅ ≠ ∆ ⊂ ℓ. For each j = 1, 2L, 2U , 2, 3L, 3U , 3, 4, the intuitionistic

fuzzy-set relation ≤∆(j)
C , IFS relation shortly, is defined by

Ã ≤∆(j)
C B̃ ⇐⇒ ∀(α, β) ∈ ∆, Ã(α,β) ≤(j)

C B̃(α,β)

for Ã, B̃ ∈ FN(Z).
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The values α and β in the (α, β)-cut of Ã indicate the suitable or prefer-

able degrees for membership and nonmembership functions of the fuzzy set

Ã. The set ∆ can be defined as a collection of such values in comparing intu-

itionistic fuzzy sets. The IFS relations seem to be a multi-criteria comparison

in intuitionistic fuzzy sets.

From the definition, we easily obtain the following implications:

Ã ≤∆(1)
C B̃ =⇒ Ã ≤∆(2L)

C B̃ =⇒ Ã ≤∆(3L)
C B̃ =⇒ Ã ≤∆(4)

C B̃;

Ã ≤∆(1)
C B̃ =⇒ Ã ≤∆(2U)

C B̃ =⇒ Ã ≤∆(3U)
C B̃ =⇒ Ã ≤∆(4)

C B̃; (3.1)

Ã ≤∆(1)
C B̃ =⇒ Ã ≤∆(2)

C B̃ =⇒ Ã ≤∆(3)
C B̃ =⇒ Ã ≤∆(4)

C B̃

for any intuitionistic fuzzy sets Ã, B̃.

The following proposition shows that the IFS relation property is inher-

ited by the intersection of intuitionistic fuzzy sets.

Proposition 3.1.1. Let C ⊂ Z be a convex cone, ∆ a nonempty subset of ℓ,

and Ã, B̃, S̃ ∈ FN(Z). If Ã ≤∆(1)
C B̃, then Ã∩ S̃ ≤∆(j)

C B̃ ∩ S̃ for each j = 1,

2L, 2U , 2, 3L, 3U , 3, 4.

Proof. Let (α, β) ∈ ∆. For all x ∈ (Ã ∩ S̃)(α,β) and y ∈ (B̃ ∩ S̃)(α,β), we

have x ∈ Ã(α,β) and y ∈ B̃(α,β). By assumption, Ã(α,β) ≤(1)
C B̃(α,β) for all

(α, β) ∈ ∆, and hence x ∈ y − C for x ∈ Ã(α,β) and y ∈ B̃(α,β). This implies

that (Ã ∩ S̃)(α,β) ≤(1)
C (B̃ ∩ S̃)(α,β). Hence, Ã ∩ S̃ ≤∆(1)

C B̃ ∩ S̃. Using (3.1),

the conclusion follows.

The following proposition is crucial in proving some results in this thesis.
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Proposition 3.1.2. Let C ⊂ Z be a convex cone, k ∈ C, and ∅ ≠ ∆ ⊂ ℓ,

and Ã, B̃ ∈ FN(Z). For each j = 1, 2L, 2U, 2, 3L, 3U, 3, 4,

(i) if Ã+s̄k ≤∆(j)
C B̃ for some s̄ ∈ R, then Ã+sk ≤∆(j)

C B̃ for all s ∈ (−∞, s̄];

(ii) if Ã+s̄k ̸≤∆(j)
C B̃ for some s̄ ∈ R, then Ã+sk ̸≤∆(j)

C B̃ for all s ∈ [s̄,+∞).

Proof. Since C is a convex cone and k ∈ C, C + tk ⊂ C for any t > 0.

(i) Let s ∈ (−∞, s̄]. Then C + (s̄− s)k ⊂ C. Thus, a+ s̄k ≤C b implies that

a+sk ≤C b for any a, b ∈ Z. Hence, for all (α, β) ∈ ∆, Ã(α,β)+ s̄k ≤(j)
C B̃(α,β)

implies that Ã(α,β) + sk ≤(j)
C B̃(α,β). Therefore, Ã+ sk ≤∆(j)

C B̃.

(ii) The proof is similar to (i).

Proposition 3.1.3. Let C ⊂ Z be a convex cone and ∅ ̸= ∆ ⊂ ℓ. If ∆ has

the domination property with respect to K, then

Ã ≤∆(1)
C B̃ ⇐⇒ Ã ≤Min∆(1)

C B̃. (3.2)

Also, if ∆ has the domination property with respect to −K, then

Ã ≤∆(4)
C B̃ ⇐⇒ Ã ≤Max∆(4)

C B̃. (3.3)

Proof. Assume that Ã ≤∆(1)
C B̃. Since Min∆ ⊂ ∆, Ã(α,β) ≤(1)

C B̃(α,β) for all

(α, β) ∈ Min∆. Hence, Ã ≤Min∆(1)
C B̃. Conversely, suppose Ã ≤Min∆(1)

C B̃

and let (α, β) ∈ ∆. Since ∆ has the domination property with respect to

K, there exists (α0, β0) ∈ Min∆ such that (α, β) ∈ (α0, β0) + K, that is,

(α0, β0) ⪯ (α, β). By (2.1), Ã(α,β) ⊂ Ã(α0,β0) and B̃(α,β) ⊂ B̃(α0,β0). By

assumption, Ã(α0,β0) ≤(1)
C B̃(α0,β0), which means z1 ≤C z2 for z1 ∈ Ã(α0,β0)
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and z2 ∈ B̃(α0,β0). Therefore, Ã(α,β) ≤(1)
C B̃(α,β) and consequently, Ã ≤∆(1)

C B̃.

Similarly, (3.3) holds.

