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Introduction

Let (B, || - ||;) be a Banach space for i = 1,2 and T': By — By a map between By and Bs.

The map T is an isometry between By and B, if

IT(x) =Tl = lle =yl (z,y € Bi).

By the above equality, we notice that isometries on Banach spaces preserve the metric structure
induced by the norm. The main purpose of Preserver problems for surjective isometries on
Banach spaces of continuous functions is to characterize the forms of surjective isometries and
to clarify how the metric structure affects other structures of Banach spaces.

The Mazur—Ulam theorem [32, Theorem 1.3.5], which is one of the most prominent theorem
for the study of surjective isometries on Banach spaces, asserts that if 7' : By — Bs is a
surjective isometry, then 7' — T'(0) is real linear. We note that the map 7' — T7'(0) : By — B
is also a surjective isometry. We infer from this theorem that the metric structure is closely
related to the algebraic structure of Banach spaces. On the other hand, the forms of surjective
isometries on Banach spaces cannot be characterized in the Mazur—Ulam theorem.

Let C(X) be a Banach space of all complex-valued continuous functions on a compact
Hausdorff space X equipped with the supremum norm || f|| = sup,cx |f(z)| for all f € C(X).
The Banach—Stone theorem is one of the most important theorems in the study of surjective
isometries on Banach spaces which consist of continuous functions. This theorem characterizes

the forms of surjective complex linear isometries between two continuous function spaces C'(X)
and C(Y);

THEOREM (The Banach—Stone theorem [17, Theorem 2.1, p172]). If T : C(X) — C(Y) is
a surjective complex linear isometry, then there exist a continuous function a: Y — T and a

homeomorphism 7 : Y — X such that

T(N)y) =a)f(rly)  (feCX), yeY),

where we denote by T ={z € C : |z| =1}.



The form of T in the Banach—Stone theorem is called a weighted composition operator.
We note that each surjective complex linear isometry on Banach spaces preserves the metric
structure and the algebraic structure of Banach spaces. The Banach—Stone theorem states that
every surjective complex linear isometry between two continuous function spaces preserves the
topological spaces, that is, the metric structure and the algebraic structure are closely related
to the topological structure of continuous function spaces. According to the Mazur—Ulam
theorem, every surjective isometry which corresponds 0 to 0 between two Banach spaces is real
linear. Hence, it is natural to consider surjective real linear isometries instead of surjective
complex linear isometries when we explore the relation between the metric structure and others
structures of Banach spaces. By the result of T. Miura [54], we obtain the Banach-Stone

theorem in the case of surjective real linear isometries;

THEOREM (Miura [54]). If T : C(X) — C(Y) is a surjective real linear isometry, then
there exist a continuous function o :'Y — T, a homeomorphism 7 :Y — X, and a closed and

open subset K C'Y such that

a(y)f(r(y) (y € K)
T(Hly) =
a)f(r(y)) (yeY\K)
for all f € C(X).

This theorem states that the metric structure has a strong influence on the algebraic struc-
ture and the topological structure of continuous function spaces. It is well known that surjective
isometries on various Banach spaces which consist of continuous functions can be described as a
weighted composition operator [13, 37, 45, 50, 53, 54, 55, 64]. In addition, the study of sur-
jective isometries on Banach spaces of vector—valued continuous functions has been studied by
many mathematicians actively [5, 6, 39, 40, 46, 49, 51]|. Let C'(X,C(Y')) be a Banach space
of all continuous functions ' : X — C(Y') equipped with the norm ||F|| = sup,cx || F(2)|| for
all F € C(X,C(Y)). We denote F(z)(y) by F(x,y) for F € C(X,C(Y)), z€ X,andy € Y.
By the Banach-Stone theorem, if 7" : C(X,C(Y)) — C(X, C(Y)) is a unital surjective complex
linear isometry, then the map 7" induces a homeomorphism 7 : X XY — X x Y such that
T(F)(x,y) = F(r(z,y)) forall F € C(X,C(Y)), z € X, and y € Y. Using natural projections
px : X XY — X and py : X XY — Y, there exist two continuous maps 7, : X x Y — X and
75 : X XY — Y so that

T(F)(z,y) = F(n(,y),n(r,y))  (FeCXxY) recX, yeY).



Of course, the maps 71 and 75 depend on two variables x € X and y € Y. On the other hand,
it turns out that the continuous map 7, or 7 depends on only one of the two variables z € X
and y € Y in a particular Banach space of vector-valued continuous functions. In addition, the
maps 7y or T has a special form. Let Lip(X') be a Banach space of all Lipschitz functions defined
on a compact metric space X and Lip(X,C(Y)) a Banach space of all Lipschitz functions
defined on a compact metric space X with values in a continuous function space C(Y'). By
the result of Hatori and Oi [39] which generalize the result of Botelho and Jamison [6], if
T is a unital surjective complex linear isometry on Lip(X,C(Y)), then the map 7" induces a
continuous map 7y : X XY — X and a homeomorphism 75 : Y — Y such that 7 (-, y) : X — X

is a surjective isometry for each y € Y and
T(F)(z,y) = F(n(z,y).n(y)) (Felip(X,CY)),zeX, yeY).

We note that the map 7 : X xY — X xY defined by 7(z,vy) = (71(x,y), 72(y)) is a homeomor-
phism on X x Y. A composition operator induced by such a homeomorphism is said to be of
type BJ in [39, 40]. For each f € Lip(X) and g € C(Y), we define amap f®g: X — C(Y) by
f®g(x) = f(x)g for x € X, and then f®g € Lip(X,C(Y)). Let 1y : X - Cand 1y : Y —» C
be constant functions with value 1 on X and Y, respectively. By regarding f € Lip(X) as
f ® ly, we see that Lip(X,C(Y)) contains Lip(X). In the same way, we observe that the
continuous function space C'(Y) is contained in Lip(X, C(Y)) if we identify g with 1x ® g for
each g € C(Y). Entering F = f ® g for f € Lip(X) and g € C(Y') into the above equality, we

obtain
T(f®g)(@,y) = f(n(z,y)g(r(y) (€ X yeY).

The result of Hatori and Oi indicates that unital surjective isometries on Lip(X, C(Y")) separate
C(Y) from Lip(X), because C(Y) and Lip(X) are totally different Banach spaces. In [40],
Hatori and Oi gives a sufficient condition such that surjective complex linear isometries on
Banach spaces of vector-valued continuous functions forms a weighted composition operator
of type BJ. Koshimizu and Miura [46] characterize surjective isometries on the Banach spaces
C*(I, A) of continuously differentiable functions defined on I = [0, 1] with values in a uniform
algebra A on a compact Hausdorff space X. Of course, a continuous function space C'(X) is
a uniform algebra on X. By this result, if T is a surjective complex linear isometry on the
Banach space C*(I, C(X)) of continuously differentiable maps defined on I = [0, 1] with values

in C(X), then the map T induces a continuous function « : X — T, a surjective isometry



71 : I — I and a homeomorphism 7 : X — X such that
T(F)(s,x) = a(z)F(ni(s),n(x))  (FeCY(I,0(X)),sel,zeX).

If7T:CYI,C(X)) — CHI,C(X)) is a surjective real linear isometry, we infer from the result
of Koshimizu and Miura [46] that the map T is a weighted composition operator induced by
a homeomorphism 7(s,z) = (71(s), =(x)) for (s,z) € I x X, where 7 : [ — [ is a surjec-
tive isometry and 75 : X — X is a homeomorphism. This shows that surjective isometries
on CY(I,C(X)) distinguish C'(I) and C'(X), because C''(I) and C'(X) have totally different
structures from each other as a Banach space. In fact, all the functions of C'(I) are differen-
tiable on I while continuous functions on X need not be differentiable on /. By these results,
we see that surjective isometries distinguish two Banach spaces of continuous functions which
have some totally different structures from each other.

In Chapter 1, we consider the Banach spaces C'(I, Lip(1)) of all continuously differentiable
maps with values in Lipschitz algebra and characterize surjective isometries on C*(I, Lip([])).
By the main result in Chapter 1, if T : C*(I,Lip(I)) — C(I,Lip(I)) is a unital surjective

isometry, then the map 7" induces two surjective isometries 7, and 7, on [ such that
T(F)(s,z) = F(11(s), 72(2)) (F € CY(I,Lip(1)),s,x € I).

If F = f®gis a tensor product defined by f ® g(s,z) = f(s)g(x) for f € C*(I), g € Lip(1),
and s,z € I, then T(f ® g)(s,x) = f(71(s))g(m2(x)). It is well known that Lipschitz functions
on I have derivatives almost everywhere. Hence, C*'(I) and Lip(I) have differential structures.
This results indicates that each surjective isometry T : C*(I, Lip(I)) — C'(I, Lip(I)) preserves
respective two differential structures of C*(I) and Lip(7), that is, the metric structure is closely
related to the differential structure of Banach spaces.

Let S(B) be the unit sphere of a Banach space of B. In 1987, D. Tingley suggested the
following problem which is called Tingley’s problem;

PrROBLEM (Tingley’s Problem [74]). Let By and By be Banach spaces. We denote by S(B;)
the closed unit sphere of B; fori=1,2. If A : S(By) — S(Bs) is a surjective isometry, then

does there exist a surjective real linear isometry T : By — By such that T|5(31) = A?

This problem asserts that surjective isometries on Banach spaces can be determined by the
information of the closed unit sphere, that is, the closed unit sphere of Banach spaces contains
the essential information of surjective isometries on Banach spaces. This problem has been

investigated for several Banach spaces since then. However, the problem is still open even for



finite dimensional Banach spaces whose dimension is more than 3. Quite recently, Banakh
[2] gave an affirmative answer to Tingley’s problem for 2-dimensional Banach spaces. Let
Co(X) be a Banach space of all continuous functions defined on a locally compact Hausdorff
space X which vanishes at infinity equipped with the supremum norm. Wang [75] proves
that each surjective isometry A : S(Co(X1)) — S(Co(X2)) admits an extension to a surjective
real linear isometry between Cy(X;) and Cy(X2). Hatori, Oi, and Togashi [38] prove that
Tingley’s problem for uniform algebras is affirmative. In the first part of Chapter 2, we
consider Tingley’s problem for uniformly closed function algebras and prove that each surjective
isometry A : S(A) — S(B) between the unit spheres of two uniformly closed function algebras
A and B can be extended to a surjective real linear isometry 7' : A — B. A uniformly closed
function algebra A on X is a uniformly closed and strongly separating subalgebra of Cy(X).
We can regard A as a subalgebra of C'(X U {oco}), where X U {co} denotes the one-point
compactification of X. Under such identification, A never contains the constant functions.
Roughly speaking, a uniformly closed function algebra is a uniform algebra which does not
have the unit element. Of course, uniform algebras are examples of uniformly closed function
algebras. In the second part of Chapter 2, we give an affirmative answer to Tingley’s problem
for abelian JB*-triples. According to [43, Corollary 1.11], each abelian JB*-triple can be

represented as a subspace of a continuous function space Cy(X) as follows;
CH(X)={f € Co(X) : f(Ax) = Af(x) for every (\,z) € T x X},

where X is a principal T-bundle. By the results of chapter 2, we see that every surjective
isometry A between the unit spheres of two uniformly closed function algebras and JB*-triple
forms a kind of weighted composition operator. These results in Chapter 2 indicate that the
forms of surjective isometries on Banach spaces can be determined by the information of only
the closed unit spheres of Banach spaces in the case of uniformly closed function algebras and
abelian JB*-triples.

On the other hand, Tingley’s problem for C'(I,Lip(I)) has yet to be solved, because
the structure of the unit sphere of C'(I,Lip(I)) is more complicated than that of Banach
space of continuous functions equipped with the supremum norm. Let Lip(/) be a Banach
space of all Lipschitz functions defined on a closed unit interval I equipped with the norm
I flle = 1f(0)]+ || f'|z= for all f € Lip(I), where || - | L~ denotes the essential supremum norm.
In order to clue to the solution of Tingley’s problem for C*(I,Lip(I)), we consider surjective

isometries A : S(Lip(I)) — S(Lip(I)) with respect to the norm || - ||, in Chapter 3. At that



time, we prove that A : S(Lip(I)) — S(Lip()) can be represented by a sum of two weighted
composition operators and extended to a surjective real linear isometry between the whole

spaces with a different technique from the result Wang and Orihara [77].



CHAPTER 1

Surjective isometries on the Banach algebra of continuously

differentiable maps with values in Lipschitz algebra

Abstract

Let Lip(I) be the Banach algebra of all Lipschitz functions on the closed unit interval [
with the norm || f||z = || fl|le + L(f) for f € Lip(I), where L(f) is the Lipschitz constant
of f. We denote by C'(I,Lip(I)) the Banach algebra of all continuously differentiable maps
F from I to Lip(/) equipped with the norm ||F||y = sup,e; [|[F(9)||L + sup,e; | D(F) ()] for
F € CYI,Lip(I)). In this paper, we prove that if T is a surjective, not necessarily linear,
isometry on C*(I,Lip([)), then T — T'(0) is a weighted composition operator or its complex
conjugation. Among other things, any surjective complex linear isometry on C*(I, Lip([)) is
of the following form: ¢, F(71(s), m2(x)), where ¢; is a complex number of modulus 1, and 7

and 79 are isometries of I onto itself.

1. Introduction

The study of surjective isometries is one of the main themes in theory of Banach spaces.
Let C'(K) be the Banach space of all complex-valued continuous functions on a compact
Hausdorff space K equipped with the supremum norm || f[|oo = sup,cx [f(y)|. The Banach-
Stone theorem determines the form of surjective complex linear isometries between Banach
spaces C'(X) and C(Y). This theorem shows that T : C(X) — C(Y) is a surjective complex
linear isometry if and only if there exist « € C(Y') with |u| =1 on Y and a homeomorphism

7:Y — X such that

T(f)y) =aly)f(rly) (feCX), yeY),

that is, T' is a weighted composition operator.

Cambern [13] extended the result above to the Banach space C*(I) of all continuously
differentiable functions f on the closed unit interval I = [0, 1] equipped with the norm
| f|l = maxser{|f(s)| +|f'(s)]}. Rao and Roy [64] characterized the surjective complex linear
isometries on C'(I) with the norm || f|| = || flleo + ||/ ]lco-



The above results by Cambern [13] and Rao and Roy [64] were extended to surjective
isometries on vector-valued function spaces. Botelho and Jamison [5] gave a characterization
of surjective complex linear isometries on the Banach space C1(I, E) of all continuously dif-
ferentiable functions F' on I with values in a finite dimensional Hilbert space F, equipped
with the norm || F|| = maxse/{||F(s)||g + ||F'(s)||g}. Li and Wang [51] considered surjective
complex linear isometries on the Banach space CJ(2, E) of all n-times continuously differ-
entiable functions on an open subset €2 in a p-dimensional Euclidean space R? with values
in a reflexive, strictly convex Banach space E. Leung, Ng, and Tang [49] showed the re-
sult by Li and Wang [51] for an arbitrary Banach space E: More explicitly, suppose that
T: Cyt (S, Er) — CJ*(Qa, ) is a surjective complex linear isometry for an open subset €2,
in R and a Banach space F; with j = 1,2. Then they proved that p; = ps, n; = ny and for
each t € (), there exist a Banach space isomorphism V' (t): Fy — FE; and a C™-diffeomorphism
7: Qo — Q such that T(F)(t) = V(t)(F(7(t))) for all F € CJ*(21, F1) and t € Q.

Let C'(I,C(X)) be the Banach space of all continuously differentiable functions F' equipped
with the norm [|F|| = sup,e; [|F(S)]loo + supses | F(t)]|co. We denote F(s)(z) by F(s,z) for
F € CYI,C(X)), s € I, and * € X. By the result of Hatori and Oi [40, Corollary 18],
or Koshimizu and Miura [46, Theorem 1], if T : C*(I,C(X)) — C'(I,C(X)) is a surjective
complex linear isometry, then there exist o € C'(X) with |u| = 1 on X, a C'-diffeomorphism

71 : I — I, and a homeomorphism 75 : X — X such that
T(F)(s,z) = a(x)F(r1(s), =(x)) (F e C'Y(I,C(X)), (s,7) €I x X).

We note that 71(s) = s or 71(s) = 1 — s, because 7y is a C'-diffeomorphism. In particular,
if F is a tensor product f ® g defined by (f ® g)(s,z) = f(s)g(z) for f € C(I), g € C(X),
and (s,z) € I x X, then T(f ® g)(s,x) = u(x)f(71(s))g(72(z)). This shows that the sur-
jective complex linear isometry T on C'(I,C(X)) respects C*(I) and C(X). Such a kind of
phenomenon occurs because C*(7) has a distinct structure, say differential, from C(X). It is
well known that the Lipschitz functions on I have derivatives almost everywhere. Thus, the
Lipschitz space Lip(I) has a similar structure to C*(I).

Now, the following question seems natural:

Do surjective complex linear isometries on C(I,Lip(I)) respect C1(I) and
Lip(1)?

The main result of this paper gives an affirmative answer to the question.



THEOREM 1.1. Let T : C*(I,Lip(I)) — C'(I,Lip(I)) be a surjective, not necessarily linear,
isometry with respect to the norm || - ||s. Then there exist a constant ¢; € T and two maps

71,7y € {id;, 17 — id;} such that

T(F)(s,x) —T(0)(s,z) = 1 F(71(s), T2(x)) (F € CY(I,Lip(1)), s,z €1I), or

T(F)(s,x) —T(0)(s,z) = 1 F(71(s), T2(7)) (F € CY(I,Lip(1)), s,z € I).

In the next section, we describe the definition of C*(I,Lip(I)) and || - ||s in detail. The

next result is a direct, but important, consequence of our main theorem.

COROLLARY 1.2. If T : CY(I,Lip(I)) — CY(I,Lip(I)) is a surjective complex linear
isometry with respect to the norm || - ||s, then there exist a constant ¢; € T and two maps

71, T2 € {idr, 11 —id;} such that
T(F)(s,z) = c1F(11(s), 2(z)) (F € CY(I,Lip(1)), s,z € I).

2. Embedding of C*(I,Lip([)) into C(Z)

Let I be the closed unit interval [0,1]. We denote by C'(I) the commutative Banach
algebra of all complex-valued continuously differentiable functions on /. Let Lip(I) and L>°(I)
be the commutative Banach algebra of all complex-valued Lipschitz functions on I and that
of all complex-valued essentially bounded Lebesgue measurable functions on I, respectively.
It is well known that g € C([) is a Lipschitz function on I if and only if the derivative ¢'(z)
exists for almost all x € I and ¢’ € L*°(I). Denote by M the maximal ideal space of L>([).
By the Gelfand-Naimark theorem [17, VIII. Theorem 2.1], L*([) is isometrically isomorphic
to C(M). We do regard ¢’ € L>(I) as a continuous function on M for each g € Lip(I). We
define the norm ||g||. by

(2.1) 9]l = sup|g(z)| 4+ sup |g'(m)]
xel meM

for g € Lip(I).
For each F' € C(I?) and s € I, we define Fy : [ — C by Fi(z) = F(s,z) for x € I. Then

F, is continuous on I.

DEFINITION 1.3. Let C(I,Lip(/)) be the algebra of all continuous functions F' from I to
Lip(/). We denote F(s)(x) by F(s,z) for F' € C(I,Lip(I)) and s,z € I. Thus, we do regard
F € C(I,Lip(I)) as a continuous function on I? such that F, € Lip(I) for each s € I. We



define C'(I, Lip(1)) as the algebra of all F' € C(I,Lip([)) satisfying the following condition:
There exists G € C(I,Lip(I)) such that
. Fs-‘rh - Fs
lim||————

h—0

—Gsll =0 (sel),

L

when s = 0,1, the limit means the right-hand and left-hand one-sided limit, respectively.
Then G is said to be the derivative of F', and we denote it by D(F'). By definition, D(F) €
C(I,Lip(I)) for each F € C'(I,Lip(I)). Thus, Fy, D(F); € Lip(I) for each s,¢ € I. Then the
derivatives of Fy and D(F); exist: We denote (Fy)' = F! and (D(F);)' = D(F); for simplicity.
As we mentioned above, we do regard F and D(F); as continuous functions on M.

We define the norm || - ||s on C*(I, Lip(I)) by
Il = sup |l + sup ID(E)I (€ O (1, Lip(1)
EIS S

Here, we show an outline of proof of Main theorem. From now on, given a normed space
E, we will denote by E*, (E*);, and ext(E*); the dual space of E, the closed unit ball of E*,
and the set of extreme points of (E*);, respectively. We assume that 7" is a surjective isometry
on C'(I,Lip(7)) and Ty is a mapping, defined by Ty = T — T(0). Then Tj is a surjective
real linear isometry on C'(I,Lip(I)) by the Mazur-Ulam theorem [32, Theorem 1.3.5]. First,
we embed C'(I,Lip([)) into C'(Z) with the supremum norm for some compact Hausdorff
space Z; we introduce several variables when we do this. Let A be the isometric image of
CY(I,Lip(I)) in C(Z). We induce a surjective real linear isometry S on A with respect to the
supremum norm from Ty on C*(I,Lip(I)). Applying the argument in [64, Lemma 3.1] with
the Arens—Kelley theorem [32, p.33], we can characterize ext(A*);. It is well known that one
can characterize surjective complex linear isometries on C'(K) for a compact Hausdorff space
K by the structure of ext(C(K)*); (see, for example, [17, Proof of the Banach—Stone theorem,
p.172]). We can characterize the surjective real linear isometry S on A by a similar argument as
above; roughly speaking, .S is a sum of weighted composition operators. The form of .S includes
inessential variables, since we introduced several variables to embed C*(I,Lip([)) into C(Z).
We will cancel inessential variables to determine the surjective isometry 7' on C*(I, Lip([)).
The author in present paper refers to [46, 53, 64] for this idea.

In the rest of this section, we construct a complex linear isometry U from C(I,Lip(]))
into C'(2).

10



DEFINITION 1.4. Weput X = > x M xT,Y =T x X, and Z = X x Y. We define two
operators 9 : C*(I,Lip(I)) — C(X) and 8, : C*(I,Lip(1)) — C(Y) by

(2.2) 01 (F)(s,x,m,z) = Fy(z) + Fi(m)z ((s,z,m, z) € X),
(23> 62(F)(§7 (ta Yy, n, w)) = §D<F)t(y) + D(F):S(n)w ((gv (t7 Yy, n, w)) S Y)

for any F' € C'(I,Lip(I)). By definition, F!, D(F); € C(M) for every F € C*(I,Lip(I)) and
s,t € I. Hence, 0; and 0, are well defined.
For each F € CY(I,Lip(I)), we define F : Z — C by

(24) F(x.y) = i(F)(x) + 0:(F)(y) ((x,y) € Z).
Since 9, (F) € C(X) and 95(F) € C(Y), we see that F is a continuous function on Z.
Let f € C'(I) and g € Lip(I). We define f ® g: I> — C by
(f@g)(s,x) = f(s)g(z)  ((s,2) € I*).

We infer from the definition of C'(I, Lip(I)) that f ® g € C*(I, Lip(I)) satisfies
(25)  (f@g),=f(s)g, D(f®g) =[f®g and D(f®g),=f(s)g (s€l)
It follows from (2.2),(2.3), and (2.5) that

O(f ®g)(x) = (f ® 9)s(x) + (f @ g)i(m)z = f(s)(g(x) + ¢'(m)2),

%(f ® 9)(y) = ED(f ® 9)uy) + D(f @ g)i(n)w = f'(t)(§9(y) + ¢ (n)w)

for x = (s,z,m,z) € X and y = (£, (t,y,n,w)) € Y. Entering the above two equalities into
(2.4), we obtain

—_~—

(2.6) f®g(z) = f(s)(9(z) + g'(m)z) + () (g9(y) + ' (n)w)

for any x = (s,x,m, 2) and y = (&, (t,y,n,w)) with z = (x,y) € Z. Weput 1 =1; ® 1;. By
(2.6), we observe that 1 is the constant function in A taking only the value 1.

In the next lemma, we shall embed C(I,Lip([)) into C(Z).
LEMMA 1.5. We define a map U : C*(I,Lip(I)) — C(Z) by
UF)=F  (FeCYI,Lip(I))).

Then U is a complex linear isometry from (C(I,Lip(I)), || - ||=) into (C(Z),]] - |ls)-

11



PROOF. Let 0, and 0y be maps defined by (2.2) and (2.3), respectively. We see that 0,
and 0y are both complex linear mappings by definition. Hence, U is a complex linear map by
(2.4).

We shall prove that U is an isometry. Fix an arbitrary F' € C'(I, Lip(I)). We deduce from
(2.4) that |U(F)|le = |F ]l < [|01(F)|loc + [|02(F)]|c. Note that

101(F)lloc = sup [01(F)(s,z,m,2)| = sup |Fu(z) + Fi(m)z]

(s,@;m,z)€X (s,x,m,z)eX

s:nu){sup|za<x>|+-sup|z1<nw|} — sup | Fy]l.
sel xel meM sel

by (2.1) and (2.2). Hence, [[01(F)||cc < supges||Fsl|z. By the same reasoning, we get

|02(F)|| 0o < supyes |D(F)¢||. These inequalities show that
1T oo < sup [[E5[[1 +sup [D(E):]lz = [1F]ls,
sel tel

and consequently, ||U(F)|w < |[|[F||s. Now we prove the opposite inequality. Take an arbitrary
€ > 0. There exists sg € I such that sup,.; || Fil|L — €/2 < ||[Fy|lz. Since Fy, and F, are
continuous on I and M, respectively, there are zy € I and my € M such that sup,.; |F, (z)] =
| Fo(w0)| and sup,,cpq | Fi, (m)| = |F. (mo)]. Choose z € T so that |Fy,(xo) + F (mo)20| =
| Fyo (w0)| + | F,, (mo)|. We obtain

€

| Fao (o) + F5, (mo) 20| = sup |Fy, ()] + Sup. [Foo (m)] = [[Fyollz > swp [ Ffle = 3,

zel
and thus, |Fy,(wo) + FY (mo)zo| > supe; [ Fsl|z — €¢/2. We derive from the above arguments

that

ID(F)io(30) + D(F), (n0)uo] > sup | D).l = 5

for some (to, yo, no, wo) € X. Take & € T so that
| Fyo (w0) + F (mo)z0 + & (D(F)io (y0) + D(F);, (no)wo)|
= [Foy (o) + F5,(mo)zo| + [D(F)i (o) + D(F);, (n0)wol-
We infer from the above inequalities with (2.2) and (2.3) that

01(F)(x0) + 2(F)(yo)| > sup [|Fallz + sup [ D(F)ellz — € = [|F]ls — e,
s€ €

where xo = (50, 20, M0, 20) and yo = (&0, (to, Yo, o, Egwp)). Hence, || F|lo > || F||s — €. Because
¢ > 0 is arbitrarily chosen, we conclude |[U(F)|oc = ||Flee = ||F|ls. Thus, U is a complex

linear isometry. U
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3. Characterization of induced isometry

DEFINITION 1.6. We define A = {F € C(Z) : F € C*(I,Lip(I))}. By Lemma 1.5, we may
and do regard U as a surjective complex linear isometry from C'(I,Lip(I)) onto the closed
linear subspace A of C(Z). We define a mapping S : A — A by S = UoTy,oU~!. Then
S is a surjective real linear isometry on A, since T} is a surjective real linear isometry on

C'(1, Lip(I)).

CY(I,Lip(I)) —2— C(I,Lip(I))

vt |v

A — A

Because S o U = U o T}, we obtain
(3.1) S(F)=Ty(F) (F e C'(I,Lip(1))).

Let A € A* with the operator norm [|A]l. We can extend A to a bounded linear functional
on C'(Z) with the same operator norm by the Hahn—Banach theorem [17, III. Theorem 6.2].
There exists a regular Borel measure p on Z such that A(ﬁ )=/ Zﬁ dy for all F e A and
that the total variation ||u|| of u satisfies ||| = ||A]| by the Riesz representation theorem [67,
Theorem 2.14]; such a measure p is called a representing measure for A (see [7, p.80]). Let 4,
be a point evaluation at z € Z defined by 0,(F) = F(z) for F € A. In the next lemma, we
prove that every representing measure for ¢, is the Dirac measure concentrated at z for any

z € .

LEMMA 1.7. Letx = (s,z,m,z) € X,y = (&, (t,y,n,w)) €Y, andz = (x,y) € Z. If p is

a representing measure for d,, then p({z}) = 1.

PROOF. First, we see that yu is a probability measure, since [|6,]] = 1 = 0,(1) (see [T,
p.81]). For simplicity, we shall write X = (I?, M,T), Y = (T,X), Z = (X,Y) and so
on. We derive from (2.6) that f/é_i(Z) = f(s) + f'(t)§ for f € C'(I), which shows that
f(s)+ f(t)¢ = 52(%) =/, ]‘“/58\1/1 du for all f € CY(I). We may apply the arguments in
[64, Proof of Lemma 3.1] to the last equality, and then we observe that p is concentrated on
the set (s, X1,&,t, X1), where X7 = (I, M, T), that is, u((s, X1,&,t, X)) = 1.

Using (2.6), we have [, 1/1\(85/gdu = 11/\(85/g(z) = g(x)+g'(m)z for any g € Lip(I). Applying
the above argument to 11/§/g, we get p((s,z,m,z,&t, X)) = 1.
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Finally, we put fs; = id; — sl;, and then fy(s) = 0 and f. = 1;. For each g € Lip(I), we
get fz(%)du = ]%(z) =¢&9(y) + ¢ (n)w by (2.6). By the same reasoning as above, we
See that /’L((SJ x? m7 Z’é-?t?y’n’ w)) ( ) 1 D

We denote by Ch(A) the set of all z € Z such that d, € ext(A*);. The set Ch(A) is called
the Choquet boundary for A. We shall characterize ext(A*);. First, we determine the Choquet

boundary for A in the next lemma.

LeMMA 1.8. Ch(A) = Z.

PROOF. It is enough to prove that Z C Ch(A). We take z € Z arbitrarily. Assume that
0z = (A1 + Ag)/2 for some Ay, Ay € (A*)l. For each j € {1,2}, there exists a representing
measure f; such that [|u;]] = [|A;| and A;(F) = [, quj for all F' € A by the Hahn-Banach
theorem and the Riesz representation theorem. We put p = (pq + p2)/2. First, we shall prove
that p is the Dirac measure concentrated at z. Since j; is a representing measure for A; for
7 =12, we get

Substituting F = 1 into the last equality, we obtain wz) = |, 1dp = 6,(1) = 1, and thus,
p(Z) = 1. Having in mind that ||u;|| = ||A;]| <1 for j = 1,2, we obtain

1= u(2)] < lull <

il + byl

which implies that ||u|| = 1 = ||d,||. Hence p is a representing measure for §,. By Lemma 1.7,
we conclude that p is the Dirac measure concentrated at z.

If B is any Borel set in Z which contains z, then (u(B) + p2(B))/2 = u(B) = 1. Because
|1l < 1, we see that p;(B) = 1. This implies that p;(Z\ B) = p;(Z) — pj(B) = 0. Therefore,
f; is the Dirac measure concentrated at z for j = 1,2. For each F e Aand 7 =12 we
have Aj( fZ quj = F( ) = 5Z(Z:;), which shows that Ay = §, = Ay. This means that
d, € ext(A*)l. Since z € Z is arbitrary, we conclude that Z C Ch(A). O

By the Arens-Kelley theorem, we have ext(A*); = {\d, € (A*); : A € T, z € Ch(A)}.

Lemma 1.8 shows that
(3.2) ext(A*); ={ Ao, € (A")1: A€ T, ze Z}.

We shall next verify that ext(A*); is homeomorphic to compact Hausdorff space T x Z.

Before proving it, we prepare the next lemma.
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LEMMA 1.9. For any 21,2, € Z = X XY with z, # zy, there exists F € A such that
F(zy) # F(zs).

Proor. We put z; = (x;,y;) for x; = (s;,2;,m;,2;) € X andy; = (§;, (¢,y5,nj,w;)) € Y
with j = 1,2. For each f € C*(I) and g € Lip(I), we have

—_—

F@Li(e) = fs) + 1) and 1, ®g(z;) = glx;) + ' (m))z
by (2.6). If (s1,t1) # (s2,t2), we can choose f; € C(I) such that fofégff(zl) = 0 and
fo/é)/lj(zZ) = 1. If (s1,t1) = (s2,t2) and & # &, then fl/é)/l[(zj) = ¢; for some f; € CY(I).
Thus, there exists F' € A so that F(z1) # F(z,), provided that (sy,t,&) # (s2,t2,&).
By a quite similar argument, we can find gy € Lip(/) such that 11/<§\§/go(z1) =+ 17<;§/go(z2) if
(x1,m,21) # (2, Mo, 22).
Finally, we consider the case in which x; = xao, (&,t1) = (&,t2) and (yp,nq,wp) #

(y2, o, wsy). Setting fo = idr — s11;, we get fo(s1) = 0 and f = 1;. We derive from (2.6) that

J%(z]) &9(y;)+g (n])w] for all g € Lip(I). Applying the above argument to J%, we
see that f2 ® g1(z1) # f2 ® g1(2z9) for some ¢g; € Lip(/). The proof is complete. O

Now we are in a position to show that ext(A*); is homeomorphic to T x Z.
LEMMA 1.10. We define a map h: T x Z — ext(A*); by
h(\, z) = Ao, (N z)eTx2).

Then the mapping h is a homeomorphism from T x Z with the product topology onto ext(A*);
with the relative weak™*-topology.

PROOF. By the definition of h, we can write (3.2) as ext(A*); = h(T x Z), which implies
that h is surjective. Now we shall show that h is injective. Suppose that h(A;,z;) = h(\g, z2)
for A\, \y € T and zy,2z9 € Z, that is, \jd,, = A2d,,. Since 1= 17%?1 is the constant
function in A, we have \; = )\15Z1(I) = A20y, (I) = Mo, and thus, \; = X\y. This implies that
0z, = 04,. Because A separates the points of Z by Lemma 1.9, we obtain z; = z,. Hence,
(A1,21) = (A2, 22), which shows that h is injective. By the definition of the weak*-topology, we

observe that h is a continuous map from the compact space T x Z onto the Hausdorff space

ext(A*);. Therefore, the map h is a homeomorphism, as is claimed. U

Because S is not necessarily complex linear, the adjoint operator S* : A* — A* is not well
defined. In place of S*, we define S, : A* — A* by

(3.3) S.(A)(F) = Re(A(S(F))) —iRe(A(SGF))) (A€ A%, FeA).
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It is well known that S, is a surjective real linear isometry (see [67, Proposition 5.17] and
[55]). We see that S, preserves ext(A*);, that is, S.(ext(A*);) = ext(A*);.

So as to characterize S, on ext(A*);, we define two maps using h as follows.

DEFINITION 1.11. Let p; : T x Z — T and py : T X Z — Z be the natural projections.
We define two maps a : Tx Z - Tand ®: TxZ - Zbya=p oh! 0 Silext(a*), © h,
® = pyoh 05, |ext(ar), o h. We note that h : T x Z — ext(A*); is a homeomorphism by
Lemma 1.10 and S, (ext(A*);) = ext(A*);. Thus, o and & are well defined.

We put (A1,z1) = (™! o Si|ext(a), © h)(A,z) for (A\,z) € Z. By Definition 1.11, we get
M = a(\,z) and z; = ®(), z). This shows that (h™ 0 S,|ex(as), oh)(A,z) = (a(\, z), ®(), 2)),
which is equivalent to S,(h(),z)) = h(a(), z), ®(\,z)) for all (), z) € T x Z. By the definition

of h, we have
(3.4) S, ()\52) = (X, 2)0p(r2) (A\,z)eTx 2Z).

Because Si|ext(ar), 1 ext(A*); — ext(A*); is a bijective continuous map, it follows that h™' o
Silext(a#), © h is a homeomorphism from T x Z onto itself. Hence, we notice that o and ¢ are
surjective continuous maps.

The following lemma states that ®(\, z) is closely connected with ®(1, z) and (7, z), which

is a key result to investigate the map .

LEMMA 1.12. There ezists a continuous function ey : Z — {£1} such that
A S5 ) = A1) + 1€0(2)b0a (i 2)

forallz e Z and A =a+ib € T with a,b € R.

PROOF. Fix an arbitrary z € Z. Since S, is real linear, we derive from (3.4) that

a(\, 2)0pnm = S.(A\,) = S.((a +ib)s,)
= aS,(8,) + bS.(i6,) = aa(1,2)0p(1,2) + bau(i, 2)0a(; z),

and thus,
(3.5) (A, 2)0s(rz) = ac(l,2)0p(1,2) + ba(i, 2)0s (.2

for every A = a +ib € T with a,b € R. Evaluating the last equality at the constant function
1= 11/@\2)/11, we get

(3.6) a(N, z) = aa(l,z) + ba(i, z).
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Since a(A,z) € T, we have 1 = |aa(1,2z) + ba(i,z)| = |a + ba(l,z)a(i, z)| for all a,b € R with
a+ib € T. Entering a = b = 1/4/2 into the last equalities, we obtain v2 = |1+ «a(1,z)a(i, z)|.

It follows from a(1,z), a(i,z) € T that a(1,z)a(i,z) is i or —i. We define

Q={zcZ:a(l,z)a(i,z) =i}.

From the above argument, we see that Z\ Qy = {z € Z : a(1,2)a(i,z) = —i}. Because a(1,-),
a(i,+) : Z — T are continuous on Z, both €y and Z \ g are closed in Z. Hence Q is a closed

and open subset of Z. Next we define a function g : Z — {£1} by

1 (Z € Qo)
EQ(Z) =
-1 (z€Z\ Q).
The function gy is continuous on Z, because () is closed and open in Z. By the definition of
€0, We get
(3.7) a(i,z) = ieg(z)a(l, z) (z e 2).

Equalities (3.6) and (3.7) yield
a(Nz) = aa(l,z) + ba(i,z) = (a + igo(z)b) (1, z)

for all z € Z. Since go(z) € {£1}, we can write a + icy(z)b = A*® for A = a + ib € T. This
implies that a()\,z) = M@ a(1,z). Having in mind that a(1,z) € T, we deduce from (3.5)
and (3.7) that /\EO(Z)5¢(,\,Z) = abo(1,2) 1 i€0(2)bds(; ) for every z € Z. O

For simplicity of notation, we shall write a(1,z) = a(z) for z € Z. By (3.7), we have
(3.8) a(i,z) = ieg(z)a(z) (z € 2).

Our next aim is to show that ®(i,z) = ®(1,z) or —®(1,z) for each z € Z. In order to

prove it, we define nine maps using projections.

DEFINITION 1.13. Let gx and ¢y be the projections from Z = X x Y onto X and Y,
respectively. We define ¢p: Tx Z — X and Yv: T X Z —- Y by ¢ = qx o P and ¢ = gy o P,

where ®: T x Z — Z is the surjective continuous map as in Definition 1.11. Then

®(¢) = (0(€), ¥(¢)) (CeTx2).

Since ¢ is the map from T x Z onto X = I? x M x T, there exist well defined maps
G1,02: T X Z —=1,¢p3: T xZ — M, and ¢4: T x Z — T such that
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(3.9) 0(C) = (01(€), #2(C), 3(C), 94(C)) € X (C €T x Z).

Moreover, we can define ¢,99: T X Z — I, ¢3: T x Z — M, and ¢y, ¢4: T x Z — T by

(3.10) (€)= (¢o(€), (¥1(€), ¥2(C), ¥s(€), a(C))) €Y (C €T x Z)

because 1 is the map from T x Z onto Y = T x X. For simplicity of notation, we also write

?(€) = (¢5(¢))1gj<a and  ¥(C) = (Yr(C))o<r<a-

If we enter x = ¢(¢) and y = 9(¢) into (2.6), we get

(3.11) @ g(®(¢)) = f(61(¢) (9(62(C)) + 9" (63(C))ha(C))
+ (1) (20(€)g(1a(€)) + 9 (15(€)) (L))

In particular, we obtain

(3.12) FR1B(C)) = f(61(C)) + F/(tn(C))eo(),

—_—

(3.13) 1; ® g(®(¢€)) = 9(¢2(€)) + 9'(¢3(¢))#4(€)

for f € CY(I), g € Lip(I), and { € T x Z.
In the rest of this section, we will investigate the maps ¢ and 1.

LEMMA 1.14. The maps ¢; for j = 1,2,3 and 11 are independent from the variable A € T,
that s,

(N z) =0¢;(1,2z) and P1(N\z)=11(1,2) (1e{1,2,3}, €T, ze 2).

ProOF. Take an arbitrary z € Z. We shall prove that ¢1(\,z) = ¢1(1,2) for all A € T.
Suppose that ¢1(N\o,2) & {p1(1,2), ¢1(7,2z)} for some A\g = ag + iby € T with ag, by € R. Then
there exists f; € C'(I) such that

fi(91(2,2)) =1, f1(61(1,2)) = fi(é1(i,2)) =0, and fi(¢r(p2)) =0 (1= Ao, 1,i).

By (3.12), we have f1 ® 1;(®(Xp,2)) = 1 and f; ® 1;(P(1,2)) = f1 ®1,(P(i,z)) = 0. By
Lemma 1.12, we get )\go(z)&bw,z) = apda(1,2) + 1€0(2)boda(iz). Evaluating the last equality at

fi ® 1;, we obtain )\SO(Z) = (0. This contradicts Ay € T. We thus conclude that ¢;(\,z) €
{$1(1,2),$1(i,2)} for all A € T. The function ¢;(-,z), which maps A € T to ¢1(\, z), is
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continuous on the connected set T. Hence, the image ¢1(T,z) of T is connected as well.
Because ¢1(T,z) C {¢1(1,2), ¢1(i,2)}, we see that ¢1(T, z) is a one point set, and consequently,
1N, z) = ¢1(1,2z) for all A € T.