When we compare two intuitionistic fuzzy sets with respect to IFS rela-

tion, we can consider evaluation measure of the difference between them in

the same manner as in [4].

Definition 3.1.2 (difference evaluation function for IFS relations). Let C

be a convex cone in Z, k ∈ intC, and ∅ ≠ ∆ ⊂ ℓ. For each j = 1, 2L, 2U , 2,

3L, 3U , 3, 4, the difference evaluation function D
∆(j)
C,k : FN(Z) × FN(Z) →

R ∪ {±∞} is defined by

D
∆(j)
C,k (Ã, B̃) := sup

{
t ∈ R

∣∣∣ Ã+ tk ≤∆(j)
C B̃

}
.

Proposition 3.1.4. Let C ⊂ Z be a convex cone, k ∈ intC, ∅ ≠ ∆ ⊂ ℓ, and

Ã, B̃ ∈ FN(Z). Then for each j = 1, 2L, 2U, 2, 3L, 3U, 3, 4,

D
∆(j)
C,k (Ã, B̃) = inf

(α,β)∈∆
sup

{
t ∈ R

∣∣∣ Ã(α,β) + tk ≤(j)
C B̃(α,β)

}
.

Proof. For each j = 1, 2L, 2U, 2, 3L, 3U, 3, 4 and for any (α′, β′) ∈ ∆, we have

{
t
∣∣∣ ∀(α, β) ∈ ∆, Ã(α,β) + tk ≤(j)

C B̃(α,β)

}
⊂
{
t
∣∣∣ Ã(α′,β′) + tk ≤(j)

C B̃(α′,β′)

}
where it follows that

sup
{
t
∣∣∣ Ã+ tk ≤∆(j)

C B̃
}
≤ sup

{
t
∣∣∣ Ã(α′,β′) + tk ≤(j)

C B̃(α′,β′)

}
.
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By taking the infimum over (α′, β′) on both sides of this inequality, we obtain

D
∆(j)
C,k (Ã, B̃) ≤ inf

(α,β)∈∆
sup

{
t ∈ R

∣∣∣ Ã(α,β) + tk ≤(j)
C B̃(α,β)

}
.

Assume that there exists s̄ ∈ R such that

D
∆(j)
C,k (Ã, B̃) < s̄ < inf

(α,β)∈∆
sup

{
t ∈ R

∣∣∣ Ã(α,β) + tk ≤(j)
C B̃(α,β)

}
.

From the second inequality, there exists s(α′,β′) > s̄ for any (α′, β′) ∈ ∆

such that Ã(α′,β′) + s(α′,β′)k ≤(j)
C B̃(α′,β′). By Proposition 3.1.2 (i), we deduce

that Ã(α′,β′) + s̄k ≤(j)
C B̃(α′,β′). This implies that s̄ ≤ D

∆(j)
C,k (Ã, B̃) and thus

contradicts the assumption D
∆(j)
C,k (Ã, B̃) < s̄.

The next proposition provides alternative formula for the difference eval-

uation function when the domination property is satisfied.

Proposition 3.1.5. Let C ⊂ Z be a convex cone, k ∈ intC, ∅ ≠ ∆ ⊂ ℓ, and

Ã, B̃ ∈ FN(Z). Then

(i) ∆ ⊂ Min∆+K implies D
∆(1)
C,k (Ã, B̃) = sup

{
t ∈ R

∣∣∣ Ã+ tk ≤Min∆(1)
C B̃

}
;

(ii) ∆ ⊂ Max∆−K implies D
∆(4)
C,k (Ã, B̃) = sup

{
t ∈ R

∣∣∣ Ã+ tk ≤Max∆(4)
C B̃

}
;

(iii) D
∆(2)
C,k (Ã, B̃) = min

{
D

∆(2L)
C,k (Ã, B̃), D

∆(2U)
C,k (Ã, B̃)

}
;

(iv) D
∆(3)
C,k (Ã, B̃) = min

{
D

∆(3L)
C,k (Ã, B̃), D

∆(3U)
C,k (Ã, B̃)

}
.

Proof. By Definition 3.1.2, D
∆(j)
C,k (Ã, B̃) = sup

{
t ∈ R

∣∣∣ Ã+ tk ≤∆(j)
C B̃

}
for

each j.
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(i) By (3.2), Ã ≤∆(1)
C B̃ ⇐⇒ Ã ≤Min∆(1)

C B̃. Hence,

D
∆(1)
C,k (Ã, B̃) = sup

{
t ∈ R

∣∣∣ Ã+ tk ≤Min∆(1)
C B̃

}
.

(ii) By (3.3), Ã ≤∆(4)
C B̃ ⇐⇒ Ã ≤Max∆(4)

C B̃ Hence,

D
∆(4)
C,k (Ã, B̃) = sup

{
t ∈ R

∣∣∣ Ã+ tk ≤Max∆(4)
C B̃

}
.

(iii) By Proposition 3.1.4,

D
∆(2)
C,k (Ã, B̃) = inf

(α,β)∈∆
sup

{
t ∈ R

∣∣∣ Ã(α,β) + tk ≤(2)
C B̃(α,β)

}
.

We show that sup(E ∩ F ) = min{supE, supF} where for each (α, β) ∈ ∆,

E :=
{
t ∈ R

∣∣∣ Ã(α,β) + tk ≤(2L)
C B̃(α,β)

}
and

F :=
{
t ∈ R

∣∣∣ Ã(α,β) + tk ≤(2U)
C B̃(α,β)

}
.

Generally, sup(E ∩F ) ≤ min{supE, supF}. Assume that there exists s̄ ∈ R

such that sup(E ∩ F ) < s̄ < min{supE, supF}. From the second inequality,

there exist s′(α,β) > s̄ and s′′(α,β) > s̄ such that Ã(α,β) + s′(α,β)k ≤(2L)
C B̃(α,β)

and Ã(α,β) + s′′(α,β)k ≤(2U)
C B̃(α,β). By Proposition 3.1.2 (i), we deduce that

Ã(α,β) + s̄k ≤(j)
C B̃(α,β) for j = 2L, 2U , which implies that s̄ ≤ sup(E ∩ F ).

This contradicts sup(E ∩ F ) < s̄. Hence, sup(E ∩ F ) = min{supE, supF}.
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Therefore, by Definition 2.3.1 and Proposition 3.1.4,

D
∆(2)
C,k (Ã, B̃) = inf

(α,β)∈∆
min

j=2L,2U
sup

{
t ∈ R

∣∣∣ Ã(α,β) + tk ≤(j)
C B̃(α,β)

}
= min{D∆(2L)

C,k (Ã, B̃), D
∆(2U)
C,k (Ã, B̃)},

which implies the result.

(iv) The assertion is proved in a similar way to (iii).

3.2 Correspondences between IFS relations

and difference evaluation functions

The difference evaluation functions described in Definition 3.1.2 measure

how different two intuitionistic fuzzy sets are. By using them, we can charac-

terize evaluation of intuitionistic fuzzy sets. In this section, we prove several

results on the characterizations of IFS relations in the same manner as in [4].

Specifically, we establish eight theorems which describe correspondences be-

tween the IFS relations and the difference evaluation functions for IFS defined

in Section 2.

Definition 3.2.1 (compactness). Let ∅ ≠ ∆ ⊂ ℓ. An IFS Ã on Z is said to be

∆-compact if Ã(α,β) is compact for all (α, β) ∈ ∆. When Ã is {(α, β)}-

compact for some (α, β) ∈ ℓ, we simply say Ã is (α, β)-compact.

Using Lemma 2.1.1, the correspondence for the first IFS relation is ob-

tained below.
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Theorem 3.2.1 (Type 1). Let C be a convex cone in Z, k ∈ intC, ∆ a

nonempty subset of ℓ, and Ã, B̃ ∈ FN(Z). Then the following statements

hold:

(i) if Ã ≤∆(1)

clC B̃, then D
∆(1)
C,k (Ã, B̃) ≥ 0;

(ii) if D
∆(1)
C,k (Ã, B̃) ≥ 0, then Ã ≤∆(1)

clC B̃;

(iii) if ∆ ⊂ Min∆ +K, Min∆ is closed, the cut mappings of Ã and B̃ are

lower and upper continuous, respectively, and Ã, B̃ are (Min∆)-compact,

then Ã ≤∆(1)

intC B̃ implies D
∆(1)
C,k (Ã, B̃) > 0;

(iv) if D
∆(1)
C,k (Ã, B̃) > 0, then Ã ≤∆(1)

intC B̃.

Proof. (i) Assume that Ã ≤∆(1)

clC B̃ and let s0 < 0. Since clC ⊂ C + s0k, we

have Ã(α,β) ⊂
⋂

b∈B̃(α,β)
(b− clC) ⊂

⋂
b∈B̃(α,β)

(b−C)− s0k, ∀(α, β) ∈ ∆. This

implies that Ã+ s0k ≤∆(1)
C B̃, and thus

D
∆(1)
C,k (Ã, B̃) = sup

{
s ∈ R

∣∣∣ Ã+ sk ≤∆(1)
C B̃

}
≥ s0.

By making s0 sufficiently close to 0 from below, we obtain D
∆(1)
C,k (Ã, B̃) ≥ 0.

(ii) Assume that Ã ̸≤∆(1)

clC B̃. Then there exists (ᾱ, β̄) ∈ ∆ and a ∈ Ã(ᾱ,β̄)

such that a /∈
⋂

b∈B̃(ᾱ,β̄)
(b − clC). Since

⋂
b∈B̃(ᾱ,β̄)

(b − clC) is closed, it follows

that there exists s̄ > 0 such that a− s̄k /∈
⋂

b∈B̃(ᾱ,β̄)
(b− clC). Thus, we have

Ã(ᾱ,β̄) − s̄k ̸⊂
⋂

b∈B̃(ᾱ,β̄)

(b− C),
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which implies that Ã− s̄k ̸≤∆(1)
C B̃. Consequently,

D
∆(1)
C,k (Ã, B̃) = sup

{
s ∈ R

∣∣∣ Ã+ sk ≤∆(1)
C B̃

}
≤ −s̄ < 0

holds by Proposition 3.1.2 (ii).

(iii) Assume that Ã ≤∆(1)

intC B̃ and let

O :=
⋂
b∈F

(b− intC), where F :=
⋃

(α,β)∈Min∆

B̃(α,β).

Since Ã ≤∆(1)
C B̃ if and only if Ã ≤Min∆(1)

C B̃, we have

a ∈ O for all a ∈ E :=
⋃

(α,β)∈Min∆

Ã(α,β).

Since the cut mapping of B̃ is upper continuous and compact-valued defined

on Min∆ which is a closed set in ℓ and hence compact, F is compact; see [12].

Thus, O is open by Lemma 2.1.1. It follows that there exists sa > 0 such that

a + sak ∈ O. Thus, E ⊂
⋃

a∈E(O − sak). This indicates that {O − sak}a∈E
is an open cover of E. By the compactness of E, there exist m vectors

a1, . . . , am ∈ E such that E ⊂
⋃m

i=1(O−saik). Let s̄ = min{sa1 , . . . , sam} > 0.