We now prove that ¢;(\,z) = 91(1,2) for all A € T. If we assume that ;(\,z) &
{¢1(1,2),91(i,2)} for some X € T, we can choose fo € C''(I) such that

fé(@bl()"z)) =1, fé("vbl(lvz)) - fé(@bl(zvz)) =0, and f2(¢1()‘7z)) =0.

Here, we note that fo(¢1(1,2)) = fo(¢1(i,2)) = 0, since ¢1(\,z) = ¢1(1,2) = ¢1(i,2). Applying
Lemma 1.12 with (3.12) to fzfé/ll, we will lead a contradiction by a quite similar argument
as above. Therefore, we conclude that (T, z) is a connected set, which is contained in
{Y1(1,2),91(i,z)}. This shows that ¢;(\,z) = ¥4 (1,2) for all A € T.

If we consider ¢ € Lip(I) with (3.13) instead of f; € C'(I) with (3.12) in the above

arguments, we can prove that ¢o(\,z) = ¢9(1,2) and ¢3(\, z) = ¢3(1,2) for all A € T. O
LEMMA 1.15. For each A\ € T and z € Z, the following identities hold:
Yo(N,z2) = 1a(l,z) and P3(\ z) =s3(1,2).

PRrOOF. Fix z € Z arbitrarily. We first notice that ¢1(\,z) = ¢1(1,2) and ¥y (\,z) =
¥1(1,2z) for all A € T by Lemma 1.14. Choose f; € C*(I) so that fi(¢1(1,2z)) = 0 and
fi(¥1(1,2)) = 1. Equality (3.11) yields

—_~—

fl ® g(CI)(/\, Z)) = 1/}0</\7 Z)g(¢2(/\7 Z)) + g/(¢3(>‘7 Z))¢4(/\7 Z)

for all A € T and g € Lip(I). Since ¢y(A,z) € T, we may apply the same argument as in Proof
of Lemma 1.14. Then we obtain 19(\,z) = ¥5(1,2) and ¥3(A\,z) = ¥3(1,2) forall A€ T. O

For simplicity, we will write

¢j(>‘7z> = ¢j(z) and wj()‘vz> = %’(Z) (] = 17273)

for A € T and z € Z. They are reasonable from Lemmas 1.14 and 1.15.
Next, we show that ¢4(i,z) = ¢4(1,2) or ¢4(i,2) = —d4(1,2) for each z € Z.

LEMMA 1.16. There exists a continuous function €1 : Z — {1} such that
¢4(1,2) = eo(2)er(2)da(1,2) (2 € 2).

PRrooFr. Take arbitrary zg € Z. We put g1 = id;—¢2(zo)1; € Lip(I), and then g;(¢2(z0)) =
0 and g = 1;. According to (3.13), we get 17(531(®(u,z0)) = ¢4(p,20) for all p € T. If we
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enter A = (1 —4)/v2 € T in Lemma 1.12, then we obtain v2A°®)8g\ .01 = Sa(120) —
i€0(2Z0)0a(i,20)- Evaluating the last equality at 11/@\9/91, we have v/2X%0@) g, (X, zo) = d4(1, 2) —
i€0(zo)Pa(i, 2z9). We derive from the moduli of the last equality that

V2 = |¢a(1,20) — ico(20)a (i, 20)| = |1 — ieo(20) ba(i, 20) pa(1, 20)|,

where we have used ¢4(1,20) € T. This implies that icg(zo)p4(i,20)P4(1, 2¢) is ¢ or —i, that is,
£0(20)¢4(i,20)p4(1,20) is 1 or —1. We define

O ={z¢e€Z:e0(z)ps(i,2)p4(1,2) = 1}.

Then we see that Z \ Qy = {z € Z : g¢(2)04(i,2)p4(1,2) = —1} from the above argument.
Therefore, ; and Z \ €, are both closed subsets of Z by the continuity of €y and ¢4. Hence,

2 is a closed and open subset of Z. Now we define a function ¢;: Z — {£1} by

1 (zeW)
—1 (ze€ Z\ Q).

61(Z) =

Since 2y is a closed and open set, we observe that €; is a continuous function on Z. By the
definition of €1, we conclude that ¢4(i,z) = eo(2z)e1(2z)¢4(1,2) for all z € Z. O

In the next lemma, we shall prove that a similar result to Lemma 1.16 holds for ¢y and vy.

LEMMA 1.17. There exist continuous functions e9,e3: Z — {£1} such that

Uo(i,z) = eo(z)ea(z)o(1,2)  and P4(i,2) = eo(z)e3(2)Y4(1, 2) (z € Z).

PROOF. Take zy € Z arbitrarily, and set f; = id; — ¢1(zg)1; € C'(I) and g, = id; —

a(20)1; € Lip(I). Then fi(é1(20)) = g1(v2(20)) = 0 and f] = ¢) = 1;. According to (3.11)
and (3.12), we have

FLa (BN 7)) = ¥o(Nz0) and  fr ® g1(D(N, 20)) = (), o)

for all A € T. By the same argument as in Proof of Lemma 1.16, applied to the last two equal-
ities, there exist continuous functions ey, e5: Z — {£1} such that ¢y(i,2) = €o(z)e2(z)¢o(1, z)
and ¥4(i,2z) = eo(2z)e3(z)14(1,2) for all z € Z. O
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For simplicity of notation, we shall write ¢4(1,2z) = ¢4(2), ¥o(1,2) = 1o(z), and P4(1,2) =
Yy(z) for z € Z. Lemmas 1.16 and 1.17 show that

(3.14)  ¢u(i, z) = eo(z)e1(2)Pa(z),
o(i,2) = eo(z)ea(2)o(z), and 4(i,2z) = eo(z)e3(z)14(2)

for all z € Z.
We are now in a position to determine the form of S. In order to represent S simply, we

introduce some symbols.

DEFINITION 1.18. For each a,b € R and ¢ € {£1}, we define [a + ib]° = a + €ib. In
particular, [z]' = z and [z]7! = Z for any z € C. For each F' € C'(I,Lip(I)), we define A;(F)
and A (F) by

(3.15) Ay(F)(2) = [a(2) Fy ) (¢2(2)
and A (F)(2) = [a(2) F}, ) (63(2)) - ¢4(2))]
for all z € Z. In the same way, we define Ay(F') and AL(F) by
(3.16) Az(F)(2) = [a(2)t0(2) D(F )y, ) (12(2))] =
and Ay (F)(z) = [a(2) D(F)y, o) (¢s3(2) - a(2)]

for z € Z. In particular, if we enter F' = f ® 1; into (3.15) and (3.16) for f € C''(I), then we
derive from (2.5) that

(3.17) A(f @ 11)(2) = [a(2) f(¢1(2))*,  AY(f @ 11)(z) =0,
AY(f@1)(z) =0, and Ao(f @ 11)(2) = [a(2)v(2) ['(¢1(2))]
for all z € Z. By the same reasoning, we obtain
(318) Ai(1r @ g)(z) = [a(2)g(¢2(2))]*®, AY(1r @ g)(2) = [a(z)g'(¢3(2)) - $a ()],
and  As(1; ® g)(z) = Ay(1r ®g)(z) =0
for g € Lip(I) and z € Z.
First, we show that S(F)(z) can be expressed as the sum of d; and 9.
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LEMMA 1.19. Let F € CY(I,Lip(I)) and z € Z. Then S(F)(z) is the sum of the followings:
(1) Re(a(z)01(F)(6(1,2))) + ieo(z)Im (a(2)01(F)(¢(i, 2))).
(2) Re(c(z)0a(F)(¢(1,2))) 4 ico(z)Im (a(2)02(F) (1 (i, 2))).

PROOF. Let F € C'(I,Lip(/)) and (\,z) € T x Z. Then we can write

S(F)(z) = Re(S(F)(2)) + ilm (S(F)(z)) = Re(S(F)(z)) — i Re(iS(F)(z)).
On the one hand, we note that
Re(AS(F)(z)) = Re(A5,(S(F))) = Re(S.(A6,)(F))
for A € T by (3.3). Entering the last equality into the above equality, we have
(3.19) S(F)(z) = Re(S.(8,)(F)) — i Re(S.(id,)(F)).
On the other hand, S,(Ad,) = (A, 2)ds(z), by (3.4). Hence,
Re(S.(5,)(F)) = Re(a(z) F(®(1,2))),
where we have used a(1,2z) = a(z). Since a(i,z) = igg(z)a(z) by (3.8), we obtain

Re(S.(i0,)(F)) = Re(a(i,2)F(®(i,2))) = —o(z)Im (a(z)F(D(i,2))).

We enter these two equalities into (3.19), and then

(3.20) S(F)(z) = Re(a(z)F(®(1,2))) + ico(z)Im (a(z)F(P(i,z))).
Letting x = ¢(\,z) and y = ¥(\, z) in (2.4), we get
F(®(\,2)) = 01(F)(6(\,2)) + Do(F) (¥(), 2)).

Substituting the last equality into (3.20), we can rewrite the real part and the imaginary part
of S(F)(z) as
Re(a(z)ﬁ(@(l,z)) = Re(a(z)01(F)(¢(1,2))) + Re(a(z)05(F)(¥(1,2))),

ieo(z)Im (a(z) F (P (i, 2)) = ico(z) (Im (a(2z)01 (F)(¢(i,2))) + Im (a(2)02(F) (¥ (i, 2)))).

Adding the last two identities, we can express S(F)(z) as the desired conclusion from (3.20).
U

In the next lemma, we characterize the form of S using the symbols in Definition 1.18.

22



LEMMA 1.20. For each F' € C*(I,Lip(I)), we have
S(F)(z) = Ai(F)(2) + A)(F)(2) + Do (F)(2) + Dy(F)(z) (2 € 2).

PRrROOF. We take F' € C*(I,Lip(I)) arbitrarily and let z € Z. Now, we shall prove that
(1) in Lemma 1.19 is written as A;(F)(z) + Aj(F)(z). If we apply ¢(1,2) = (¢,(2))1<j<4 tO
(2.2), we get

(3.21) O (F)(9(1,2)) = Foy(2)(02(2)) + 1, ) (93(2)) - ¢u(2),

where we have used the notation ¢;(1,z) = ¢;(z) for 1 < j < 4. Since ¢4(%,2) = €o(z)e1(2)P4(2)
by (3.14), we have
d)(l, Z) = (¢1 (Z)a ¢2 (Z)v ¢3(Z)7 50(Z)51 (Z)¢4<Z))

Entering the last equality into (2.2), we obtain

(3.22) W(F)(0i,2)) = Fy,(2)(92(2)) + Fy, () (03(2)) - 20(2)e1(2)da(2).
It follows from (3.21) and (3.22) that (1) is written as
[(2) Fp, () (02(2))]°® + [(2) F} ) (93(2)) - 64(2))7®) = Ay (F)(2) + AL (F)(2)

by the definition of Ay (F) and A} (F).

We next prove that (2) in Lemma 1.19 is written as Aq(F)(z) + AL(F)(z) by a similar
argument as above. Applying (1,2) = (Yx(2))o<k<4 to (2.3), we get
(3.23) 0o (F)($(1,2)) = ¢o(2) D(F), () (¢2(2)) + D(F)yy, () (103(2)) - 14 (2).

Note that 1(i,z) = ¥i(z) for each k with 1 < k < 3, ¥y(i,2) = £o(z)e2(2)o(z), and
Yu(i,z) = eo(2z)es(z)P4(z) by Lemmas 1.14, 1.15 and 1.17. Equality (2.3) shows that

(3.24) 0y(F)(¥(i, 2)) = €0(2)e2(2)0(2) D(F )y, (z) (102(2))
+ D(F)y, () (U3(2)) - 20(2)es(2)¢a(z).
We derive from (3.23) and (3.24) that (2) is written as
[(2)100(2) D(F) s ) (42(2))]*) + [(2) D(F)y, () (¥3(2)) - ()]
= Ay(F)(2z) + AY(F)(2)

by the definition of Ay(F) and AL(F).
Finally, since S(F)(z) is the sum of (1) and (2) by Lemma 1.19, we see that

S(F)(z) = Au(F)(z) + AL (F)(2) + D8a(F)(2) + A5(F)(2).
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The proof is complete. O

We derive from (2.4) and (3.1) that

—~—

S(F)(z) = To(F)(2z) = 1(To(F))(x) + 02(To(F))(y)

for F € CY(I,Lip(I)) and z = (x,y) € Z = X x Y. Combining the above identity with

Lemma 1.20, we obtain

—_—

(3:25)  O(To(F))(x) + %(To(F))(y) = To(F)(2)
= Ay(F)(2) + AL (F)(2) + Ao (F)(2) + A5 (F)(2)

for any F € C'(I,Lip(/)) and z = (x,y) € Z.

4. The form of Tj

We characterize the surjective real linear isometry Ty on C'*(I, Lip([)) in this section. First,
we investigate the forms of Ty(1), To(1; ®id;), and To(id; ® 17) in order to determine the form
of Tp.

For each F' € CY(I,Lip(I)), we put G = Ty(F). We derive from (3.25) that

0(G)(x) + 02(G)(y) = Ar(F)(2) + AL (F)(2) + Ax(F)(2z) + A5(F)(2).

By (2.2) and (2.3), we can rewrite the above equality as

(4.1) Gi(x) + G (m)z + ED(G)ily) + D(G)y(n)w
=To(F)(2) = Aa(F)(2) + A1 (F)(2) + Ao(F)(2) + A5(F)(2)
for any G = T(F) with F' € CY(I,Lip(1)), x = (s,z,m,z) € X,y = (&, (t,y,n,w)) € Y, and
z = (x,y). The equality (4.1) is crucial to investigate the form of Tj throughout this section.
The following proposition plays a fundamental role in this section. It is easy to prove it,

and we thus omit it.

PROPOSITION 1.21. Let | € N with | > 2 and a; € C with j = 0,---,1l. Suppose that
|ao + 22:1 ajzj| =1 for every z; € T. There exists jo € {0, ,1} such that |a;,| = 1 and
a; =0 for every j € {0,1,--- 1} \ {Jo}-

Next, we prove that Ty(1) is a constant on I%. Before proving it, we prepare the following

notation.
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DEFINITION 1.22. Let F' € C(I,Lip(/)) and z € I. We define a continuous function F*
on I by F*(s) = F(s,z) for each s € I.

REMARK 1.23. Let F' € C'(I,Lip(I)). Then D(F) is an element of C(I,Lip([)) with
limy, o [ (Fsen — Fs)/h — D(F)s||. = 0 by Definition 1.3. Because |g(x)| < ||g]|1 for g € Lip(1)
by (2.1), it follows that

F* — F* F. — F
lim (S+h) (S) . D(F)x(s) — lim s-l—h(m) 5(33) . D(F)S(x)
h—0 h—0 h
F. ., — F.
<lim || == _ D(F),|| =0
h—0 I

for all z,s € I. Hence, (F*) = D(F)* and F* € C*(I) for F € C'(I,Lip(])) and z € I.

The next proposition gives a sufficient condition in order that F € CY(I,Lip(I)) be a

constant on I2.

PROPOSITION 1.24. Suppose that F € C'(I,Lip(I)) satisfies (F*) =0 on I for any x € I
and (Fy,) =0 on M for some s; € I. Then F is a constant on I*

PROOF. Take arbitrary (s,z) € I?. By assumption, we see that F* and Fj, are constant
on I. We thus obtain F(s,z) = F*(s) = F*(s1) = F(s1,x) = Fy,(x) = Fs,(0), which shows

that F is a constant on I2. O

LEMMA 1.25. Let A € {1,i} and g : Z — {£1} be the function from Lemma 1.12.
(1) There exists cx € T such that Ty(A1) = ¢, 1.

(i) For allz € Z, ¢; = [a(z)]°®). In particular, both o and o are constants with o € T
and ¢ € {£1}.

PROOF. Let A € {1,i} and we put G, = Ty(A\1) € C*(I,Lip(I)). Because (A)y ) =
D(A1) =0 by (2.5), it follows from (3.15) and (3.16) that

MO (2) = [@@N2@ and  AL(M)(2) = Aa(A)(z) = AY(AL)(z) = 0
for z € Z. Applying (4.1) to G = G, we deduce from the above equalities that
(4.2) (Ga)s(2) + (Gr)y(m)z + ED(GA):i(y) + D(Gr)i(n)w = [a(z) A

for every x = (s,x,m,z2) € X and 'y = (&, (t,y,n,w)) € Y with z = (x,y) € Z. We note that
[a(z)A]® € T by Definition 1.11.
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We shall prove (i). First, we show that |G| = 1 on I?. Fixing (s, z) € I?, we take (t,y) € I?
and m,n € M arbitrarily. We derive from (4.2) that

(GA)s(2) + (Ga)s(m)z + ED(GA):i(y) + D(GA)y(n)w]| =1

for any z,&,w € T. Applying Proposition 1.21 to the last equality, we obtain |(Gy)s(x)] is 0
or 1. Since (s, z) € I? is chosen arbitrarily, the image |Gy|(I?) of I? is contained in {0,1}. By
the continuity of G on the connected set I?, we get |Gy| = 0 on I? or |G| = 1 on I?. Because
Ty is injective with T5(0) = 0, we obtain G = Tp(A1) # 0. Hence,

(4.3) (Gr)ula)] = 1.

Next, we prove that G satisfies the assumptions of Proposition 1.24. We derive from (4.2)

that
[(G2)s(2) + (G (m)z + ED(Gr)i(y) + D(Gy)y(n)w| =1

for z,&,w € T. If we apply Proposition 1.21 to the last equality, then we obtain (G,).(m) =
D(Gy)i(y) = 0, because (Gy)s(z) # 0 by (4.3). In particular, D(G,)Y(t) = D(Gx):(y) = 0.
Since m € M and (t,y) € I?* are arbitrarily chosen, we have (G,), = 0 on M and D(G,)¥ =
on [ for all y € I. Having in mind that ((G,)Y)" = D(G,)Y by Remark 1.23, we have ((G,)Y) =
0 on [ for any y € I. Therefore, GG satisfies the assumptions of Proposition 1.24. We may
apply Proposition 1.24 to get that G is a constant on I?, and hence, there exists ¢, € T such
that G = ¢x1. We have proved (i).

Now, we shall prove (ii). Because G = ¢)1, it follows from (4.2) that
ex = (Ga)s() = [a(z) N>

for each x = (s,z,m,z) € X and y = (&, (t,y,n,w)) € Y with z = (x,y) € Z, which implies
that ¢; = [a(z)]?°® and ¢; = [o(z)i]®® for z € Z. Then we get

¢; = ico(2z)[o(2)]°® = igo(z)ey

for all z € Z. This shows that ¢j is a constant on Z, and hence ¢g =1 on Z or ¢g = —1 on Z.

It follows that a(z) = [¢;]¥® for all z € Z, and thus, a is a constant on Z. U

By Lemma 1.25 (ii), we may and do write «(z) = « and eo(z) = ¢y for z € Z. Since
c1 = [a]® for z € Z, we deduce from (3.17) and (3.18) that
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(44) Ai(f @11)(2) = alf(6(2)]°,  AL(f @ 11)(2) = Ay(f @ 11)(2) =0,
No(f @ 11)(2) = [ao(2) f' (¢1(2))]=,

(45) Ai(1; @ g)(z) = c1[g(62(2))],  AL(1r @ g)(2) = [ag'(¢3(2)) - ¢a(2)]*,
and  Ay(1; ® g)(z) = Ay(1; @ g)(2z) =0

for f € C'(I) g € Lip(I), and z € Z.
We put
Gr=To(f®1l;) and H,=Ty(l;®yg)
for f € C*(I) and ¢ € Lip(Z). We note that (4.1) is valid for G = G; and G = H,. Entering
(4.4) into (4.1), we obtain

(4.6) (Gp)s(x) + (Gy)L(m)z + ED(Gy)i(y) + D(Gy)y(n)w
= G1(2z) = a1 f(61(2))] + [ty (2) f' (1 (2))]2®

for fe C'(I), x=(s,z,m,z) € X andy = (§, (¢t,y,n,w)) €Y with z = (x,y) € Z.
In the same way, if we substitute (4.5) into (4.1), then

(4.7)  (Hyg)s(z) + (Hy)y(m)z + ED(Hy)i(y) + D(Hy)y(n)w

= Hy(2) = c1lg(02(2))]* + [ag'(3(2)) - $u(2))7®)

for g € Lip(I), x = (s,x,m,2) € X and y = (&, (t,y,n,w)) € Y with z = (x,y) € Z.

Before we investigate Ty(id; ® 1;) and To(1; ® idr), we shall prove that ¢; and ; are
invariant with respect to z,&,w € T for each j € {1,2,3}. The author in present paper refers
to [46, Lemmas 4.1 and 4.2].

LEMMA 1.26. Let (s,z),(t,y) € I? and m,n € M. Set x, = (s,z,m,2) € X, yeu =
& (ty,nw)) €Y, and z, ¢ = (X5, Yew) € Z for each z,&,w € T. Then the values ¢1(2,¢.)

and ¢9(2,¢,.,) are independent from z,&,w € T.

PROOF. Setting wy = 2111, W1 = Z_111, W2 = Z1_11, and ws = 2z, we shall prove

that
G1(Z2w) € {P1(wy) 1 0 < j <3}
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for all z,&,w € T. Suppose, on the contrary, that
¢1(w) & {d1(w;) : 0 <j <3}
for some w = z, ¢, with 2z,&,w € T. We can find f € C*(I) such that
flor(w)) =1, f(¢r(w;)) =0, and f(¢hr(w)) = f'(¢1(w;)) =0

for j =0,1,2,3. Set Gy = To(f ® 1;) € C*(I,Lip(I)). We derive from (4.6) with z = w, w;
that évf(w) = ¢; and évf('w]) =0 for j =0,1,2,3. By (4.6), we obtain

0\  (Glwo) 111 1 (G
Of [Grw)| |1 -1 1 1 || (Gpiim)
o |Grwn| [t 1 -1 1 || D@
0 G (ws) 11 —1) \D(Gin)

—~

1
Then we have 0 = CTf(wo) — Gy(wy) = 2(Gy)(m), and hence (Gy)i(m) = 0. By the same
argument, we see that (Gy)s(z) = D(Gy¢):(y) = D(Gy);(n) = 0. Entering these equalities into
(4.6), we get

Cr(w) = (Gy)s(x) + (Gy)o(m)z + ED(Gy)i(y) + D(Gy)y(n)w = 0,

and thus, @}(w) = 0. This contradicts é’vf(w) = ¢; € T. Therefore, we have proved that
D1(Z2ew) € {P1(w;) :0< 5 <3} forall 2,6, weT.

Since ¢ is continuous, the image of T? under the map (z,&,w) — ¢1(Z.¢0) is connected.
This implies that ¢1(z.¢.,) = ¢1(wy) for all z,&,w € T, and consequently, the value ¢1(z,¢.,)
is independent from z,&,w € T.

The same arguments, applied to 1; ® g for a suitable g € Lip(I) instead of f ® 1;, show
that ¢2(2z,¢.0) = ¢2(wy) for all z,§,w e T. O

LEMMA 1.27. Let (s,x),(t,y) € I? and m,n € M. Set x, = (s,x,m,2) € X, Yew =
& (ty,nw)) €Y, and 2,6, = (X2, Yew) € Z for each z,§,w € T. The values ¢3(2, ),
U1(Zogw), V2(2agw), and Y3(2,¢,,) are independent from z,&,w € T.

PROOF. The same arguments as in Proof of Lemma 1.26 are applied to show the result.

We thus omit its proof. O

Our next aim is to determine the forms of Ty(1;®id;) and To(id;®1;). First, we investigate
To(1; ®idy) in the following seven lemmas. The author refers to [64, p186-p187| for the main

idea.
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LEMMA 1.28. Let H;g = &1 Ty(1; ® id;) € CY(I,Lip(I)). There exist z1,29 € Z such that
ﬁ;(zl) =2 and E;(Zg) = —1.

PROOF. By Lemma 1.5, |Hilloo = ||[Hialls. Since Ty is a real linear isometry, we have
| Higlloo = lle1 To(1; @ idy)|ls = ||1; ® idy||s = 2, and hence ||Hyllso = 2. Then there exists
z, € Z such that |Hy(z1)| = 2. Applying (4.7) to H, = a1H;qs = To(1; ® id;), we obtain
c1Hia(2) = c163(2) + [0(2)64(2)]®). That is,

—

(4.8) Hig(2z) = ¢o(2) + Tlads(2)]*@ € T +T

for any z € Z, where we have used ¢5(z) € I. Thus, we see that /I:I\,-/d(zl) = 2.
Setting H = To(1; ® (id; — 15)), we obtain

|Hlloo = | To(1; ® (ids — 11))||ss = |17 ® (id; — 17)||x = 2,

that is, |||« = 2, because Ty is a norm preserving map. Then there exists z, € Z such that
|H (25)] = 2. By the real linearity of T, we get H = Ty(1; @id;) — To(1; @1;) = ¢y Hyg— To(1).
Since Tp(1) = ¢11 by Lemma 1.25, we derive from (4.8) that

ot H(2:) = @ (e1Hialz) = To(1)(72) ) = Hialz2) = 1 € [1,0] + T.

We deduce from |H (z;)| = 2 that ¢ H(22) = —2. This implies that

Hid(ZQ) = _1H(Z2) +1=-1.
The proof is complete. Il

From Lemmas 1.29 through 1.35, we assume that H;; = ¢17o(1; ® idy) as in Lemma 1.28.

LEMMA 1.29. We put a = sup,; |[|[(Hia)s|lo and b = sup,c;(||D(Hia)t|loo + [|D(Hia)}ll0)-
Then a+b < 1.

!/

PROOF. By the choice of a and b, there exist s,y € I such that |(Hiq),
| D(Hia)tol|oo + [[D(Hia)y,|loo = b. By Definition 1.3, we note that (H;q).,, D(Hiq);, € C(M)
and D(Hq)s, € Lip(I). Thus, there exist mg,ng € M and yo € I such that |(H)} (mo)| = a
and |D(H;a)s, (vo)| + |D(Hia)i, (n0)| = 0. It follows from the last two equalities that

|lo = a and

(4.9) |(Hia)s, (mo)| + D(Hia)s, (yo)| + | D(Hia)y, (no)] = a + .
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Now we set ¢ = Im ((Hig)so(1))/|Im ((Hig)so(1))] if Im ((H;a)s,(1)) # 0, and e = 1 if
Im ((Hid)so(l)) = 0. We can choose zg, &y, wy € T so that

(Hia)s, (mo)z0 = ie|(Hia)s, (mo)l, oD (Hia)ty (yo) = ie|D(Hia)ty (Yo)l,

and D(Hid)éo (no)wo = Z€|D(Hld)£0(710)|

Having in mind that ie(|(Hia), (m0)| + |D(Hia)s (v0)| + |D(Hia);, (no)]) = ie(a + b) by (4.9),

we deduce from the above equalities that
(4.10) (Hia)y, (mo)zo + EoD(Hia)ty (Y0) + D(Hia)t, (n0)wo = ic(a + b).
We note that (4.7) is valid for H; = ¢1H;q = To(1; ® idy). We derive from (4.7), multiplied by
¢1, that
(Hia)so (1) + (Hia)y, (mo)z0 + §oD(Hia)ty (Y0) + D(Hia)t, (10)wo

= a(20) + T1 [0va(20)]7 )

for xg = (s0,1,m0,20) € X and yo = (&, (to, Yo, 10, wp)) € Y with zg = (x0,y0), where we
have used that ¢o(z¢) € I. Entering (4.10) into the above equality, we get

(Hiq)sy (1) +ie(a +b) = ¢o(20) + 1 [ada(z0)]7**) € I +T.

Having in mind that Im ((H;a)s,(1)) = £|Im ((H;a)s,(1))|, we take the imaginary part of the

above equality, and then
e|tm ((Hia)so (1)) | + (a4 b) = Tm (e [apa(zo)]7 ).

Hence, we obtain a + b < ’Im (a [04¢4(z0)]51(20))| <1. O

REMARK 1.30. Let F € CY(I,Lip(I)) and xy € I. Because (F*) = D(F)™ by Re-
mark 1.23, it follows that

ICEY oo = 1D(F)™[loc = sup | D(F)(t, x0)| < sup(sup [D(F)(t, z)|) = sup [ID(E):ll oo

tel zel

and hence ||(F™)' |l < sup;er [[D(F)¢]oo-

LEMMA 1.31. Let z1,2o € Z be from Lemma 1.28 and a,b be from Lemma 1.29. We put
z; = (X;,y;), Xj = (85,25, m;,2;) € X, and'y; = (&, (¢),y;,n5,w;)) €Y for j =1,2. Then

s1,x1 €4{0,1}, so=1—81, 19 =1 — 11, and
|(Hia)s, (21) — (Hid)sy (x2)| = [[(Hia)s, oo + | (Hia™) oo =a+ b= 1.
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PROOF. By (2.4) with (2.2) and (2.3), we have

—

(Hia)s; (z5) + (Hia)y, (my)2z; + §D(Hia)t, (y;) + D(Hia)y, (ny)w; = Hia(2;)

for j =1,2. Putting d; = (Hia);,(m;)z; + §D(Hia)t; (y;) + D(Hia)y, (nj)w;, we derive from the
above equality that

—_—

(4.11) (Hia)s; (x5) + dj = Hya(z;).

Since ﬁ;d(zl) = 2 and /ﬁ\i—;(ZQ) = —1 by Lemma 1.28, it follows from (4.11) that 3 =
[Hia(z) = Hia(z2)| < |(Hia)sy (1) = (Hia)ss (w2)] + |da] + |d], and hence,

(4.12) 3 < [(Hia)s (x1) = (Hia)sy (22)] + |du] + [da].

Here, we note that |d;| < [(Hia)s, (m;)| + |D(Hia)e; (v;)| + [D(Hia)i, (ny)] < a + b, and thus,
|d;| < a+b by the choice of a and b. Having in mind that a +b < 1 by Lemma 1.29, it follows
that

(4.13) |d;| <1 (1 =1,2).

We deduce from (4.12) that 3 < [(H;q)s, (1) — (Hia)s, (2)| + 2, that is,

(4.14) 1< [(Hia)s (21) = (Hia)s, (2)]-

On the other hand, by the mean value theorem, we get
|((Hia)s, (1) = (Hid)s, (22)] < [(Hia)s, (21) — (Hia)s, (w2)] + [(Hia)s, (2) — (Hid)s, (2))]

< N (Hia)s, lloo [21 = 2| + [[(Hia™) l|oo 51 — 52
< N (Hia)s, loo + [1(Hia™) lloos

where we have used that sq, s, 21,25 € I. Hence,

(4.15) |(Hia)sy (21) = (Hia) sy (22)] < [|(Hia)§, oo |21 = 2] + | (Hia™) [loc [51 = 52

< N (Hia)s, loo + [1(Hia™) lloo-

Here, we note that ||(Hiq)’, [|coc < a and |[(H;g™) ||oo < supes [|D(Hid)tl|oo < b by the choice of

S1

a and b with Remark 1.30. That is, |[(Hia), lleo + [|(Hia"*)||ec < @ + b. Having in mind that

S1

a+b <1 by Lemma 1.29, we derive from (4.14) and (4.15) that

|(Hia)sy (21) = (Hia)sy (22)] = [|(Hia)§, lloo [21 — 2| + [[(Hia™) l|oo [51 = 52]

= [[(Hia), lloo + [(Hi™) [loc = a+b=1,
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and hence, |(Hiq)s, (21) — (Hiq) s, (22)] = ||( ’Ld)sl||00+||( d ) ]lec = a+b=1. Because s;,x; €

[ for j = 1,2, the identity ||(Hia);, lloo [71—22[+ || (Hia™) [0 [51— 52| = | (Hia)%, lloo +11(Hia™) [l oo
shows that [s; — s3] = |z1 — o] = 1. This 1mphes that s;,z1 € {0,1} and s5 = 1 — sy,

ZL‘QZ]_—.I‘l. U

LEMMA 1.32. Let sj,z; € I be from Lemma 1.31 for j = 1,2. Then (H;q)s,(z1) = 1 and
(Hia)sy (22) = 0.

PROOF. First, we show that (H;4)s, (1) = 1. Having in mind that (H;;™) = D(H,;q)™ by
Remark 1.23, we deduce from Lemma 1.31 that
I(Hia)s, lloo + 1D(Hia) " loo = | (Hia)g, lloo + [1(Hia™) [l = 1.

Because (Hyq),, € C(M) and D(H;q)" € C(I), there exist m; € M and t; € I such that
[(Hia)s, (m1)] = ||(Hia)y, lloo and [D(H;q)™(t1)| = || D(Hia)*?||o. We derive from the above
equalities that

(4.16) |(Hia)s, (ma)| + | D(Hia)™ (t1)| = 1.

By (2.1), we obtain

|(Hia)s, (21)] + |[(Hia)s, (ma)| < [[(Hia)s, ||z and

|D(Hia)™ (t1)| = |D(Hia)i, (x2)] < [[D(Hia)t, ||

We deduce from the above inequalities that

|(Hia)s, (22)] + [(Hia)g, (ma)| + [ D(Hia)™ (01)] < [[(Hia)s, |2+ | D(Hia)n ||z

Combining (4.16) with the last inequality, we have

|(Hia)s, (21)] + 1 < [[(Hia)sy |l + [ D(Hia)s, | -

By the definition of || - ||s, we get |[(Hia)s, ||l + |D(Hia), ||z < |[Hialls. It follows from the
above inequality that |(H;q)s, (x1)|+ 1 < ||H;q|ls. Because T is a real linear isometry, we have
|Higlls = |[eiTo(1; ® idy)||s = [|17 ® id;||s = 2. This shows |(Hig)s, (z1)] + 1 < 2, and hence,
|(Hig)s, (1)] < 1.

Let z; € Z be from Lemma 1.28 and d; be as in the proof of Lemma 1.31 for j = 1,2. Since
Hig(z1) = 2 by Lemma 1.28, it follows from (4.11) that (H;q)s, (1) 4 di = 2. This implies that
|(Hiq)s, (x1) — 2| <1 by (4.13). We infer from |(H;q)s, (1)| < 1 and |[(H;q)s, (z1) — 2| < 1 that
(Hia)s, (z1) = 1.
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Next, we prove that (H;q)s,(z2) = 0. Because E;(ZQ) = —1, we derive from (4.11) and
(4.13) that |(H;q)s,(22) + 1| < 1. By Lemma 1.31 with (H;4)s, (1) = 1, we obtain

|(Hia)s, (72) — 1| = [(Hid)s, (x2) — (Hia)s, (21)] = 1,

and thus [(Hq)s,(z2) — 1| = 1. Tt follows from |(H;q)s,(22) + 1| < 1 that (Hig)s,(22) =0. O

LEMMA 1.33. Let sy, x9 € I be from Lemma 1.31. For any s,z € I,

(Hia)s(x) = alzy — x[ + b|sz — s].
Proor. Take s,z € I arbitrarily. Because (H;q)s(x) = (H;q)"(s), we obtain
|(Hia)s(x) = (Hia)s; ()] < [(Hia)s(2) = (Hia)s(2;)| + |(Hia)s(x;) — (Hia)s; ()]
< N (Hia)slloo [ — | + [[(Hia™) lloc |55 — s
by the mean value theorem, and hence,
|(Hia)s() = (Hia)s; ()] < |(Hia)glloo 25 — 2| + [[(Hia™ ) l|oo |55 — 5.

We get ||(Hig)slloo < aand [[(Hia™) ||oo < supye; [|D(Hid)tl|oo < b by the choice of a and b with

Remark 1.30. We derive from the above inequalities that
((Hia)s(x) — (Hia)s, (z;)| < alz; — x] + bls; — s|

for j = 1,2. By Lemma 1.32, we get (Hiq)s, (x1) = 1 and (Hig)s,(x2) = 0. Letting j = 1,2 in

the above inequality, we have the following identities:
(4.17) |(Hiq)s(z) — 1| < alzy — x| + bls; — s,
(4.18) |(Hia)s(z)] < alzg — x| + blsy — 5.

We put r = a|zy — x| + b|se — s|, and then |(H;q)s(z)| < 7 by (4.18). Because x; € {0,1} and
xe = 1 — xy by Lemma 1.31, it follows that |z, — x| + |x2 — 2| = 1. By the same reasoning,

|s1 — s + |s2 — s| = 1. Adding the right sides of (4.17) and (4.18), we get
(alzy — 2| +b|sy — s|) + 7 = a(|z1 — x| + |v2 — x]) + b(|s1 — 5| + [s2 — s]) = a + D,

and then (a|zy — x| + b|sy — s|) + 7 = a + b. We note that a + b = 1 by Lemma 1.31. Hence,
we obtain a|r; — x| + b|s; — s| = 1 —r. We infer from (4.17) that |(Hiq)s(x) — 1] <1 —1r. We
deduce from |(H;q)s(x)| < r that (Hig)s(z) = r = a|lzg — x| + b|sy — s]. O

LEMMA 1.34. There exists To € {id;, 1; —id;} such that Hyy = 1; @ 7o or Hig = 7o ® 1;.
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PROOF. Let sy, 29 € {0,1} be from Lemma 1.31. By Lemma 1.33, we obtain
(4.19) (Hiq)s(x) = alxe — x| + blsg — s
for any s,z € I. Because xo € {0, 1}, there exists 6; € {1} such that
(4.20) (Hig)(m) =d1a (s €l,me M).
By Definition 1.3, we see that
(4.21) D(H;q)(y) =020 (t,y € 1)

for some 0 € {£1}. This shows that D(H;;); = 0 on M for any t € I. Let m € M and
set X, = (89,2, m,012) € X, ye = (02&, (S2, 02, m,1)) € Y, and z,¢ = (X.,ye) € Z for each
z,& € T. Applying (4.7) to H, = Ty(1; ® idr) = c1H;q, we get

(4.22) (c1H;q)sy(x2) + (c1Hia)y, (m)d12 4+ 626D (1 Hig)s, (22) + D(c1 Hia)l, (M)

= 102(Z:¢) + [aga(z.¢)] ).

Note that (Hiq)s,(72) = 0 by (4.19) and D(H;q);,(m) = 0. Substituting (4.20) and (4.21) into
(4.22), we obtain

(4.23) craz + &b = Cl(bZ(Zz,f) + [a¢4(zz’§)]51(zz£)
for any 2, € T. We shall write z;; = z(;) in short. Letting z = £ = in (4.23), we obtain
i = ¢a(z() + 1 [aga(z;))] ") € I+ T,

since a + b = 1 by Lemma 1.31. If we take the imaginary part of the above equality, we
get 1 = Im (¢7 [ga(z(;))]7*@)). Consequently e[ads(za)] *@) = i, and then ¢o(z()) = 0.
Because ¢9(z.¢) = ¢2(2(;)) = 0 by Lemma 1.26, we derive from (4.23) that

ci(az + bg) = [adu(z:6)] *,

which shows that |az+b¢| = 1 for all z,£ € T. We conclude that a = 0 or b = 0 by Proposition
1.21.

It follows from a + b = 1 that (Hig)s(z) = |s2 — s| or (Hia)s(z) = |x2 — x| by (4.19).
If (Hig)s(x) = [s2 — s|, we obtain (Hy)s(z) = (12 ® 1;)s(z) for some 7 € {id;,1; — id;}
because s; € {0,1}. By the same reasoning, there exists 7 € {id;,1; — id;} such that
(Hig)s(x) = (1; ® 1) s(x) provided that (H;q)s(z) = |xe — x|. O
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Next, we determine the form of Ty(1; ® id;). Note that 7 in Lemma 1.34 satisfies that

Ty =17 or —1;, since 7, € {idy, 11 — id;}.
LEMMA 1.35. There exists 7o € {id;, 1; —id;} such that Hiy = 1; ® 5.

PROOF. Let (s,z),(t,y) € I* and m,n € M, and set x, = (s,z,m,2) € X, yen =
&, (t,y,n,w)) €Y, and z,¢, = (X, ¥ew) € Z for each z,{,w € T. By Lemma 1.34, there
exists 7 € {idr, 1y —idr} such that Hyy = 1; ® 7 or Hiy = 7 ® 1;. Arguing by contradiction,
we suppose that H;y = 7 ® 17, and then, (¢; H;q)s(x) = c172(s). It follows from (2.5) that

(c1Hq)(m) = D(c1Hig)i(n) =0 and  D(c1Hig)i(y) = e1ma(t).
Since (4.7) is valid for ¢y Hyy = To(1; ® idy), we get

(4.24) c1a(s) + Eaamy(t) = c102(2g0) + [004 (22 g,0))7 )

for all z,&,w € T. Noting that 75, = 1; or —1;, we set £ = 75(t)i and z = w = i in the last
equality. Then we obtain

Z.