Since intC + saik ⊂ intC + s̄k for every i = 1, . . . ,m, we deduce that⋃m
i=1 (O− saik) ⊂ O− s̄k. Hence, E + s̄k ⊂ O ⊂

⋂
b∈F (b−C), which implies

that Ã+ s̄k ≤∆(1)
C B̃. Therefore,

D
∆(1)
C,k (Ã, B̃) = sup

{
s ∈ R

∣∣∣ Ã+ sk ≤∆(1)
C B̃

}
≥ s̄ > 0.
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(iv) Assume that D
∆(1)
C,k (Ã, B̃) = sup

{
s ∈ R

∣∣∣ Ã+ sk ≤∆(1)
C B̃

}
> 0. Then for

each (α, β) ∈ ∆, there exists s̄ > 0 such that for all (α, β) ∈ ∆,

Ã(α,β) + s̄k ⊂
⋂

b∈B̃(α,β)

(b− C).

Since C + s̄k ⊂ intC, we have

Ã(α,β) ⊂
⋂

b∈B̃(α,β)

(b− C)− s̄k ⊂
⋂

b∈B̃(α,β)

(b− intC)

for all (α, β) ∈ ∆. Therefore, Ã ≤∆(1)

intC B̃.

Lemma 3.2.1. Let C ⊂ Z be a convex cone with intC ̸= ∅, ∅ ≠ ∆ ⊂ ℓ, and

B̃ an IFS on Z. If the cut mapping of B̃ is an upper continuous set-valued

map from ∆ to P(Z), then the set-valued map

∆ ∋ (α, β) 7→
⋂

b∈B̃(α,β)

(b− C) ∈ P(Z)

is Hausdorff lower continuous.

Proof. For each (ᾱ, β̄) ∈ ∆, we show that for all open sets W ∈ U , there

exists U ∈ NR2((ᾱ, β̄))∩∆ such that
⋂

b∈B̃(ᾱ,β̄)
(b−C) ⊂

⋂
b∈B̃(α,β)

(b−C)+W

for all (α, β) ∈ U . Since intC ̸= ∅, there exist k ∈ intC∩W and V ∈ U such

that k+V ⊂ W ∩ intC. Thus, k ∈ k+V ⊂ C ∩W which implies that −V ⊂

k−C. Since the cut mapping of B̃ is upper continuous at (ᾱ, β̄), there exists

U ∈ NR2((ᾱ, β̄)) ∩∆ such that for all (α, β) ∈ U , B̃(α,β) ⊂ B̃(ᾱ,β̄) + V . Now

for all (α, β) ∈ U and b ∈ B̃(α,β), there exists vb ∈ B̃(ᾱ,β̄) such that b ∈ vb+V
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or vb ∈ b− V . Hence,
⋂

v∈B̃(ᾱ,β̄)
(v − C) ⊂ vb − C ⊂ b− V − C ⊂ b + k − C,

which implies that

⋂
v∈B̃(ᾱ,β̄)

(v − C) ⊂
⋂

b∈B̃(α,β)

(b− C) + k ⊂
⋂

b∈B̃(α,β)

(b− C) +W.

Hence, the conclusion follows.

Lemma 3.2.2. Let C ⊂ Z be a convex cone with k ∈ intC, ∅ ≠ ∆ ⊂ ℓ,

and Ã, B̃ ∈ FN(Z). If the cut mappings of Ã and B̃ are lower and upper

continuous, respectively, then the function

f((α, β)) := sup
{
t ∈ R

∣∣∣ Ã(α,β) + tk ≤(2L)
C B̃(α,β)

}
is lower semicontinuous.

Proof. By Definition 2.3.1,

f((α, β)) = sup

t ∈ R

∣∣∣∣∣∣ (Ã(α,β) + tk) ∩

 ⋂
b∈B̃(α,β)

(b− C)

 ̸= ∅


for all (α, β) ∈ ∆. For each (ᾱ, β̄) ∈ ∆, we show that for all s < f((ᾱ, β̄)),

there exists U ∈ NR2((ᾱ, β̄)) ∩∆ such that s ≤ f((α, β)) for all (α, β) ∈ U .

Since s < f((ᾱ, β̄)), there exists t > 0 such that s + t < f((ᾱ, β̄)), which

means that

(
Ã(ᾱ,β̄) + (s+ t)k

)
∩

 ⋂
b∈B̃(ᾱ,β̄)

(b− C) + V

 ̸= ∅.
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Since tk ∈ intC, there exist W ∈ U such that tk + W ⊂ intC ⊂ C and

V ∈ U such that V = −V and V + V ⊂ W . Since the cut mapping of Ã is

lower continuous, (α, β) 7→ Ã(α,β)+(s+ t)k is also lower continuous at (ᾱ, β̄).

Hence, there exists U1 ∈ NR2((ᾱ, β̄)) ∩∆ such that for all (α, β) ∈ U1,

(
Ã(α,β) + (s+ t)k

)
∩

 ⋂
b∈B̃(ᾱ,β̄)

(b− C) + V

 ̸= ∅. (5)

On the other hand, since the cut mapping of B̃ is upper continuous,

∆ ∋ (α, β) 7→
⋂

b∈B̃(α,β)

(b− C)

is Hausdorff lower continuous by Lemma 3.2.1. It follows that there exists

U2 ∈ NR2((ᾱ, β̄)) ∩∆ such that for all (α, β) ∈ U2 and

⋂
b∈B̃(ᾱ,β̄)

(b− C) ⊂
⋂

b∈B̃(α,β)

(b− C) + V. (6)

Let U = U1 ∩ U2. Then by (5) and (6), for all (α, β) ∈ U ,

(
Ã(α,β) + (s+ t)k

)
∩

 ⋂
b∈B̃(α,β)

(b− C) + V + V

 ̸= ∅.