To(8) + 1 = 2(Zi7y(1ii) + €1 [@¢4(Zi,7-é(t)i,i)]sl( im0t € T4 T

Taking the imaginary part of the last equality, we get 1 = Im (c_l [a¢4(ziﬁé(t)i7i)]al(Z@Té(”i’i)),
where we have used 7»(s) € I. Consequently, we have i = c_1[a@(ziﬁé(tﬁ’i)]El(z”é“)i’i). We
deduce from the above equality that 72(s) = ¢2(2i 1)) = P2(Zz0) for any z,§,w € T by

Lemma 1.26. It follows from (4.24) that

(4.25) 79(8) = ¢2(2.60) and  Ecrmy(t) = [hs(Za )] @6

for all z,&,w € T.
Take a real valued function gy € Lip(I)\ C*(I), and set Hy, = To(1; ® go). Having in mind
that go is a real valued function, it follows from (4.7) and (4.25) that

(Hgy)s(w) + (Hgy )s(m)z + ED(Hgy )1(y) + D(Hg, )i (n)w = c1go(72(s)) + c1875(t)90(03(22.0))

for every z,&,w € T. Here, we note that ¢3(z,¢,) is independent from z,§, w € T by Lemma
1.27. Since z,&,w € T are arbitrarily chosen, we get (H,,)s(x) = c190(72(s)). This shows that
9o(8) = go(T2(72(5))) = &1 (Hy,)*(72(s)). Because 1o € {idr, 1; — id;}, we see that go € C'(I)
by Remark 1.23. This contradicts the choice of gy € Lip(I) \ C*(I). Hence, we must have
aTo(ly ®@idr) = Hig =11 ®@ . O

LEMMA 1.36. There exists 7 € {id;, 1; —id;} such that ¢1 Ty(id; @ 17) = 7 @ 1;.
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PROOF. The same arguments in Lemmas from 1.28 to 1.34, applied to ¢ Ty (id; @ 17), there
exists 1 € {idy, 1 —id;} such that ¢; Ty (id; ®1;) = m®1; or ¢ Ty (id; ®1;) = 1@ 7. Suppose
that 1 To(id; ® 17) = 15 ® 73. By Lemma 1.35, ¢1 Ty(1; ® id;) = Hig = 17 ® 7. Since Ty is
injective, we have 1; ® 7y # 1; ® 7, that is, 7y # 7». Having in mind that 7; € {id;, 1; — id;}
for j = 1,2, we conclude that 7 = 1; — 5. Since T5(1) = ¢11 by Lemma 1.25, we derive from

the real linearity of T that
aly(idi®1l)=1;,0n=10(1;—n)=1—-(1;®n)
=aTo(1) —aTy(l;®idr) = To(1 — (1; ®@14dy)),

and thus, &1 To(id; @ 17) =1 To(1 — (1; ®idy)). We see that id; ® 1; =1 — (1; ® id;) because
Ty is injective. Evaluating the last identity at (0,0), we get

0= (id; ®17)(0,0) = (1 — (1; ®id;))(0,0) = 1.
This is a contradiction. Therefore, we conclude that ¢ To(id; ® 17) = 11 ® 15. O

From Lemmas 1.35 and 1.36, we can determine the forms of four maps ¢1, ¢o, ¢4, and .

LEMMA 1.37. Letx = (s,z,m,z) € X,y = (&, (t,y,n,w)) €Y, and z = (x,y) € Z. Then
the following identities hold:

$1(z) = Ti(s), ¢2(z) = 2(z) and
[a¢a(2)]"® = crry(m)z, [t (2)]=? = Earri(t).
PROOF. Set H;y = &1 Ty(1; ® idr). By Lemma 1.35, there exists 7 € {idr, 17 — id;} such
that Hiy = 11 ® 7. Applying (4.7) to H, = c1Hiq = To(1; ® idy), we get
(4.26) (c1Hia)s(z) + (c1Hia)s(m)z + ED(erHia)e(y) + D(erHig)y(n)w
= c1¢5(2) + [agu(2)]1 ).
We note that H;y = 1;®7», and then (¢1 H;q)s = ¢172. We deduce from (2.5) that (¢1 Hiq)', = 175
and D(c1H;q): = D(c1H;q), = 0. Entering these four identities into (4.26), we get
7o(2) + 15(m)z = ¢a(2) + 71 [aga(2)] ).

By the same argument as in Proof of Lemma 1.35, we have mo(z) = ¢2(z) and 75(m)z =

c1 [agy(z)]1@.
Applying the same argument to ¢; Ty (id; ® 17) with Lemma 1.36, we see that 71(s) = ¢1(2)
and [a1)y(2)]72® = &y (). d
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Our next purpose is to determine the form of 4. In order to prove it, we prepare two

lemmas. First, we characterize To(f ® 1;) for f € CY(I).
LEMMA 1.38. Let f € CY(I). For any s,z € I, To(f @ 11)s(z) = a1[f(m1(s))].

PROOF. Let f € C'(I) and we take (s,z),(t,y) € I? and m,n € M arbitrarily. Set
x, = (s,2,m,2) € X, yew = (& (t,y,n,w)) € Y, and z,¢,, = (X,,¥ew) € Z for each
z,&,w € T. We put Gy = Ty(f ® 17). We note that ¢,(z) = 7,(s) and [athy(2)]%2®) = ey7i(t)
by Lemma 1.37. Applying (4.6) to Gy = Ty(f ® 1), we derive from these two equalities that

(4.27) (Gy)s(x) + (Gp)o(m)z + ED(Gp)ily) + D(Gy)i(n)w

= ai[f (1 ()] + Earmi () [f (¢1(2z0)))7 5 e)
for any 2,&,w € T. Because g5 : Z — {41} is a continuous function, the image of T2 under
the map (z,&,w) +— €2(2,¢4) is connected. This implies that €9(2z,¢.,) = €2(2z11,1) for all

z,&,w € T. Also, ¥1(2,¢4) = ¥1(2111) by Lemma 1.27. Since z,&,w € T are arbitrary, we
conclude that To(f ® 17)s(z) = (Gy)s(x) = ar[f(T1(s))]%°. O

Next, we give a sufficient condition for F' € C*(I,Lip(I)) in order that F' = f®1; for some
f € CY(I) in the next lemma.

LEMMA 1.39. Let F € CY(I,Lip(I)). Suppose that D(F),(n) =0 for allt € I and n € M
and that F], =0 on M for some sy € I. Then there exists f € C'(I) such that F = f ® 1;.

PrOOF. We define fy(t) = D(F);(0) for each ¢t € I, and then fy € C(I). By assumption,
we see that D(F'); is a constant on I for every ¢ € I. Tt follows that

D(F)i(y) = D(F)i(0) = fo(t) = (fo® 11)u(y)

for any ¢,y € I, that is, D(F) = fo ® 1;. We define fy : I — C by fi(s) = [; fo(u)du for each
s € I, then f; € CY(I) with f] = fy. Setting G = F — (f; ® 17), we show that G satisfies the
assumptions of Proposition 1.24.

We take z € I arbitrarily. Then
(G7) = (F) = ((h®1)).

Since (F*)" = D(F)* by Remark 1.23, we have (F*) = D(F)* = (fo ® 11)* = fo, and thus,
(F*) = fo. Having in mind that ((f; ® 1;)*) = f{ = fo, we deduce from the above equality
that (G*)’ = 0. Since x € [ is arbitrary, it follows that (G*)" = 0 for any € I. Because
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F; = 0 on M by assumption, we get (F' — f1 ® 17), = F; — fi(s)17 = 0, which shows
that (Gs,)’ = 0 on M for some s; € I. We have proved that G satisfies the assumptions
of Proposition 1.24. Hence, F' — (fi ® 1;) = G = ¢y (1; ® 1;) for some ¢f, € C. Putting
f=fi+cnl,weget F=fi®@1l+cp(l;®@17) = f®1;, and hence, F = f ® 1. O

Let ' € CY(I,Lip(I)) and x = (s,z,m,2) € X,y = (£, (t,y,n,w)) € Y with z =
(x,y) € Z. Since [a]°® = ¢, ¢1(z) = 71(5), $2(z) = 72(z), and [ag4(z)]**® = c175(m)z by
Lemmas 1.25 and 1.37, we derive from (3.15) that

(128)  AF)(2) = alFuw(m@), AUF)(E) = anm)F (és(2)]* .

In the same way, we deduce from (3.16) that

(429) Ao(F)(2) = Earm{(t)[D(F) s () (¥2(2))]*,
Ay (F)(2) = [aD(F)y, ) (¥5(2)) - a(2)] ),

because [a(z)1(2)]2® = &ey7|(t) by Lemma 1.37.

From the previous two lemmas, we can determine the form of Ty (id; ® id;).
LEMMA 1.40. For any s,x € I, we have Ty(id; ® idr)s(x) = c1(m1 @ 12)s(2).

PROOF. Fix arbitrary s € I, and set F' = (id;—7(s)1;)®id; and G = Ty (F'). We first prove
that G = 0 on I. We take t,z,y € I and m,n € M arbitrarily. We put x, = (s,z,m,z) € X,
Vew = (& (t,y,n,w)) € Y, and 2z, ¢, = (Xs,Yew) € Z for each z,{,w € T. We note that

Fl o =0, D) = 1; ®id;, and D<F)2p1(zz§w) = 17 by (2.5). We deduce from (4.28) and

(4.29) that

Ar(F)(Zz60) = D1(F)(Zeg0) = 0, D2(F)(Z60) = Eami(8)42(22 60),
and A/2<F)(Zz,£,w> = [Q¢4(Zz7g7w)}£3(zz,€,w)’

where we have used 15(2.¢,,) € I. It follows from the above four equalities that

A (F) (22 6w) + AI(F)/(Zz,EVw) + Ao (F)(Z26.) + AQ(F),(Zz,EVw)

= 17| () 2(Ze g ) + [004(Z 6 00) |26,

Applying (4.1) to G = Ty(F'), we infer from the above equality that
Gy(z) + Gy(m)z + ED(G)(y) + D(Gi(nw = Earri(ta(Zagw) + [00a(2zg0)] "),
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Suppose that G(xg) # 0 for some xy € I. We deduce from the last equality that
|G(20) + Gi(m)z + E(D(G)ely) — a1y (t)a(22 ) + D(G)i(n)w| =1

for any z,£,w € T. Applying Proposition 1.21 to the last equality, we conclude that G’,(m) =
D(G);(n) = 0, because G4(xg) # 0. Since m,n € M and t € I are arbitrarily chosen, we
see that G satisfies the assumptions of Lemma 1.39. Hence, there exists f; € C*(I) such that
G = f1 ® 1;. We define fo(t) = [e1fi(1(t))]* for each ¢t € I and then fy € C'(I), because
71 € {id;,1; —id;}. Having in mind that 7 (7(¢)) = t for t € I, it follows from Lemma 1.38
and G = f; ® 1; that

To(fa @ 11)ely) = arlfo(n(®)] = f1(t) = (fi @ 11):(y) = Gi(y)

for all ¢,y € I, that is, To(fo ® 1) = G. Note that G = To(F'). Since Ty is injective, we have
fo ® 1y = F. By the choice of F, we see that f; is a nonzero function. Thus we can choose

sp € I satisfying fo(sg) # 0. Then we obtain

0 # fa(s0) = (f2 ® 11)(80,0) = F(s0,0) = 0,

which is impossible. Hence, we must have G; = 0 on [.

By the real linearity of Tj, we get
To(F)s = To((id; — 1 (s)1y) ®idy)s = To(id; ® idy)s — 11(s)To(1; @ idy)s,
and hence,
To(F)s = To(idr @ idy)s — m1(s)To(1r ® idy)s.
Since Ty(1;®id;) = ¢1(1;® 1) for some 75 € {id;, 1; —id;} by Lemma 1.35, we derive from the
above equality that Ty(F)s = Ty(id; ® idy)s — c171(8) 2. Having in mind that To(F)s = Gs =0
on [, we obtain
To(id; ® idy)s — e111(8)12 = 0.

Because s € [ is chosen arbitrarily, we conclude that Ty(id; ® idy)s(x) = ¢1(m71 ® 72)s(z) for

any s,x € I. 0
In the next lemma, we determine the form of 4. Note that 71 in Lemma 1.36 satisfies that

T{ =17 or —1;, since 1y € {id[, 1; — Zd[}

LEMMA 1.41. Letx = (s,z,m,2) € X,y = (&, (t,y,n,w)) €Y, andz = (x,y) € Z. Then
the following identity holds:

[aa(2) = err{(t)my(n)w.
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PrOOF. We put F' = id; ® id; and G = Ty(F). Because G = ¢1(13 ® 73) by Lemma 1.40,
we infer from (2.5) that

(4.30) Gs(x) = 11 (8) (), GL(m) = c1711(8)15(m) and
(4.31) D(G)uly) = erri(t)ma(y), D(G)y(n) = e17i(t)73(n).
We note that 7; € {id;, 1; —id;} and 7} € {17, —1;} for j = 1,2. Entering F' = id; ® id; into
(4.28) and (4.29), we deduce from (2.5) that
(4.32) AL(F)(z) = e111(s) (), AV (F)(z) = e1mi(s)9(m)z  and
(4.33) Ay(F)(2) = Ly (t)ia(2), NY(F)(z) = [aha(2)]*),
where we have used v(z) € I. By (4.30) and (4.32), we notice that Gg(z) = Ay (F)(z) and
G’ (m)z = A (F)(z). Substituting equalities from (4.30) through (4.33) into (4.1), we get
e (t)ma(y) + el (Ds(n)w = Eerri (E)a(2) + [ata(2))),

which implies that 72(y) + Ema(n)w = ¥a(2z) + Ecrm{ (t)[arpa(z)]**®). The argument in Proof
of Lemma 1.35 yields 75(y) = v»(z) and &rh(n)w = Eci7|(t)[arhy(2z)]*@. This implies that
o) () (n)w = [ay(z)]%®). O

We are now in a position to prove Main theorem.

Proof of Main Theorem. Let F' € C'(I,Lip(/)) and we put G = Ty(F). We take
(s,x),(t,y) € I? and m,n € M arbitrarily. For each z,{,w € Z, we set x, = (s,2,m,z2) €
X, Vew = (& (ty,n,w)) € Y, and 2,6 = (X5, ¥ew) € Z. By Lemma 1.41, we have
[thy (2, ¢40) ]2 @ 60) = 17 (¢) Th(n)w. Tt follows from (4.29) that

(4.34) Ao(F)(2260) = £ (O)[D(F) g (s, ) (2(Z2,0))]2Z5) and

AY(F) 7e.) = 1Tl (T DF Yoy o) ({026 0

Applying (4.1) to G = Ty(F'), we derive from (4.28) and (4.34) that

(435) Gu(w) + GLm)z + ED(Oly) + D(GY(mw
= &1[Fry (o) (12(2))]7° + exmy (m) [F), () (03(22 £.00))]7 25 2
+ €T (O [D(F) gy (2 ) (V222 g,00))] 25 6)

_l_ 617—{ (t)Té (TL) [D(F)’/l/)1 (Zz,g,w) (¢3 (Zz7§7w))]a3(zz’£’w)w
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for any z,&,w € T. For each j € {1,2,3}, ¢;: Z — {£1} is a continuous function, and thus
the image of T? under the map (z,&, w) > &;(2,¢.) is connected. This implies that the value
€i(2.¢.w) is invariant with respect to z,&{,w € T. In addition, ¢;(z.¢.) and ©;(z.¢,,) are
invariant with z,&,w € T by Lemmas 1.26 and 1.27 as well. Since z,£,w € T are arbitrarily

chosen, we conclude that Ty(F)s(z) = Gs(v) = c1[Fr (5)(12(2))]°, that is,
Ty(F)(s,2) = ea [ F(ri (5), ma() .

The proof is complete. O
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CHAPTER 2

Exploring new solutions to Tingley’s problem for function algebras

Abstract

In this chapter, we present two new positive answers to Tingley’s problem in certain sub-
spaces of function algebras. In the first result, we prove that every surjective isometry between
the unit spheres, S(A) and S(B), of two uniformly closed function algebras A and B on a
locally compact Hausdorff spaces can be extended to a surjective real linear isometry from
A onto B. In a second goal, we study surjective isometries between the unit spheres of two

abelian JB*-triples represented as spaces of continuous functions of the form
CH(X)={f € Co(X) : f(At) = Af(t) for every (\,x) € T x X},

where X is a locally Hausdorff principal T-bundle. We establish that every surjective isometry
A S(CH(X)) — S(CH(Y)) admits an extension to a surjective real linear isometry between

these two abelian JB*-triples.

1. Introduction

The problem of extending a surjective isometry between the unit spheres of two Banach
spaces— named Tingley’s problem after the contribution of D. Tingley in [74]- is nowadays a
treding topic in functional analysis (see a representative sample in the references [9, 12, 18, 19,
26, 28, 29, 30, 31, 56, 57, 60] and the surveys [59, 78]). This isometric extension problem
remains open for Banach spaces of dimension bigger than or equal to 3 though. In fact, it
has not been until recently that a complete positive solution for 2— dimensional Banach spaces
was obtained by T. Banakh in [2], a result culminating a tour-de-force by several researchers
(cf. [1, 3, 9]).

In recent years, a growing interest on Tingley’s problem for surjective isometries between
the unit spheres of certain function algebras has attracted different specialists to approach
this problem. The pioneering paper by R. Wang [75] inspired many subsequent results. O.
Hatori, S. Oi and R.S. Togashi proved that each surjective isometry between the unit spheres

of two uniform algebras can be always extended to a surjective real linear isometry between
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the uniform algebras (cf. [38]). We recall that a uniform algebra is a closed subalgebra of
C(K) which contains constants and separates the points of a compact Hausdorff space K,
where C'(K) denotes the Banach algebra of all complex-valued continuous functions on K.
This conclusion was improved by O. Hatori by showing that each uniform algebra A satisfies
the complex Mazur-Ulam property, that is, every surjective isometry from its unit sphere onto
the unit sphere of another Banach space E extends to a surjective real linear isometry from A
onto F (see [36, Theorem 4.5])

This chapter is aimed to present our recent advances on Tingley’s problem for some Banach
spaces which are representable as certain function spaces. More concretely, we study Tingley’s
problem in the case of surjective isometry between the unit spheres of two uniformly closed
function algebras. Note that uniformly closed function algebras constitute a strictly wider class
than that given by uniform algebras. Indeed, we begin with a locally Hausdorff space X. Let
Co(X) be a Banach algebra of all complex-valued continuous functions on X which vanishes
at infinity. A wuniformly closed function algebra A on X is a uniformly closed and strongly
separating (i.e. there exist f,g € A such that f(x) # 0 and g(y) # g(z) for each x € X and
y,z € X with y # z) subalgebra of Cy(X). We can obviously regard A as a subalgebra of
C(X U {oo}), where X U {oc} denotes the one-point compactification of X. However, it is
worth observing that, under such an identification, A never contains the constant functions.
Thus, it is not a uniform algebra.

The first main conclusion of this chapter proves that surjective isometry A : S(A) — S(B)
between the unit spheres of two uniformly closed function algebras A and B extends to a
surjective real linear isometry 7' : A — B (see Theorem 2.1). Our arguments are based
on an appropriate use of the Choquet boundary of each uniformly closed function algebra,
the existence of Urysohn’s lemma type properties for this Choquet boundary (as in [32, 54,
65, 66]) and a good description of the elements in the image of A at points in the Choquet
boundary. The proof of the already mentioned result by Hatori, Oi and Togashi in [38] is
inspired by some of Wang’s original tools in [75]. In this chapter, we apply similar techniques,
however, the arguments here provide a different point of view, and are not mere extensions to
the case of uniformly closed function algebras as non-unital versions of uniform algebras.

The second main conclusion of this chapter is focused on the study of Tingley’s problem for
a surjective isometry between the unit spheres of two abelian JB*-triples. As it is well-known,
and explained in the section 3, JB*-triples are precisely those complex Banach spaces whose

open unit ball is a bounded symmetric domain ([43]). A JBW*-triple is a JB*-triple which
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is also a dual Banach space. It has recently shown ([4, 41]) that every surjective isometry
from the unit sphere of a JBW*-triple onto the unit sphere of another Banach space extends
to a surjective real linear isometry between the spaces. Few or nothing is known for general
JB*-triples. The elements in the subclass of abelian JB*-triples can be identified, thanks to
a Gelfand representation theory, with subspaces of continuous functions. Indeed, let X be a
principal T-bundle (i.e. a subset of a Hausdorff locally convex complex space such that 0 ¢ X,
X U{0} is compact, and TX C X, where T = S(C). When X is regarded as a locally compact
Hausdorff space, the closed subspace of Cy(X) defined by

CH(X):={f€Cy(X) : f(hx) = Af(x) for every (\,z) € T x X},

is closed for the triple product {f, g,h} = fgh (f,g,h € C5(X)). In general, CJ(X) is not a
subalgebra of Cy(X). The Gelfand representation theory affirms that each abelian JB*-triple is
isometrically isomorphic to some Cj (X) for a suitable principal T-bundle X (see [43, Corollary
1.11]). These spaces are also related to Lindenstrauss spaces (cf. [58, Theorem12]).