Hence, there exist z ∈ Ã(α,β) + sk, v1, v2 ∈ V , and y ∈
⋂

b∈B̃(α,β)
(b− C) such
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that z + tk = y + v1 + v2. Hence,

z = y − (tk − (v1 + v2)) ∈ y − C ⊂
⋂

b∈B̃(α,β)

(b− C)− C,

which implies that

(
Ã(α,β) + sk

)
∩

 ⋂
b∈B̃(α,β)

(b− C)

 ̸= ∅.

Therefore, s ≤ f((α, β)) for any (α, β) ∈ U .

Theorem 3.2.2 (Type 2L). Let C ⊂ Z be a convex cone, k ∈ intC,

∅ ≠ ∆ ⊂ ℓ, and Ã, B̃ ∈ FN(Z). Then the following statements hold:

(i) if Ã ≤∆(2L)

clC B̃, then D
∆(2L)
C,k (Ã, B̃) ≥ 0;

(ii) if Ã is ∆-compact, and D
∆(2L)
C,k (Ã, B̃) ≥ 0, then Ã ≤∆(2L)

clC B̃;

(iii) if ∆ is closed, the cut mappings of Ã and B̃ are lower and upper

continuous, respectively, and B̃ is ∆-compact, then Ã ≤∆(2L)

intC B̃ implies

D
∆(2L)
C,k (Ã, B̃) > 0;

(iv) if D
∆(2L)
C,k (Ã, B̃) > 0, then Ã ≤∆(2L)

intC B̃.

Proof. (i) Assume that Ã ≤∆(2L)

clC B̃. Then Ã(α,β) ∩
(⋂

b∈B̃(α,β)
(b− clC)

)
̸= ∅

for all (α, β) ∈ ∆. Let s0 < 0. Since clC ⊂ C + s0k,

(
Ã(α,β) + s0k

)
∩

 ⋂
b∈B̃(α,β)

(b− C)

 ̸= ∅.
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for all (α, β) ∈ ∆ This implies that Ã+ s0k ≤∆(2L)
C B̃, and thus

D
∆(2L)
C,k (Ã, B̃) = sup

{
s ∈ R

∣∣∣ Ã+ sk ≤∆(2L)
C B̃

}
≥ s0.

By making s0 sufficiently close to 0 from below, we obtain D
∆(2L)
C,k (Ã, B̃) ≥ 0.

(ii) Assume that Ã ̸≤∆(2L)

clC B̃. Then there exists (ᾱ, β̄) ∈ ∆ such that

Ã(ᾱ,β̄) ∩

 ⋂
b∈B̃(ᾱ,β̄)

(b− clC)

 = ∅.

Let D =
⋂

b∈B̃(ᾱ,β̄)
(b− clC). For any a ∈ Ã(ᾱ,β̄), we have a /∈ D. Due to the

closedness of D, it follows that there exists sa > 0 such that a − sak /∈ D

or a ∈ Dc + sak, and thus Ã(ᾱ,β̄) ⊂
⋃

a∈Ã(ᾱ,β̄)
(Dc + sak). This indicates that

{Dc + sak}a∈Ã(ᾱ,β̄)
is an open cover of Ã(ᾱ,β̄). By the compactness of Ã(ᾱ,β̄),

there exist a1, . . . , am ∈ Ã(ᾱ,β̄) such that Ã(ᾱ,β̄) ⊂
⋃m

i=1(D
c + saik). Taking

s̄ = min{sa1 , . . . , sam} > 0, we deduce
⋃m

i=1(D
c + saik) ⊂ Dc + s̄k because

−clC + s̄k ⊂ −clC + saik for every i = 1, . . . ,m. We obtain

(
Ã(ᾱ,β̄) − s̄k

)
∩

 ⋂
b∈B̃(ᾱ,β̄)

(b− C)

 = ∅,

which implies Ã− s̄k ̸≤∆(2L)
C B̃. Consequently, D

∆(2L)
C,k (Ã, B̃) ≤ −s̄ < 0 holds

by Proposition 3.1.2 (ii).

28



(iii) Assume that Ã ≤∆(2L)

intC B̃ and define f : ∆ → R ∪ {±∞} by

f((α, β)) = sup

t ∈ R

∣∣∣∣∣∣
(
Ã(α,β) + tk

)
∩

 ⋂
b∈B̃(α,β)

(b− C)

 ̸= ∅

 .

We first prove f((α, β)) > 0 for all (α, β) ∈ ∆. Since B̃(α,β) ⊂ Ã(α,β) + intC

for any (α, β) ∈ ∆, there exists z(α,β) ∈ Ã(α,β) ∩
(⋂

b∈B̃(α,β)
(b− intC)

)
for

each (α, β) ∈ ∆. Since
⋂

b∈B̃(α,β)
(b − intC) is open by the compactness of

B̃(α,β) via Lemma 2.1.1, it follows that there exists s̄(α,β) > 0 such that

z(α,β) + s̄(α,β)k ∈
⋂

b∈B̃(α,β)

(b− intC).

Hence,
(
Ã(α,β) + s̄(α,β)k

)
∩
(⋂

b∈B̃(α,β)
(b− C)

)
̸= ∅ and f((α, β)) ≥ s̄(α,β) > 0.

Next, we prove that D
∆(2L)
C,k (Ã, B̃) > 0. Since the cut mappings of Ã and

B̃ are lower and upper continuous, respectively, f is l.s.c. by Lemma 3.2.2.

Since ∆ is compact, we deduce that f has a minimum at some point on ∆,

say (ᾱ, β̄). Therefore, by Proposition 3.1.4,

D
∆(2L)
C,k (Ã, B̃) = inf

(α,β)∈∆
f((α, β)) = f((ᾱ, β̄)) ≥ s̄(ᾱ,β̄) > 0.

(iv) Assume that D
∆(2L)
C,k (Ã, B̃) = sup

{
s ∈ R

∣∣∣ Ã+ sk ≤∆(2L)
C B̃

}
> 0. Then

there exists s̄ > 0 such that
(
Ã(α,β) + s̄k

)
∩
(⋂

b∈B̃(α,β)
(b− C)

)
̸= ∅ for all

(α, β) ∈ ∆. Since C+ s̄k ⊂ intC, we have Ã(α,β)∩
(⋂

b∈B̃(α,β)
(b− intC)

)
̸= ∅

for all (α, β) ∈ ∆. Therefore, Ã ≤∆(2L)

intC B̃.
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Example 3.2.1. Let Z = R, C = R+ and define two IFS Ã, B̃ by

µÃ(x) :=



0, x < −1

x+ 1, −1 ≤ x < 0

1− x, 0 ≤ x < 1

0, x > 1

, µB̃(x) :=



0, x < −0.5

2x+ 1, −0.5 ≤ x < 0.5

1− 2x, 0 ≤ x < 0.5

0, x > 1,

,

νÃ := 1−µÃ and νB̃ := 1−µB̃. A geometric interpretation is provided below.

In this example, we have Ã(α,β) =
[
−1

2
, 1
2

]
and B̃(α,β) =

[
−1

4
, 1
4

]
when

∆ =
{(

1
4
, 1
2

)}
⊂ ℓ. Hence, both are ∆-compact and Ã ≤∆(2L)

C B̃. Thus,

D
∆(2L)
C,k (Ã, B̃) = 1

4
> 0. ◀

The correspondence for Type 2U IFS relation is obtained similarly with

Type 2L and the facts that in general, the following hold:

Ã ≤∆(2U)
C B̃ ⇐⇒ B̃ ≤∆(2L)

−C Ã and D
∆(2U)
C,k (Ã, B̃) = D

∆(2L)
−C,−k(B̃, Ã).

Theorem 3.2.3 (Type 2U). Let C be a convex cone in Z, k ∈ intC,

∅ ≠ ∆ ⊂ ℓ, and Ã, B̃ ∈ FN(Z). Then the following statements hold:

(i) if Ã ≤∆(2U)

clC B̃, then D
∆(2U)
C,k (Ã, B̃) ≥ 0;

(ii) if B̃ is ∆-compact and D
∆(2U)
C,k (Ã, B̃) ≥ 0, then Ã ≤∆(2U)

clC B̃;
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(iii) if ∆ is closed, the cut mappings of Ã and B̃ are upper and lower

continuous, respectively, and Ã is ∆-compact, then Ã ≤∆(2U)

intC B̃ implies

D
∆(2U)
C,k (Ã, B̃) > 0;

(iv) if D
∆(2U)
C,k (Ã, B̃) > 0, then Ã ≤∆(2U)

intC B̃.

The next theorem is a natural consequence of Theorems 3.2.3, 3.2.2, and

Proposition 3.1.5 (iii).

Theorem 3.2.4 (Type 2). Let C ⊂ Z be a convex cone, k ∈ intC, ∆ a

nonempty subset of ℓ, and Ã, B̃ ∈ FN(Z). Then the following statements

hold:

(i) if Ã ≤∆(2)

clC B̃, then D
∆(2)
C,k (Ã, B̃) ≥ 0;

(ii) if Ã and B̃ are ∆-compact and D
∆(2)
C,k (Ã, B̃) ≥ 0, then Ã ≤∆(2)

clC B̃;

(iii) if ∆ is closed, the cut mappings of Ã and B̃ are both lower and upper

continuous simultaneously, and Ã, B̃ are ∆-compact, then Ã ≤∆(2)

intC B̃ implies

D
∆(2)
C,k (Ã, B̃) > 0;

(iv) if D
∆(2)
C,k (Ã, B̃) > 0, then Ã ≤∆(2)

intC B̃.

Lemma 3.2.3. Let C ⊂ Z be a convex cone with k ∈ intC, ∅ ≠ ∆ ⊂ ℓ,

and Ã, B̃ ∈ FN(Z). If the cut mappings of Ã and B̃ are lower and upper

continuous, respectively, and Ã is ∆-compact, then the function

f((α, β)) := sup
{
t ∈ R

∣∣∣ Ã(α,β) + tk ≤(3L)
C B̃(α,β)

}
is lower semicontinuous.

Proof. By Definition 2.3.1, f((α, β)) = sup
{
t ∈ R

∣∣∣ B̃(α,β) ⊂ Ã(α,β) + tk + C
}

for all (α, β) ∈ ∆. Since the cut mapping of Ã is lower continuous and
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compact-valued by ∆-compactness of Ã, (α, β) 7→ Ã(α,β) + tk is Hausdorff

lower continuous for t ∈ R; see Remark 2.1.2. The remainder of the proof is

similar to the approach of that of Lemma 3.2.2.

Theorem 3.2.5 (Type 3L). Let C ⊂ Z be a convex cone, k ∈ intC,

∅ ≠ ∆ ⊂ ℓ, and Ã, B̃ ∈ FN(Z). Then the following statements hold:

(i) if Ã ≤∆(3L)

clC B̃, then D
∆(3L)
C,k (Ã, B̃) ≥ 0;

(ii) if Ã is ∆-compact and D
∆(3L)
C,k (Ã, B̃) ≥ 0, then Ã ≤∆(3L)

clC B̃;

(iii) if ∆ is closed, the cut mappings of Ã and B̃ are lower and upper con-

tinuous, respectively, and Ã, B̃ are ∆-compact, then Ã ≤∆(3L)

intC B̃ implies

D
∆(3L)
C,k (Ã, B̃) > 0;

(iv) if D
∆(3L)
C,k (Ã, B̃) > 0, then Ã ≤∆(3L)

intC B̃.