The main conclusion section 3 establishes that each surjective isometry A : S(Cy (X)) —
S(CF(Y)), with X and Y being two principal T-bundles, admits an extension to a surjective
real linear isometry 7' : Cg(X) — Cg(Y) (see Theorem 2.29). This statement is comple-
mented with Lemma 2.26 where it is shown that if T : CJ(X) — Cj(Y) is a surjective real
linear isometry, there exist a T-invariant closed and open subset D C X and a T-equivariant

homeomorphism 7 : Y — X satisfying

T(f)y) = f(r(x)) (f€CG(X), yer (D)) or
T(N)y) = f(r(x)) (f€C(X), yer (X\D)).

Tingley’s problem for surjective isometries between the unit spheres of function spaces

deserves its own attention, and a self-contained treatment.

2. Tingley’s problem for uniformly closed function algebras

Let X be a locally compact Hausdorff space. Along this note we denote by Cy(X) the set of
all continuous complex-valued functions f on X, which vanish at infinity in the usual sense: for
each e > Otheset {z € X : |f(z)| > €} is a compact subset of X. Then Cy(X) is a commutative
Banach algebra under pointwise operations and the supremum norm ||f| = sup,cx |f(z)]
(f € Co(X)). A subset B of Cy(X) is said to be strongly separating, if for each x € X and
y,z € X with y # z, there exist f,g € B such that f(z) # 0 and g(y) # g(2). A uniformly
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closed function algebra A on X is a uniformly closed and strongly separating subalgebra of

Co(X).

For each function f € A the symbol Ran(f) will stand for the range of f. We set Ran,(f) =
{z € Ran(f) : |z| = [|fII} (f € A). A peaking function g for A is a function of A with
Ran,(g) = {1}; that is, if g € A satisfies ||g|| = 1 and |g(z)| = 1 for z € X, then g(x) =1. A
compact subset P C X is called a peak set of A if there exists a peaking function f € A for
which P = {z € X : f(x) = 1}. A subset which coincides with an intersection of a family of
peak sets of A is called a weak peak set of A. A peak point (respectively, a weak peak point)
of Ais a set x € X satisfying that {z} is a peak set (respectively, a weak peak set) of A. The
Choquet boundary or the strong boundary for A, denoted by Ch(A), is the set of all weak peak
points of A. It is shown in [66, Theorem 2.1] (see also [65]) that Ch(A) is precisely the set
of all z € X such that the evaluation functional at the point z, d,, is an extreme point of the
unit ball of the dual space of A (cf. [32, Definition 2.3.7]). It is well known that Ch(A) is
indeed a boundary (norming set) for A; furthermore, Ch(A) satisfies the following properties
(see, for example, [54, Propositions 2.2 and 2.3]):

(1) For each f € A there exists x € Ch(A) such that |f(z)| = || f]];
(2) For each € > 0, z € Ch(A) and each open subset O in X with z € O there exists a peaking
function u € A such that u(x) =1 and |u| < e on X \ O.

The following is the main result of this section.

THEOREM 2.1. Let S(A) and S(B) be unit spheres of two uniformly closed function algebras
A and B, respectively. If A: S(A) — S(B) is a surjective isometry, then there exists a
surjective, real linear isometry T: A — B such that T = A on S(A).

REMARK 2.2. Let T: A — B be a surjective real linear isometry. In [54, Theorem 1.1],
such an isometry 7" was characterized as a weighted composition operator, more concretely,
there exist a continuous function a : Ch(B) — T = {A € C : |\| = 1}, a (possibly empty)
clopen subset K of Ch(B), and a homeomorphism ¢ : Ch(B) — Ch(A) such that

a(y) fle(y) (v € K)
T(f)(y) =

a(y) f(e(y)) (y € Ch(B)\K)
for all f € A.
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NOTATION. Under the previous assumptions, for each f € S(A), we write |f|~(1) for the

set {z € X :|f(z)] = 1}, and we set
My = [77(1) 1 Ch(A4),

For x € Ch(A), we denote by P, the set of all peaking functions f for A with f(z) = 1.
Define AP, = {\f : f € P,} for each A € T. In the same way, we define (), the set of all
peaking functions u for B with u(y) = 1. Here we note that

My ={z€ Ch(A): |f(2)| =1} = {2 € Ch(A) : f(2) = A}
forall f € AP, and A € T.
For each A € T and = € Ch(A), we define
AV, = {f € S(A) - f(x) = A}
We see that AP, C AV,. In the same way, we define uW, = {u € S(B) : u(y) = p} for each

p € T and y € Ch(B).

LEMMA 2.3. Let f,g € S(A) and xg € My. If f(xo) # g(xo), then there exists h € S(A)
such that ||f —h|| =2 > |lg —hl|.

PRrOOF. Note first that |f(xo)| = 1, since zg € My. Set 20 = |f(zo) — g(z0)|, and then
d > 0. Define the open neighborhood O of zyp by O = {z € X : |g(z) — g(z0)| < 6}
Since g € My C Ch(A), there exists u € Py, such that |[u| < 27! on X \ O. We set
h = —f(zo)u € S(A). We have

2= [2f(@o)| = [f (o) = h(wo)| < |If = hl[ <2,
and thus [|f — hl| = 2.

Take an arbitrary x € X. We shall prove that |g(z) — h(z)| < 2. If 2 € O, then we observe
that |g(z) — h(x)| < 2. Indeed, if |g(x) — h(z)| = 2, then g(x) = —h(z) and |h(z)| = 1, since
g,h € S(A). This implies that |u(x)| = |h(z)| = 1. Since u is a peaking function for A, we
obtain u(z) = 1, and hence g(z) = —h(z) = f(zo). Since z € O, we get 26 = | f(x¢) — g(x0)| =
lg(z) — g(z0)| < 0, a contradiction. We have proved that |g(z) — h(z)| < 2 for all z € O.
Suppose now that x € X \ O. Then |u(z)| < 27! Tt follows that

1
l9(2) = h@)| < lg(@)] + [f(zo)u(z)] < 1+ 5 <2.
Hence, |g(z) — h(x)| < 2, and consequently, ||g — h|| < 2. O
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In the rest of this section, we assume that A and B are uniformly closed function algebras
on locally compact Hausdorff spaces X and Y, respectively, and that A: S(A) — S(B) is a

surjective isometry with respect to the supremum norms.
LEMMA 2.4. Let f,g € S(A). If f =g on My, then A(f) = A(g) on May).

PRrOOF. Arguing by contradiction, we suppose the existence of yy € Ma(s) such that
A(f)(yo) # A(g)(yo). Applying Lemma 2.3 to A(f),A(g) € S(B) and yy € Ma(y), we can
choose h € S(A) so that [|A(f) — A(h)| =2 > ||]A(g) — A(h)||, where we have used that A
is surjective. Since A is an isometry, we have ||f — Al =2 > |lg — h[|. Recall that Ch(A) is a
boundary for A, and thus there exists g € Ch(A) with |f(zo) — h(zo)| = 2, and by the other
condition |g(zo) — h(zo)| < 2. Since f,h € S(A), we get |f(xo)| = 1, which implies zy € M.
Consequently, f(xo) # g(zo) for zp € My, which is impossible. O

LEMMA 2.5. Let x € Ch(A), A€ T andn € N. If f; € AP, for each j € N with 1 < j <mn,
then g =n=" 3", f; € A satisfies g € APy with My C (Vj_; M.

PRrROOF. Since f; € AP, for j = 1,2,...,n, then f;(x) = X and ||f;|| = 1 for every
j€{1,2,...,n}. We have

n=|n\ =

D_ L@ < @< YISl =n

Hence, g =n~' 3 7, f; € A satisfies Ag(z) =1=|g].

We shall prove that g € AP,. Suppose that [Ag(2')| = 1 for 2’ € X, and then | Y77, fi(2')| =
n. Since |f;(z')| < 1, it follows that |\f;(2')| = |f;(z")| = 1 for all j € {1,2,...,n}, which
implies that Afj(z’) = 1 because \f; € P,, and thus Ag(z') = 1. This shows that A\g € P,
(consequently, g € AP,) and M, C Nj_, My,. O

The characterization of compactness in terms of the finite intersection property is employed

in our next result.

LEMMA 2.6. The intersection ﬂ lu| =1 (1) is non-empty for all X in' T and x in Ch(A).
u€EAAP,)

PROOF. First, we note that |u|7'(1) is a compact subset of Y for each u € A(AP,). So, by
the characterization of compactness in terms of the finite intersection property, it is enough to

show that N?_,|u;|7'(1) # 0 for each n € N and u; € A(AP,) with j =1,2,...,n.
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Let n € N and u; € A(AP,) for j = 1,2,...,n. Choose f; € AP, so that u; = A(f;), and
set g =n"' Y% | f; € A. We see that g € AP, with M, C N?_; My, by Lemma 2.5. We shall
prove that M, = N}_; My,. Here, we recall that

(2.1) M; = {z € Ch(A) : |f(2)] = 1} = {z € Ch(A) : f(2) = A}

for all f € AP,. Let zg € Nj_, My,. Since f; € AP,, we have fj(zo) = A for all j € {1,2,...,n}
by (2.1). Tt follows that g(zo) = n~' Y 7, fi(xe) = A. Since g € AP,, equality (2.1) shows
that zo € My, and consequently, N7_; My C M,. Therefore, we conclude that M, = N7_, My,

as claimed.

For each z € M, = N7_ My, we have g(z) = A = f;(2), that is, g = f; on M, for
each j = 1,2,...,n. If we apply Lemma 2.4, we deduce that A(g) = A(f;) = u; on Ma.
Then |u;(¢)] = [A(g)(¢)| = 1 for each { € Ma(y), and consequently N7, |u;|~'(1) # 0, as

claimed. ]

We explore next the intersection of the non-empty set in the previous lemma with the

Choquet boundary of B.

LEMMA 2.7. The intersection Ch(B) N ﬂ lu|7'(1) | is non-empty for each A € T
uEA(AP;)
and each x € Ch(A).

PROOF. Let A € T and © € Ch(A). There exists yo € Nueapr,)|u/ (1) by Lemma 2.6.
Take an arbitrary v € A(AP,) (in particular, |u(yo)| = 1 = ||ul|). Define the function @ € B
by

ily) = (uluo) w(v) + ul)uly)) /2, (y €Y).

We observe that @ € @Q),,. Namely, 1 = a(yo) < ||a|| <1, and thus @ € W,,,. Suppose now that

[i(y)| = 1 for some y € Y, and then |u(yo)u®(y) + u(y)| = 2. Tt follows that

2 < Ju(yo)u® ()| + |u(y)| <2,

which shows that |u(y)| = 1. Hence it follows from |u(yo)u?(y)+u(y)| = 2 that |u(ye)u(y)+1| =
2, and consequently u(yo)u(y) = 1. This implies that @(y) = 1, and we have therefore proven
that @ € Q,,. We see that (@)~!(1) is a peak set for B with

(@) (1) = u™ (u(yo)) C |ul (D).
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By the arbitrariness of u € A(AP,), we get yo € Nueapp,)(@) 7' (1). It is known that every non-
empty weak peak set for B contains a weak peak point, that is, Ch(B)N (mueA(APz) (11)_1(1)) # ()
(see, for example, [54, Proposition 2.1]). This shows that

Ch(B) N (Nueaprnlul (1)) # 0.
The proof is complete. O
In the next result, we replace AP, with AV,.
LEMMA 2.8. The intersection Ch(B) N ﬂ lv|"1(1) | is non-empty for each A\ € T

vEA(AV,)
and each x € Ch(A).

PROOF. By Lemma 2.7, there exists y € Ch(B) N (ﬂueA(/\Px) |u|_1(1)>. Take an arbitrary
v € A(AV,). We shall prove that |v(y)| = 1. Let f € AV, be such that A(f) = v, and then
f(x) = X and ||f|| = 1. Define the function f € S(A) by

f(2) = V' F2(2) + M f(2))/2, (2 € X).
We see that f € P, with
Mj={z € Ch(A) : |f(z)| =1} = {z € Ch(A) : f(z) = A}.

Recall that M; = {z € Ch(4) : f(z) = 1}, since f € P,. For each z € Mj, we have
M(2) = XA = f(z), and thus Af = f on Mj; = M,;. Lemma 2.4 shows that

AAf)=A(f) on Muiajy:

Since Af € AP,, we obtain |A(Af)(y)| = 1, that is, y € Mu(\j)- It follows that v(y) =
A(f)(y) = AA)(y), and consequenlty, [v(y)| = |AAf)(y)| = L. Hence y € |v[7}(1). We
conclude from the arbitrariness of v € A(AV,) that y € Ch(B) N (Nueapwvy)|v]71(1)). O

We determine next the behaviour of A on sets of the form A\P,.

LEMMA 2.9. For each (A, xz) € T x Ch(A), there exists a couple (u,y) in T x Ch(B) such
that A(AP,) C pWW,.

PROOF. Let us fix A € T and # € Ch(A). By Lemma 2.8, there exists y € Ch(B) N
(Nweawvy)lv|7H(1)). For each f € AP, we have |A(f)(y)] = 1 by the choice of y. Since
f € AP, C S(A), we obtain ||A(f)|| = 1. Hence, A(f) € uW, with = A(f)(y) € T.
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Now, we prove that A(f)(y) = A(g)(y) for all f,g € AP,. Set h = (f +¢)/2 € A, and then
h € AP, by Lemma 2.5. We observe that

My, = h™Y(A) N Ch(A4) = £ (\) N g ' (\) N Ch(A),

since f,g,h € AP,, where k™'(\) = {z € X : k(z) = A} for k € AP,. Therefore, we have
f =h=gon M, We derive from Lemma 2.4 that A(f) = A(h) = A(g) on Ma. Since
A(h) € A(NV;), we get |A(h)(y)| = 1 by the choice of y. Thus, y € Ma), and consequently
A(f)(y) = Alh)(y) = Alg)(y)-

The above arguments show that A(f) € uW, for all f € AP,, where p = A(f)(y) is
independent of the choice of f € AP,. This shows that A(AP,) C puW, for some p € T and
y € Ch(B). O

LEMMA 2.10. For each (A, x) € T x Ch(A), there ezists a couple (p,y) in T x Ch(B) such
that A(A\V,) C puW,,.

PROOF. Fix A,z as in the statement. By Lemma 2.9, there exist u € T and y € Ch(B)
such that A(AP,) C uW,. Let v € A(AV,). We shall prove that v € pWW,. Let f € AV, be
such that A(f) = v. Define the function f € A by

~ _2 —
fz) = (N f2(2) + Mf(2))/2, (2 € X).
We see that f € P, with
Mj = {z € Ch(A) : f(z) =1} = f~'(A) N Ch(A).

For each z € My, we have M(2) = X = f(2), and hence A\f = f on Mj; = M,;. Lemma 2.4
shows that A(Af) = A(f) on My, 5. Since f € P, we have A(Af) € AAP,) C uW,,.
Thus A(Xf) € pW,, that is, A(Af)(y) = p. This implies that |A(Af)(y)| = 1, which yields
y € Mu(,5)- Therefore, v(y) = A(f)(y) = A f)(y) = p, and consequently v € uW,. This
shows that A(AV,) C uW,,. O

We shall discuss next the uniqueness of the couple (i, y) in previous lemmas.

LEMMA 2.11. If AV, C X'V, holds for some A\, N € T and x,z" € Ch(A), then A = X and

z=ua.

PROOF. Suppose, on the contrary, that © # z’. There exists f € P, C V, such that
|f(z")] <1 (cf. the properties in page 45). Then Af € AV, \ (N'Vy), since |Af(2’)| < 1. This
contradicts AV, C N'V,.. Hence, we obtain = = 2/, and thus AV, C X'V, by the hypothesis.
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For each g € V,,, we have A\g € X'V, which shows that A = Ag(x) = X. We thus conclude that
A=\, O

LEMMA 2.12. For each (A, x) € T x Ch(A), there exists a unique couple (p,y) in T x Ch(B)
such that A(AV,) = uW,.

PROOF. Let us fix A € T and = € Ch(A). By Lemma 2.10 there exist © € T and y € Ch(B)
such that A(AV,) C pW,. Another application of Lemma 2.10, with p € T, y € Ch(B) and
A~ shows the existence of N € T and 2’ € Ch(A) such that A~ (uW,) C N'V,s. Thus, we
have A(AV,) C puW, C A(NV,), and hence AV, C N'V,,. Therefore, we obtain A = X and
x = 2’ by Lemma 2.11, which shows that A(AV,) = uW,,.

Suppose that A(AV,) = (/W for some p' € T and ¢y € Ch(B). Then pW, = A(AV,) =
W'W,, and hence pW, = p/'W,,. Lemma 2.11 shows that ¢ = ' and y = 3/, which proves the
uniqueness of ¢ € T and y € Ch(B). O

We are now in a position to define the key functions describing the behaviour of A on sets
of the form \V,.

DEFINITION 2.13. By Lemma 2.12, there exist well-defined maps a: T x Ch(A) — T and
¢: T x Ch(A) — Ch(B) with the following property:
A()\Vx) = Oz()\, I)W(ﬁ()\’x) ()\ €T, x e Ch(A))

Our next goal will consist in isolating the key properties of the just defined maps.

LEMMA 2.14. For each p, 1 € T and y,y' € Ch(B) with y # v', there exist & € pQ, and
¥ € 1'Qy such that ||i — || < V2.

PRrROOF. Choose disjoint open sets O,0" C Y so that y € O and iy € O'. There exist
o € pQy and ¥ € p'Q, such that |4] < 1/3on Y \ O and [9] < 1/3 on Y \ O'. For z € O,
we have [i(2) — 0(2)] < 14+ 1/3 < /2, since ON O = (. For = € Y \ O, we obtain
i(z) — 9(2)] < 1/3 4+ 1 < /2 by the choice of 4. We thus conclude ||& — 9|| < V2, as is

claimed. ]
LEMMA 2.15. If A € T and v € Ch(A), then ¢(\,z) = ¢(—\, ).

PROOF. Let A € T and = € Ch(A). We set u = a(\x), ¢/ = a(=\z), y = ¢(\, z) and
Yy = ¢(=\,x). Then A(AV,) = pW, and A((—A)V,) = 'W,,. Suppose, on the contrary, that
y # y'. Lemma 2.14 assures the existence of & € u@, and @ € ¢/Q, such that || — || < v/2.
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By the choice of @ and 0, we see that A~ () € A~ (uQ,) C A~ (uW,) = AV, and A~(v) €
A Y uW'Wy) C (=A)Ve. Then A7 (a)(z) = X and A~(0)(z) = — A, and therefore

2 =2\ = [A7(@)(z) — AT(@)(2)] < [[ATH (@) — ATHO)|
= |la - 3|l < V2,
which is a contradiction. Consequently, we have y = ¢/, and hence ¢(\, x) = ¢(—\, z). O

LEMMA 2.16. If A € T and x € Ch(A), then ¢p(\,x) = ¢(1,z); hence, the point ¢p(\, x) is
independent of the choice of A € T.

PROOF. Let A € T and z € Ch(A). Set u = a(\z), ¢ = a(l,z), y = ¢(\,z) and
y' = ¢(1,2). Then A(NV,) = puW, and A(V,) = p/W,,. We shall prove that y = y'. Suppose
that y # . Under this assumption, there exist @ € puQ, and ¥ € 'Q, such that ||a— || < v/2
(cf. Lemma 2.14). By the choice of % and v, we obtain A™!(u) € AV, and A~'(9) € V,. Thus
A (@)(z) = A and A~ (9)(2z) = 1. If Re A < 0, then |\ — 1| > /2, which shows that

V2 <A =1 = A7 (w)(x) = AN (0)(@)] < |ATHu) = AN )
= lju vl < V2

We arrive at a contradiction, which yields y = 3/ if Re A < 0. Now we consider the case when
ReX > 0. Note that ¢(—\,z) = ¢(\,z) = y by Lemma 2.15. Hence, A((—\)V,) = vV, for

some v € T. Since Re(—\) < 0, the above arguments can be applied to A((—=\)V,) = vW,,
and A(V,) = /W, to deduce that y = y'. Then we get y =y even if Re A > 0. d

DEFINITION 2.17. By Lemma 2.16, we may and do write ¢(\,x) = ¢(z). We will also
write a(A, z) = a,(\) for each A € T and x € Ch(A). Then we obtain

(2.2) AAV,) = au(MWy@ (A €T, z € Ch(A)).

The arguments above can be applied to the surjective isometry A~! from S(B) onto S(A).
Then there exist two maps 5: T x Ch(B) — T and ¢: Ch(B) — Ch(A) such that

(2.3) AT (pWy) = By(mVa)  (n €T,y € Ch(B)),

where 8, (u) = B(u,y) for each o € T and y € Ch(B). We may regard «, and (3, as maps from
T into itself for each x € Ch(A) and y € Ch(B).