Proof. To prove statement (iv), we can take the same approach as in the

proof of Theorem 3.2.1.

(i) Assume that Ã ≤∆(3L)

clC B̃. For all (α, β) ∈ ∆, B̃(α,β) ⊂ Ã(α,β) + clC. Let

s0 < 0. Since clC ⊂ C + s0k for all (α, β) ∈ ∆, we have

B̃(α,β) ⊂ Ã(α,β) + C + s0k

implying that Ã+ s0k ≤∆(3L)
C B̃. Thus,

D
∆(3L)
C,k (Ã, B̃) = sup

{
s ∈ R

∣∣∣ Ã+ sk ≤∆(3L)
C B̃

}
≥ s0.

By making s0 sufficiently close to 0 from below, we obtain D
∆(3L)
C,k (Ã, B̃) ≥ 0.
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(ii) Assume that Ã ̸≤∆(3L)

clC B̃. Then there exists (ᾱ, β̄) ∈ ∆ such that

B̃(ᾱ,β̄) ̸⊂ Ã(ᾱ,β̄) + clC.

Thus, there exists b ∈ B̃(ᾱ,β̄) such that b /∈ Ã(ᾱ,β̄) + clC. Since Ã(ᾱ,β̄) is

compact, it follows that Ã(ᾱ,β̄) + clC is closed. Hence, there exists s̄ > 0

such that b + s̄k /∈ Ã(ᾱ,β̄) + clC. Since b /∈ Ã(ᾱ,β̄) + clC − s̄k, we deduce

B̃(ᾱ,β̄) ̸⊂ Ã(ᾱ,β̄) − s̄k + C, and thus Ã − s̄k ̸≤∆(3L)
C B̃. By Proposition 3.1.2,

Ã− sk ̸≤∆(3L)
C B̃ for all s ∈ (−∞, s̄]. Consequently,

D
∆(3L)
C,k (Ã, B̃) = sup

{
s ∈ R

∣∣∣ Ã+ sk ≤∆(3L)
C B̃

}
≤ −s̄ < 0.

(iii) Assume that Ã ≤∆(3L)

intC B̃ and define f : ∆ → R ∪ {±∞} by

f((α, β)) := sup
{
t ∈ R

∣∣∣ B̃(α,β) ⊂ Ã(α,β) + tk + C
}
.

We first prove that f((α, β)) > 0 for all (α, β) ∈ ∆. Since for all (α, β) ∈ ∆,

B̃(α,β) ⊂ Ã(α,β) + intC , we have b ∈ O := Ã(α,β) + intC for any b ∈ B̃(α,β).

It follows that there exists sb > 0 such that b− sbk ∈ O because O is open,

and thus

B̃(α,β) ⊂
⋃

b∈B̃(α,β)

(O + sbk).

This indicates that {O + sbk}b∈B̃(α,β)
is an open cover of B̃(α,β). Since B̃(α,β)

is compact, there exists m vectors b1, . . . , bm ∈ B̃(α,β) such that

B̃(α,β) ⊂
m⋃
i=1

(O + sbik).
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Taking s̄(α,β) := min{sb1 , . . . , sbm} > 0, we deduce

m⋃
i=1

(O + sbik) ⊂ O + s̄(α,β)k

because intC + sbik ⊂ intC + s̄(α,β)k for every i = 1, . . . ,m. Therefore,

B̃(α,β) ⊂ Ã(α,β) + s̄(α,β)k + C, and thus f((α, β)) ≥ s̄(α,β) > 0.

Next, we show that Ã ≤∆(3L)

intC B̃ implies D
∆(3L)
C,k (Ã, B̃) > 0. By assump-

tion, Ã is ∆-compact and the cut mappings of Ã, B̃ are lower and upper

continuous, respectively, which implies that f is l.s.c. by Lemma 3.2.3. From

the compactness of ∆, we deduce that f has a minimum at some point on

∆, say (ᾱ, β̄). Therefore, by using Proposition 3.1.4,

D
∆(3L)
C,k (Ã, B̃) = inf

(α,β)∈∆
f((α, β)) = f((ᾱ, β̄)) ≥ s̄(ᾱ,β̄) > 0,

which completes the proof.

The next result can be obtained by using the above theorem and the facts

that Ã ≤∆(3U)
C B̃ ⇐⇒ B̃ ≤∆(3L)

−C Ã and D
∆(3U)
C,k (Ã, B̃) = D

∆(3L)
−C,−k(B̃, Ã) hold in

general.

Theorem 3.2.6 (Type 3U). Let C ⊂ Z be a convex cone, k ∈ intC,

∅ ≠ ∆ ⊂ ℓ, and Ã, B̃ ∈ FN(Z). Then the following statements hold:

(i) if Ã ≤∆(3U)

clC B̃, then D
∆(3U)
C,k (Ã, B̃) ≥ 0;

(ii) if B̃ is ∆-compact and D
∆(3U)
C,k (Ã, B̃) ≥ 0, then Ã ≤∆(3U)

clC B̃;

(iii) if ∆ is closed, the cut mappings of Ã and B̃ are upper and lower con-

tinuous, respectively, and Ã, B̃ are ∆-compact, then Ã ≤∆(3U)

intC B̃ implies

34



D
∆(3U)
C,k (Ã, B̃) > 0;

(iv) if D
∆(3U)
C,k (Ã, B̃) > 0, then Ã ≤∆(3U)

intC B̃.

The next theorem is a consequence of Theorems 3.2.5, 3.2.6, and Propo-

sition 3.1.5 (iv).