LEMMA 2.18. The maps a,: T — T, for each x € Ch(A), and ¢: Ch(A) — Ch(B) are
both bijective with o' = By and ¢t = 1.
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PROOF. Let x € Ch(A). We will prove that «, and ¢ are injective. Take A € T arbitrarily.
If we apply (2.3) with p = a,(\) and y = ¢(x), then we get

A7z (N W) = B (e (M) Vo) -

Combining the equality above with (2.2), we obtain

Ao = A o (M We) = Boge) (@) Vo) -

Lemma 2.11 shows that A = By (az())) and x = 9(é(x)); since A € T is arbitrary, the first
equality shows that « is injective. The second one shows that ¢ is injective, since x € Ch(A)
is arbitrary.

Now we prove that «, and ¢ are both surjective. Let u € T and y € Ch(B). Applying

(2.2) with A = B,(1) and @ = (y), we get A(By(1)Viw) = ) (By(1)) W) The last
equality, together with (2.3), shows that

Wy = i) (By (10)) W ) -

According to Lemma 2.11, we have

(2.4) 1= ayy) (By (1))

and y = ¢(¢(y)). Since y € Ch(B) is arbitrary, the second equality shows that ¢ is surjective.
Then there exists ¢~': Ch(B) — Ch(A). We obtain ¢(¢~(y)) = y = ¢(¥(y)), which yields
¢ *(y) = ¥(y). We conclude, from the arbitrariness of y € Ch(B), that ¢~ = . Since 1 is
bijective with ¢~! = ¢, for each & € Ch(A) there exists y € Ch(B) such that x = ¥ (y). By
(24), 1 = ayu)(By(1)) = az(Be@) (1)) holds for all 4 € T. This implies that o, is surjective
for each x € Ch(B). There exists a ', and then o, (o' (1)) = p = o (Bp@) (1)) for all p e T.
This shows that a; ' = By, for each z € Ch(A4). O

LEMMA 2.19. For each x € Ch(A), the map a,: T — T is a surjective isometry.

PROOF. Let z € Ch(A) and Aj, Ay € T. Note that A(ANf)(d(z)) = a(N) for all A € T and
f €V, by (2.2). For each f € V,, we have

laz (M) — ax(X2)| = [ANLf)(0(2) — A(Aaf)(e(x))]
< NAALS) = AN = A f = Ao f]|
- |)\1 - )\2'
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Hence, |a, (A1) — az(X2)] < |\ — Xo|. By applying the same argument to A~ we observe
that /3, also is a contractive mapping. Having in mind that o' = B4() (cf. Lemma 2.18), we

obtain that o, and ) are surjective isometries on T. 0

Fix x € Ch(A). Since o, : T — T is a surjective isometry on the unit sphere of the complex
plane, and Tingley’s problem admits a positive solution in this case, a, admits an extension

to a surjective real linear isometry on C, therefore one of the following statements hold:
(2.5) ap(A) = az(1)\ for all A € T, or a,(\) = (1) for all A € T.
One final technical result separates us from the main goal of this section.

LEMMA 2.20. Let f € S(A) and zo € Ch(A) be such that |f(xo)] < 1. We set A\ =
f(xo)/|f(xo)| if f(zo) # 0, and A = 1 if f(xg) = 0. For each r with 0 < r < 1, there exists
gr € Vi, Such that

rf+ @ =r|f(zo))Agr € AVay.

PROOF. Note first that 1 — |f(zo)| > 0. We set

FF{“"EX:UU f(zo)l = HNO}
<

Fo= e x: IO < )~ pio) 1"2“”30)'}

for each m € N. We see that F, is a closed subset of X with zq ¢ F,, for all n € NU{0}. Since
xo € Ch(A), there exists f,, € Py, such that

11—
1 — 7| f(o)]
for each n € NU{0}. We set g, = fo> ., f»/2". Having in mind that the series converges in

(2.6) |fn] < on I,

A from the choice of f,,, we observe that

Ifall

1= gr(z0) < [lgll < [ ol Z

and hence g, € V,,. Set h, =rf+ (1 —r|f(zo)|) g, € A. We shall prove that h, € A\V,,. Since
gr(zg) = 1 and f(xg) = |f(x)|A, we have h,(xg) = A. Take x € X arbitrarily. To prove that
|h-(z)] <1, we will consider three cases. If = € Fp, then (2.6) shows that

|fn 1—7"
(ol = ol Z = T lf Gl

We obtain
|he(2)] < vl f(2)] + (1 =r[f(zo) )| Agr(z)| <7+ (1 —7)=1.
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Hence, |h.(z)| < 1if x € Fp.

Suppose that € F,, for some m € N. Then |f(z) — f(zo)] < (1 — |f(x0)])/2™ by the
choice of F,,. We get

1- |f(950)|

27) @) < ool + 5 = (1= ) )] + 55

We derive from (2.6) that

19:@)] < |fola) (’f’” 30 )] )

n#m
- 1 1—r 1 1
2m 1 —r[f(xo)] am

It follows that

2.8) (1= @)D (@)] < -t 4 (1= =) (1 = r|f (o).
2 2

We infer from (2.7) and (2.8) that
o ()| < 7| f ()] + [(1 = 7[f (20) ) Agr ()]

(1= 0 ) 1ol + g 2D (1= 00) (=il
—1,

and hence, |h,.(z)| <1 for z € U2, F,,.

Now we consider the case in which z ¢ UX (F,,. Then x € N (X \ F,), which implies
that f(x) = f(zo). We have

e (@)| < 7l f(zo)| +1 = r|f(z0)] =1,
and we thus conclude that |h(z)| < 1 for all z € X, and consequently h, € AV,,. O
We have already gathered the tools to prove Theorem 2.1.

PROOF OF THEOREM 2.1. Let f € S(A) and y € Ch(B). To simplify the notation we set
r=1(y) and A = f(x)/|f(z)] € Tif f(x) # 0, and A = 1 if f(x) = 0, where ) = ¢~! as in
Lemma 2.18. We first prove that |A(f)(y)| = |f(z)]. If |f(z)| = 1, then f € AV, and thus

AN W] = AN(0())] = [ea(N)] = 1 = |f(2)]
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by (2.2). We need to consider the case when |f(z)| < 1. By Lemma 2.20, there exists g, € V,
such that h, =rf + (1 —r|f(x)])A\g, € AV, for each r with 0 < r < 1. We obtain

[ = flI = [[(r = 1) f + (L = 7r[f(@)]) Agr|
<A =r)+1=rlfl@)=2-r—r|fz)
Since h, € AV, we have A(h,)(y) = A(h,)(¢(x)) = a,(A) by (2.2). Therefore, we get

1= AN )] = [N = A W)] < faw(X) — A()(Y)]
= [A(h)(y) = A(F) ()]
< [[A(h:) = AN = 17 = £l
<2—r—r|f(z)].

Since r with 0 < r < 1 is arbitrary, we get

(2.9) L=[A(NW)] < lax(A) = AN < 1= [f(@)],

which shows that |f(z)] < |A(f)(y)] = |A(f)(¢(x))|. By similar arguments, applied to A~*
instead of A, we have |u(y)| < |A7 ' (u)(x(y))| for all w € S(B). In particular, |A(f)(y)| <

[ATHA)) (W (y))] = [ f(2)], and consequently
AN W) = 1f((y))], for all y € Ch(B), f € A.
Next, we shall prove that
(2.10) AF)() = V().

Since |A(f)(y)| = | f(x)|, we need to consider the case when A(f)(y) # 0. It follows from (2.9)
that

1= Jaa (V)] < fee (V) = A W) + A W)]
<A =[f@)+1f=)] =1,
which shows that
()] = laz(A) = A W)+ [A) )]

By the equality condition for the triangle inequality, there exists ¢ > 0 such that a,(\) —
A(f)(y) = tA(f)(y). Hence, we have A(f)(y) = a,(A)/(1 +t). On the other hand,

@I =180 = 52 - 13

L+t 14t
which yields A(f)(y) = ax(M)[f ()]
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Now, having in mind (2.5), we define two subsets K, and K_ of Ch(A) by
K, ={x € Ch(A) : az(\) = a,(1)A, for all A}, and
K_ = {x € Ch(A) : a,(\) = a,(1)\ for all A}.
We see that Ch(A) is the disjoint union of K, and K_ (cf. (2.5)). Recall that A = f(z)/|f(z)]
if f(z) #0,and A =1if f(z) = 0. We derive from (2.10) that

a (1) f(z), ifz € Ky
A(f)(y) = ax(MIf(@)] =

a (1) f(z), ifz e K_.

Setting L, = ¢ (K, ) and L_ = ¢~ }(K_), we infer from the above equality with z = ¥ (y)
that

) (DY), ify € Ly

gy (1) f((y)), ify € L.

It follows from the bijectivity of ¢ that Ch(B) is the disjoint union of L, and L_. Consider

(2.11) A(f)(y) =

finally, the positive homogenous extension T: A — B defined by

I
o HgHA( ) fge A {0}

gl
0, it g=0.

The identity in (2.11) shows that

aye)(Dg(¥(y)), ifye Ly
(212) T(9)(y) = (gcA).

ayy)(1gW(y)), ifye L.
For each h € B\ {0}, we put hy = h/||h|| € S(B). We derive from the surjectivity of A that
ho = A(go) for some gy € S(A). Set g = ||h||go, and then, it follows from ||g|| = ||h|| that

T(g) = llgllAalg/llgl) = [P Algo) = h-

Hence, T is surjective. Choose ¢1,¢g2 € A. Since ¢ : Ch(B) — Ch(A) is bijective, we infer
from the previous identity (2.12) that

1T(g91) = T(g2)ll = sup [T(g1)(y) —T(g2)(y)| = sup |g:(¥(y)) — g2(+(v))]
yeCh(B) y€Ch(B)

= sup [g1(z) — ga2(2)] = [lg1 — g2,
z€Ch(A)
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where we have used that Ch(B) and Ch(A) are norming sets for B and A, respectively in the
first and fourth equalities (see page 45). Therefore, we see that T is a surjective real linear

isometry by the Mazur—Ulam theorem [32, p8, Theorem 1.3.5]. O

The final argument in the proof of Theorem 2.1 can be also deduced from [57, Lemma 6] or
[25, Lemma 2.1], the identity in (2.11) and the fact that Choquet boundaries are boundaries,

and thus norming sets.

Although we do not make any use of the maximal convex subsets of the unit sphere of a
uniformly closed function algebra, nor of the deep result asserting that a surjective isometry
between the unit spheres of two Banach spaces maps maximal convex subsets to maximal
convex subsets (see [14, Lemma 5.1] and [70, Lemma 3.5]), the conclusion in [71, Lemma 3.3]
(see also [38, Lemma 3.1]) can be applied to deduce that every maximal convex subset C of
the unit sphere of uniformly closed function algebra A on a locally compact Hausdorff space

X is of the form
C=XNV,={feS(A): f(x) = A},

for some A € T and x € Ch(A) (this can be compared with [38, Lemma 3.2]).

3. Tingley’s problem for commutative JB*-triples

Despite of having their own worth to be studied as important function spaces, there exist
certain function spaces which are not given solution to their Tingley’s problems. One example
appears in the Gelfand representation for commutative JB*-triples. As a brief introduction,
we shall mention that these complex spaces arose in holomorphic theory in the study and clas-
sification of bounded symmetric domains in arbitrary complex Banach spaces. These domains
are the appropriate substitutes of simply connected domains to extend the Riemann mapping

theorem to dimension greater than or equal to 2 (cf. [43] or the detailed presentation in [11,
§5.6]).

For the sake of brevity, we shall omit a detailed presentation of the theory for general
JB*-triples. However, it is worth recalling that the elements in the subclass of commutative
JB*-triples can be represented as spaces of continuous functions by the Gelfand theory of JB*-
triples for the purpose of this note (cf. [43], [79], [8, §3], [10, §4.2.1]). Indeed, let X be a
subset of a Hausdorff locally convex complex space such that 0 ¢ X, X U{0} is compact, and
TX C X, where T :={X € T : |A\| = 1}. Let us observe that under these hypotheses, Az = uz
for x € X, A\, u € T implies A = . The space X is called a principal T-bundle in [43].
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A locally compact T,-space is a locally compact Hausdorff space X together with a contin-
uous mapping T x X — X, (A, z) — Az, satisfying A(uz) = (Ap)z and 1z =z for all A\, u € T,
x € X. Each principal T-bundle is a locally compact T,-space. We can extend the product
by elements in T to the one-point compactification X U {w} of X by setting Aw = w for all
A € T. We now consider the following subspace of continuous functions on a locally compact

T,-space X
Cy(X) :={a € Cy(X) : a(Mt) = Aa(t) for every (\,t) € T x X}.

We shall regard CJ (X) as a norm closed subspace of Cy(X ) with the supremum norm. We ob-
serve that every Cy(L) space is a Cj (X) space (cf. [58, Proposition 10]). However, there exist
examples of principle T-bundles X for which the space Cj(X) is not isometrically isomorphic
to a Cy(L) space (cf. [43, Corollary 1.13 and subsequent comments]). Cg (X) spaces, with X a

locally compact T,-space, are directly related to Lindenstrauss spaces (see [58, Theorem 12]).

Let us now fix a locally compact T,-space X. We denote by (C{(X)*); the closed unit ball
of the dual space of Cj (X). Although CJ(X) need not be a subalgebra of Cy(X), it is closed
for the triple product defined by {f,g,h} = fgh for f,g,h € CF(X). We shall write flll = f,
B = {f, £, f} and 21 = {f f, f»=U} for all natural n. For each € X, the mapping
6z + Ci(X) — C defined by 6,(f) = f(z) for f € C;(X) is a bounded linear functional in
(CE(X)*);. According to the Arens—Kelley’s theorem ([32, Theorem 2.3.5]), we see that &; for
each ¢t € L is an extreme point of the closed unit ball of the dual space of Cy(L). However, this
is not always true in the case of Cj (X). For example, if xy € X satisfies that zq € (T \ {1})zo,
that is, there exists A9 € T \ {1} such that d,, = Aod,,, then it is easy to check that 6,, =0
as a linear functional in (Cj (X)*);. By [58, Lemma 11], the extreme points of (Cj (X)*); are

precisely those d,, which are non-zero, that is,

(3.1) ext(Cy (X)) = {0, : v ¢ (T\ {1})z}.

We note that the set ext(Cy (X)*); is norming and a kind of Chouet boundary for CJ (X).
Those complex Banach spaces called JB*-triples are precisely the complex Banach spaces
whose unit ball is a bounded symmetric domain, and were introduced by W. Kaup in [43]
to classify these domains, and to establish a generalization of Riemann mapping theorem in
dimension > 2. A JB*-triple is a complex Banach space F admitting a continuous triple
product {-,-,-} : E x E x E — FE, which is symmetric and linear in the outer variables,

conjugate-linear in the middle one, and satisfies the following axioms:
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(a) L(a,b)L(z,y) = L(x,y)L(a,b) + L(L(a,b)x,y) — L(z, L(b,a)y), for all a,b,z,y in E,
where L(a, b) is the operator on F given by L(a,b)x = {a,b,z};

(b) For all @ € E| L(a,a) is a hermitian operator with non-negative spectrum;

(¢) |{a,a,a}|| = ||al]?, for all a € E.

The class of JB*-triples includes all C*-algebras and all JB*-algebras (cf. [43, pages 522, 523
and 525]).

A JB*-triple FE is called abelian or commutative if the set {L(a,b) : a,b € E} is a com-
mutative subset of the space B(E) of all bounded linear operators on E (cf. [43, §1], [10,
§4.1.47] or [34, §4] where commutative JB*-triples are called “associative”). Despite of the
technical definition, every commutative JB*-triple can be isometrically represented, via a triple
isomorphism, that is, a linear bijection preserving the triple product as a space of the form
CJ(X) for a suitable principal T-bundle X (see [43, Corollary 1.1], [10, Theorem 4.2.7], see
also the interesting representation theorems in [33, §3] and [34, §4]).

Let X and Y be two principal T-bundles. Each surjective complex linear isometry 71" from
CH(X) onto CJ(Y) is a triple isomorphism (i.e., it preserves the triple product seen above).
Furthermore, that is the case, if and only if, there exists a T-equivariant homeomorphism
oY — X (e, ¢(As) = Ap(s), for all (A,;s) € T xY) such that T'(f)(s) = f(¢(s)), for
all s € Y and f € Cj(X) (see [43, Proposition 1.12]). That is, surjective linear isometries
and triple isomorphisms coincide, and they are precisely the composition operators with a

T-equivariant homeomorphism between the principle T-bundles.

In some of the result of this section, we can apply tools and techniques in the theory of
general JB*-triples. However, since the commutative objects of this category admit a concrete
representation as function spaces, we strive for presenting basic arguments which do not require

any knowledge on the general theory.

Our next goal will consist in determining the explicit form of all real linear isometries
between CJ (X) spaces for principal T-bundles (i.e. abelian JB*-triples), a description which
materializes and concretizes the theoretical conclusions for real linear surjective isometries on
C*-algebras and JB*-triples in [16, 21].

We recall a fundamental property of CJ(X). Let u denote the unit Haar measure on T.
For each f € Cy(X), we consider a function 7p(f) : X — C defined by

me(£)0) = [ A fO0du. (€ X).
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It is known that 7p is a contractive projection of Cy(X) onto Cj (X) (cf. [58]).

REMARK 2.21. Suppose X is a locally compact T,-space. Let W be a T-invariant open
neighbourhood of ¢y, in X which is contained in a compact T-invariant subset. We consider

the following continuous function
T{to} U (X\W) = C,

Mo — A, and ¢t — 0 for all t € X\W.

Find, via Tiezte’s theorem, a continuous function h € Co(X) extending the previous mapping.
Let h = mp(h) € CT(X). It is easy to check that h(ty) = 1 and h(t) = 0 for all t € X\W.
Clearly, h € S(C§ (X)) and h(\tg) = X for all A € T. This construction, which was already
considered in [58, Proof of Lemma 11], is a kind of Urysohn’s lemma for C{(X) spaces, and

will be employed along this section.

In order to determine the form of all real linear isometries between Cj (X) and Cj (Y), we
prepare some lemmas. First, we prove that if x1, 25 € X such that T{z;} N T{zy} is empty,
then we can choose some T-invariant open neiborhood W of x; which is contained in a compact
T-invariant subset with W C X \ T{x2}.

LEMMA 2.22. Let 1 € X and K a compact T-invariant subset of X such that T{z1} N K
is empty. Then there exists a T-invariant open neiborhood W of x1 which is contained in a

compact T-invariant subset such that W C X \ K.

PROOF. Since X is a locally compact Hausdorff space and K is a compact subset, we can
choose an open neighborhood V; of 7 such that V C cl(Vp) € X \ K and cl(Vf) is compact,
where cl(V4) denotes the closure of V. We note that T{z;} C TV,. For each A € T, we
define a map o) : X — X by oy(z) = \x for z € X. Having in mind that o) : X — X
is continuous for each A\ € T, we infer from oy(o\(z)) = © = o\(ox(z)) for any x € X that
oy is a homeomorphism on X. Hence, AVy = 0,(Vp) is an open neiborhood of A\x;. We put
W = TVp, and then, we infer from W = TVy = |J,.p AVo that W is an open neiborhood
of 1. Put V; = cl(Vp), and then, V; is compact by the choice of Vj. Because the mapping
o: T x X — X, defined by (A, x) = Az for (A\,z) € T x X, is continuous and T x V; is a
compact subset of T x X, we deduce from TV} = o(T x V;) that TV; is a compact subset of
X. Since K is a compact T-invariant subset of X, we derive from V; = cl(V) C X \ K that
TV; € X\ K. We note that V5 C V3 and W = TV,. Therefore, we conclude that W is an
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T-invariant neiborhood of x in X with W C X'\ K which is contained in a compact T-invariant

subset TV; of X. O

LEMMA 2.23. Let X be a principal T-bundle. We define Tx : X — ext(Cg(X)*); by
Tx () = 0, (x € X).

Then the mapping Tx is a homeomorphism from X onto ext(Cy (X)*); with the relative weak’-

topology.

PrROOF. By the assumption that X is a principal T-bundle, we note that X is a locally
compact T,-space. Because Az = px for x € X A\, u € T implies A = u, we see that x ¢ T\ {1}z
for all x € X. It follows from (3.1) that

(3.2) ext(CT(X)*), = {0, : =€ X}

Hence, the map 7x : X — ext(Cy (X))* is well-defined and surjective.