Theorem 3.2.7 (Type 3). Let C ⊂ Z be a convex cone, k ∈ intC, ∆ a

nonempty subset of ℓ, and Ã, B̃ ∈ FN(Z). Then the following statements

hold:

(i) if Ã ≤∆(3)

clC B̃, then D
∆(3)
C,k (Ã, B̃) ≥ 0;

(ii) if Ã and B̃ are ∆-compact and D
∆(3)
C,k (Ã, B̃) ≥ 0 implies Ã ≤∆(3)

clC B̃;

(iii) if ∆ is closed, the cut mappings of Ã and B̃ are both lower and upper

continuous simultaneously, and Ã, B̃ are ∆-compact, then Ã ≤∆(3)

intC B̃ implies

D
∆(3)
C,k (Ã, B̃) > 0;

(iv) if D
∆(3)
C,k (Ã, B̃) > 0, then Ã ≤∆(3)

intC B̃.

Lemma 3.2.4. Let C ⊂ Z be a convex cone with k ∈ intC, ∅ ≠ ∆ ⊂ ℓ, and

Ã, B̃ ∈ FN(Z). If the cut mappings of Ã and B̃ are both lower continuous,

and Ã, B̃ are ∆-compact, then the function

f((α, β)) := sup
{
t ∈ R

∣∣∣ Ã(α,β) + tk ≤(4)
C B̃(α,β)

}
is lower semicontinuous.

Proof. By Definition 2.3.1,

f((α, β)) = sup
{
t ∈ R

∣∣∣ (Ã(α,β) + tk
)
∩
(
B̃(α,β) − C

)
̸= ∅
}
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for all (α, β) ∈ ∆. Since the cut mappings of Ã and B̃ are lower continuous,

and Ã and B̃ are compact-valued by assumption, the mappings

(α, β) 7→ Ã(α,β) + tk and (α, β) 7→ B̃(α,β)

are Hausdorff lower continuous simultaneously. The remainder of the proof

is similar to the approach of that of Lemma 3.2.2.

Theorem 3.2.8 (Type 4). Let C ⊂ Z be a convex cone, k ∈ intC, ∆ a

nonempty subset of ℓ, and Ã, B̃ ∈ FN(Z). Then the following statements

hold:

(i) if Ã ≤∆(4)

clC B̃, then D
∆(4)
C,k (Ã, B̃) ≥ 0;

(ii) if Ã, B̃ are ∆-compact and D
∆(4)
C,k (Ã, B̃) ≥ 0, then Ã ≤∆(4)

clC B̃;

(iii) if ∆ is closed, Ã, B̃ are ∆-compact and have lower continuous cut map-

pings, then Ã ≤∆(4)

intC B̃ implies D
∆(4)
C,k (Ã, B̃) > 0;

(iv) if D
∆(4)
C,k (Ã, B̃) > 0, then Ã ≤∆(4)

intC B̃.

Proof. The proof for statements (i) and (iv) are similar to that of Theorem

3.2.1 while the proof for statement (iii) is similar to that of Theorem 3.2.5

via Lemma 3.2.4.

(ii) We assume that Ã ̸≤∆(4)

clC B̃. Then there exists (ᾱ, β̄) ∈ ∆ such that

Ã(ᾱ,β̄) ̸≤
(4)

clC B̃(ᾱ,β̄), which implies Ã(ᾱ,β̄)∩
(
B̃(ᾱ,β̄) − clC

)
= ∅. Since B̃(ᾱ,β̄) is

compact and clC is closed, G := B̃(ᾱ,β̄) − clC is closed. For each a ∈ Ã(ᾱ,β̄),

there exists sa > 0 such that a− sak ∈ Gc which means that

a ∈ Gc + sak ⊂
⋃

a∈Ã(ᾱ,β̄)

(Gc + sak).
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This implies that
⋃

a∈Ã(ᾱ,β̄)
(Gc+sak) is an open cover for Ã(ᾱ,β̄). Since Ã(ᾱ,β̄) is

compact, there exists a1, . . . , am ∈ Ã(ᾱ,β̄) such that Ã(ᾱ,β̄) ⊂
⋃m

i=1(G
c+ saik).

By taking s̄ := min{sa1 , . . . , sam} > 0, we deduce that Ã(ᾱ,β̄) ⊂ Gc + s̄k.

Hence,
(
Ã(ᾱ,β̄) − s̄k

)
∩G = ∅. Consequently,

D
∆(4)
C,k (Ã, B̃) = sup

{
s ∈ R

∣∣∣ Ã+ sk ≤∆(4)
C B̃

}
≤ −s̄ < 0

and this completes the proof.
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Chapter 4

Conclusion

In this study, various types of intuitionistic fuzzy-set relations based on

a convex cone have been introduced as a new comparison criteria of intu-

itionistic fuzzy sets. Several results related to the correspondences between

IFS and their difference evaluation functions have been obtained under some

assumptions of certain compactness and continuity. In particular, compar-

ing intuitionistic fuzzy sets yields several results related to the sign of the

difference evaluation function value between them with respect to the type

of set relations. They are useful when we evaluate intuitionistic fuzzy sets

with respect to multi-criteria comparison methods.

The following are left to be explored.

Choice of membership and non-membership functions In this re-

search, several intuitionistic fuzzy sets are assumed to exist for convenience.
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It would be useful to other fields if some results are obtained related to

defining particular functions.

Relationship between different nonempty subsets ∆ of ℓ. In Chap-

ter 3, the nonempty subset ∆ of ℓ is taken by preference to satisfy different

results in this research. In the future, it would an interesting theme to in-

vestigate relationships between various types of ∆ and their implications.
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