We prove that 7y is injective. Choose z,y € X with  # y and fix them. If x = \gy for
some A\ € T\ {1}, then we infer from Remark 2.21 that there exists h € S(Cj (X)) such that
h(y) = 1. Having in mind that z = Aoy and h(Aoy) = Aoh(y), we get

5.(h) = h(x) = h(Aoy) = Ao # 1 = hly) = 6,(h).

and thus, 7x(z) = 0, # 6, = 7x(y). Next, we assume that = ¢ T{y}. Then T{z} N T{y} is
empty. Since T{y} is a compact T-invariant subset of X such that T{z} N T{y} is empty, it
follows from Lemma 2.22 that we can choose an T-invariant open neiborhood W of x which is
contained in a compact T-invariant subset such that W C X \ T{y}. Applying Remark 2.21
to T{z} with W, we can choose h € S(CJ (X)) such that h(x) = 1 and h(y) = 0. This implies
that
0q(h) = h(x) =1 # 0 = h(y) = 6,(h),

and hence, 7x(z) = 6, # 8§, = 7x(y). Therefore, we observe that 7x : X — ext(Cy (X))
injective.

Finally, we prove that 7 : X — ext(CF(X)*); and 7' : ext(CT(X)*); — X are continu-
ous. Take any element z € X and net {x, },er which converges to z. For all f € C7(X), we
have

i 7 (2,) (/) = lim 3., (7) = lim f(2-) = f(2) = 6,(7) = mx(@)()
We derive from the definition of the weak*-topology that lim,ep 7x(z,) = 7x(x). Hence,

x :+ X — ext(Cy(X)*); is continuous. On the other hand, we take §, € ext(Cy(X)*);
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arbitrarily. Let {d,, },er be a net which converges to 8, € Cj (X)* with respect to the relative
weak*-topology. By the definition of the weak*-topology, we have

(33 lim /() = Lime,, (/) = 0.(/) = /(@)

vyel

for every f € Cj(X). Having in mind that Cj(X) strongly separates the points of X by
Remark 2.21, we deduce from [42, Proposition 2.2.14] that the topology of X is equivalent to
the weak topology induced by {f : f € Cy(X)}, and thus, it follows fron (3.3) that =, — =

1

with respect to the original topology in X. Therefore, we conclude that 7y~ is continuous.

The proof is complete. l

Next, we explore the correspondence between Cj (Y)* and C; (X)* induced by a surjective
real linear isometry 7" between C{(X) and Cj(Y), where X and Y are principal T-bundles.
Because T : Cy(X) — C§(Y) is not necessarily complex linear, the adjoint operator T* :
CI(Y)* — CJ(X)* is not well-defined. In place of T*, we define T, : Cf (Y)* — CJ(X)* by

(3.4) T.(n)(f) = Re(n(T(f))) — iRe(n(T(if))) (n€ Co(Y)", f € Cy(X)).

It is well known that T, : CJ(Y)* — Cj(X)* is a surjective real linear isometry (see [67,
Proposition 5.17] and [55]). We see that T, preserves the extreme points of the closed unit
ball of the dual spaces, that is, T} (ext(Cg (Y)*)1) = ext(Cy (X)*);.

Let 7 : X — ext(Cy(X)*); and 7y : Y — ext(Cj (Y)*); be as in Lemma 2.23. So as to
characterize T, on ext(CF(Y)*);, we define amap 7:Y — X by 7 = 74" o T exe(cr(vy), © Ty
We note that 7: Y — X is a homeomorphism by Lemma 2.23 and T, : CJ(Y) — C3(X) is a
surjective isometry with T, (ext(Cy (Y)*);) = ext(Cj (X)*)1. It follows from the definition of 7

that Ti|exe(cz(v)s), © v = 7x © 7, and thus,
(3.5) T*(5y) = 5T(y) (y S Y)

In the following two lemmas, we investigate the property of the homeomorphism 7 : Y — X

induced by a surjective real linear isometry T, : CJ (Y)* — CJ(X)* as in the last paragraph.

LEMMA 2.24. Let T : C3(X) — C3(Y) be a surjective real linear isometry and 7:Y — X
a homeomorphism induced by the map T, : Cj (Y)* — Cy(X)*. For each y € Y, we have

7(T{y}) € T{r(y)}-
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PROOF. Let y € Y and fix it. First, we prove that 7(A\y) € T{r(y)} U T{7(iy)} for all
A € T. Suppose that there exists A\g = ag +iby € T \ {1,4} such that

(3.6) T(Aoy) & T{7(y)} U T{7(iy)}.

Having in mind that &, (9) = g(Aoy) = Aog(y) = b, (g) for all g € CF(Y), we get dx,y = Aody.

Because T, is a surjective real linear isometry, we obtain
T:(0rgy) = Ti(Nody) = Ti(aody) + T(ibody) = aoTi(0y) + boTi(0zy),

and thus T%(0x,y) = aoTi(dy) + boTi(diy). We note that Ty(dxrgy) = drroy)s Tx(0y) = 7y, and
T (0iy) = dr(iyy by (3.5). Entering these three equalities into 7% (0xyy) = aoT%(dy) + boT(dsy),

we have
(3.7) Or(Aoy) = @00+ (y) + boOr(iy)-

It follows from (3.6) that T{r(Aoy)} N (T{7(y)} U T{7(iy)}) is empty. Because T{7(y)} U
T{7(iy)} is a compact T-invariant subset, we deduce from Remark 2.21 with Lemma 2.22 that
there exists g; € Cg(Y) such that g;(7(Aoy)) = 1 and g(7(y)) = 0 = g(7(iy). Evaluating the

equality (3.7) at g1, we get 1 = 0. This is a contradiction. Hence, we must have

(3-8) T(Ay) € T{r(y)} UT{r(iy)} (A eT).

Since the map A — 7(\y) is a continuous map between T into X and T is a connected set,
the subset 7(T{y}) of X is also connected. We deduce from the continuity of the scalar
multiplication that T7(T{y}) is a connected subset of X. It follows from (3.8) that T{7(y)}U
T{7(iy)} = T7(T{y}), and thus, T{7(y)} UT{7(iy)} is connected. This shows that T{7(y)} N
T{7(iy)} is not empty. Hence 7(iy) = N\;7(y) for some \; € T, which implies that T{7(iy)} =
T{7(y)}. We infer from (3.8) with the last equality that 7(T{y}) C T{7(y)}. O

LEMMA 2.25. Let T : C3(X) — C3(Y) be a surjective real linear isometry and 7:Y — X
a homeomorphism induced by T, : Ca(Y)* — CY(X)*. There exists a function e : Y — {1}
such that

T(Ay) = )\a(y)f(y) ANeT, yeY).

PROOF. Let y € Y and fix it. Note that T, : CF(Y)* — CJ(X)* is real linear. We infer
from 4y, = Ao, for A € T that

T.(65y) = T((a + ib)8,) = aT(d,) + bT.(i6,) = aT.(5,) + bTu(5sy),
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and thus, T,(0y,) = aT.(d,) + bT(d;y) for each A = a +ib € T. Having in mind that T%(dy,) =
0+ by (3.5), we deduce from the last equality that

(39) 57()\3/) = a(ST(y) + chT(iy) ()\ =a+1ibe T)

It follows from Lemma 2.24 that there exists uy € T such that 7(A\y) = px7(y) for each A € T.
Having in mind that 0-(x)) = 6,7 = Ha0ry) for A € T, we can rewrite the equality (3.9) as

(3.10) M)\(ST(y) = G(ST(y) + buiéT(y) (/\ =a-+ b € T)

Entering Ao = (1 —4)/+/2 € T into (3.10), we obtain

1 1
o Or(y) = ﬁ&(y) - ﬁm&(y)-

We take fo € Cf(X) with fo(7(y)) = 1. Evaluating the last equality at fy, we obtain
V2 = V25, fo(r ()] = | fo(T(y)) — mifo(r(w))] = |1 — pual.

We derive from p; € T that p; = ¢ or —i. Hence, we derive from 7(iy) = p;7(y) that
7(iy) = it(y) or 7(iy) = —it(y). There exists e(y) € {1} such that 7(iy) = (y)ir(y) for
each y € Y. Because 0,,,(,) = px0r(y) for A € T, we have

Hidr(y) = Opuiry) = Ortiy) = Oc(yyir(y) = €(Y)0r(y),
and thus, 11,0, = €(y)id;(). We deduce from (3.10) that
Hadr(y) = (a+e()ib)dry) = Ao,

for all A\ = a +ib € T. We choose f; € CJ(X) such that fi(7(y)) = 1. Evaluating the last
equality at f, we obtain py = A*®. By the choice of uy € T, 7(\y) = ux7(y) = X*W1(y) for
all A € T. Since y € Y is arbitrarily chosen, the proof is complete. U

We are now in position to determine the form of surjective real linear isometries between

two CJ (X) spaces. We denote by [2]' =1 and [2]7! =% for z € C.

LEMMA 2.26. If T : C§(X) — CJ(Y) be a surjective real linear isometry, then there exist

a homeomorphism 7 1Y — X and a T-invariant clopen subset D of Y satysfing

T(f)y) = f(r(v), 7(w)=xr(y) (feCi(X),AeT,yeD) and

T(H)y) =fr), 7Oy =xly) (f€Ci(X),A€T,yeY\D).
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PROOF. Let 7 : Y — X be a homeomorphism induced by T, : C5(Y)* — CJ(X)* and
e:Y — {£1} a function as in Lemma 2.25. Take y € Y, f € CJ(X) arbitrarily and fix them.

Entering n = d,, §;,, into (3.4) respectively, we get the following two equalities;
T.(0,)(f) = Re(6,(T(f))) — iRe(8,(T(if))),
T.(0iy)(f) = Re(0yy(T(f))) — iRe(dsy(T(if))).

Taking the real part in the above two equalities, we obtain

Re(T.(8,)(f)) = Re(6,(T(f))) and Re(T:(0iy)(f)) = Re(dy(T(f)))-

By the equality (3.5), we can rewrite the last two equalities as

(3.11) Re(f(7(y))) =Re(T(f)(y)) and Re(f(r(iy))) = Re(iT(f)(y)).

Having in mind that 7(iy) = €(y)iT(y) by Lemma 2.25, we infer from Re(iz) = —Im(z) for
z € C with the second equality in (3.11) that

—Im(T(f)(y)) = Re(iT(f)(y)) = Re(f(7(iy))) = Re(e(y)if(7(y))) = —e(y)Im(f(7(y)))-
Consequently, Im(7T'(f)(y)) = e(y)Im(f(7(y))). Combining the last equality with the first
equality in (3.11), we obtain

T(f)(y) = Re(T(f)(y)) +ilm(T(f)(y))
= Re(f(r(y))) +e(y)ilm(f((y))) = [f (r(y)]*",

and thus, T(f)(y) = [f(7(y))]*®. Because y € Y and f € CJ(X) are arbitrary, we have

(3.12) T(Hly) = Fr@)”  (feGX),yeY).

Weset D ={y € Y : e(y) = 1}. Having in mind that e(Y) = {1, -1}, we see that
Y\D={yeVY : ey = —1}. We shall prove that ¢ : Y — {£1} is continuous and the
subset D is a T-invariant clopen subset of Y in the rest part.

Now, we prove that ¢ : Y — {+£1} is continuous on Y. Let yo € Y and fix it. We
take any net {y,},er in Y which converges to yo. Choose g € Cj(Y) with g(yo) = 1. Since
T : CHX) — CJ(Y) is surjective, there exists f € Cj(X) such that T(f) = g. We deduce
from (3.12) that

T(if)(y) = [if ()7 = c@)ilf (r@)Y = e)T(F)(y) = e()ig(y),
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and hence, T(if)(y) = e(y)ig(y) for all y € Y. Having in mind that lim.epy, = yo with
9(yo) = 1, we may assume that g(y,) # 0 for all v € I'. It follows from the last equality that

. _ imgT(if)(yv) _ ZT(Zf)(y) _
lim elvn) =1 9(y-) 9(y) )

Therefore, we conclude that ¢ : Y — {£1} is continuous. Because ¢ : ¥ — {£1} is a
continuous function on Y, we see that D and Y \ D are closed subset in Y, and hence, the
subset D is a clopen subset in Y.

Finally, we prove that the subset D is T-invariant. Let yy € D and fix it. Choose A € T
arbitrarily. It follows from Lemma 2.25 with (yo) = 1 that 7(Ayo) = Ao7(yo) and 7((i\)yo) =
iAT(yo). Having in mind that i¥%)7(Ayo) = 7(i(A\yo)) by Lemma 2.25, these two equalities
imply that

e(Ayo)iT(Ayo) = ia(AyO)T()\yO) =7((IN)yo) = (IN)T(v0) = i(AT(y0)) = iT(Ayo),

and thus, e(Ayo)iT(Ayo) = i7(Ayo). This implies that e(Ayo)id-(ryy) = i0-(ryo), Where we have
used [10;(y0) = Opur(yo) for p € T. We take g € Cj(X) such that g(7(\yy)) = 7, and then, we
derive from e(Ayo)idr(nye) = 10r(ryo) that e(Ayo) = e(Ayo)idr(aye)(9) = 10-(aye)(9) = 1. Since
A € T is arbitrarily chosen, we conclude that e(Ayg) = 1 for all A € T. This shows that
T{yo} C D for every yo € D. Therefore, we conclude that the clopen subset D is T-invariant.
The proof is complete. Il

Let us continue with a rudimentary continuous triple functional calculus in our setting.
Let Bc denote the closed unit ball of C, regarded as principal T-bundle. For each f € Cj (X)
with || f|| < 1 and each h in C7 (Bc) = {h € C(Bc) : h(0) =0, h(A) = Ah(¢), A € T, € Be},
the composition h o f lies in Cj (X), and it will be denoted by hy(f) = h o f. This coincides
with the so-called continuous triple functional calculus in the wider setting of JB*-triples. For
each n € NU {0}, we define h, : Bc — C by h,(¢) = [¢|*"¢ for ¢ € Bc. We observe that
(hn):(f) = 2 for each f in the closed unit ball of CJ(X).

Let (CJ(X)); be the closed unit ball of Cj (X). A face V of (Cg(X)); is a convex subset
of (CJ(X)); such that if fi, fo € (C3(X)); with (f1 + f2)/2 € F, then fi, fo € F. The next

result is a type of concretized version of [24, Lemma 3.3].

LEMMA 2.27. Let V be a norm-closed face of (Cy (X))1, where X is a principle T-bundle,
and let h be a function in the closed unit ball of C3(Bc) such that h is the identity on T. Then,
for all elements f in V', the element hy(f) lies in V.
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PROOF. Since each h € Cf (Be) satisfies h(A() = Ah(¢) for A € T and ¢ € Be, the values
of h on the interval [0, 1] determine the whole function h. We can now repeat, almost literally
the argument in [24, Lemma 3.3]. Choose a positive ¢ < 1/2 and fix it. Let h. and g. denote

the functions in C{ (Bc) whose restrictions to [0, 1] are given by

& 0<t<e/2,
Zh(e)t — h(e), €/2<t<e
he(t) = (% e<t<l—e
CA-t)—1Dh(l—e)+2(t—-1)+2, 1—e<t<1—¢/2,
[ 1, 1—¢/2<t<1

and

g(t) = (L= 5)7"(t = Sho), t € [0,1],
respectively. Having in mind that |h.(t)| < 1 and h(At) = Ah(t) for t € (0,1] and A € T, we
observe that h. € (CF (Be))i.

Next, we show that g. € (C3(Bc)):. Since the values of g, on the interval [0, 1] determine
the values of g. on Bg, it is enough to consider only in the case that ¢ € [0,1]. Let t € [0, 1]
and fix it. If ¢ € [0,¢/2] U [1 — €/2,1], then h.(t) = 0 or 1. By the definition of g, we infer
from € < 1/2 that

It — he(t)] < max{e, (1 — g)} <1- g
We assume that ¢ € [¢/2,1 — €], and then, it follows from h, € (Cj(Bc)); and t < 1 — e that
ﬁ—gm@N§t+§§1—§.
Finally, we consider the case that ¢ € [1 —¢,1 — ¢/2]. Then it follows from —1 < —t —¢/2 <
€/2 — 1 that
|t—§he(t)| - |(1—t—§)h(1—e)+1—e| < |1—t—§|—|—(1—e) g1—§.
Therefore, we conclude that |g.(t)] < 1 for all ¢ € [0,1], and thus, g. € (Cg(Bc));.

By the definition of g., we have (1 — ¢/2)g. + (¢/2)he = idp., where idg. : Bc — Bc is
the identity map on Be. Having in mind that (g.)«(f) = ge o f and (he)i(f) = heo f are in
(CF(X))1, we obtain

€ €
(1= 5)(ge)e(f) + 5 (he)e(f) = .
Since V' is a face of (Cg(X));, we see that (h.):(f) € V for each 0 < e < 1/2.
According to the definition of he, ||h — he|| tends to zero when € tends to zero. In fact,

we choose d > 0 arbitrarily. Because h is uniformly continuous on Bg, there exists ¢ > 0 such
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that if 0 < € < min{e;, 1/2}, then |h(s) — h(t)| < d for every s,t € [0, 1] with |s — ¢| < e. Let
t € [0,1] and fix it. If ¢ € [0,€¢/2], then |h(t) — h(t)| = |h(t) — O] = |h(t) — h(0)| < d. We
assume that ¢t € [¢/2,¢]. We note that 1 < (2/e)t < 2 from t € [¢/2,¢]. Tt follows from the
choice of € that
n(t) — he(t) = [A(0) — (Gt = RO < (1)~ h(e)| + (2~ 2)[h(e) — h(0)] < 24

and thus, |h(t) — he(t)] < 2d. By a similar calculation, we obtain |h(t) — h.(t)| < 2d when
t € [1 —e 1 —¢€/2]. Finally, we consider the case that ¢t € [1 — ¢/2,1]. It follows from
he(t) =1 = h(1) that |h(t)—h(t)| = |h(t)—h(1)| < d. Because |h(t)—h(t)| = 0fort € [e, 1—¢],
we deduce from the above argument that ||h — h.||o < 2d for all 0 < € < min{e;,1/2}. Hence,
we conclude that ||h — h|lcc — 0 as € — 0. Since V is a norm-closed face of (C§ (X)), it
follows from (h.);(f) € V for any € € (0,1/2) that h(f) € V. O

CJ(X) spaces lack of peaking functions, since for each f € S(Cj (X)), we have T C f(X).
We can combine the description in (3.1) with the facial theory of JB*-triples in [24] to determine
the maximal proper faces of the closed unit ball of CJ (X)), however we prioritize a self-contained

argument for function spaces more accessible for a wider audience.

Pick xyp € X with xy ¢ (T\{1})z and x € T. We shall define the set

Viay =1/ € S(CH (X)) : f(x0) = p}.

According to Remark 2.21, we observe that the set V), ;, is non-empty.

Let E be a Banach space. As observed by R. Tanaka in [71, Lemma 3.3] and [72, Lemma
3.2], Eidelheit’s separation theorem or the geometric Hahn-Banach theorem can be employed
to deduce that a convex subset C' C S(FE) is a maximal convex subset if and only if it is a

maximal norm closed proper face of the closed unit ball, (E);, of E.

We give next a concrete description of the norm closed faces of (C§(X));. The conclusion
can be also derived from the study of norm closed faces of the closed unit ball of a general JB*-
triple [24] and a good knowledge on the minimal tripotents in the second dual and its relation
with the extreme point of the closed unit ball of the first dual. For the sake of simplicity, we

include here an alternative argument with techniques of function algebras.

LEMMA 2.28. Let X be a principal T-bundle. Then every mazimal convexr subset (equiva-

lently, each mazimal proper norm closed face) of the closed unit ball of Cy (X) is of the form
Vi, = {f € S(CH(X)) : f(wo) = 1},
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for some xy € X.

PROOF. Let V be a maximal convex subset of S(CJ (X)). By [38, Lemma 3.5], there exists
n € ext(Cy(X)*); such that

(3.13) V =n"11)NnS(CH(X)).

Since X is a principal T-bundle, It follows from (3.2) that n = d,, for some xy € X. Combining
(3.13) with n = d,,, we obtain V = {f € S(C3 (X)) : f(zo) =1} = Vi 4.

Conversely, we prove that V., is a maximal convex subset of S(Cj(X)*) for all zg. Let
xo € X and fix it. By Zorn’s lemma, there exists a maximal norm closed proper face V
of (CJ(X)); such that V;,, C V. We suppose that there exists f; € V \ Vi,,. By Remark
2.21, we can choose fo € Vi,,. It follows from f; € V' \ Vi,, and the convexity of V' that
the function f = (f1 + f2)/2 € V satisfies |f(zo)| < § < 1 for an appropriate . The set
U={zeX : |f(zx)] <d}is a T-invariant open neiborhood of zg, because f € C5(X). As
we commented after Remark 2.21, we can find h € C(X) with |||l = 1, h(zo) = 1, and
hlx\v = 0.

Let k be a function defined by

- {0, 0<t<9,

We define a function k : Bc — C by k(0) = 0 and k(M) = k(t) for ¢ € (0,1] and X € T.
Lemma 2.27 assures that ki(f) = ko f € V. We put h; = (h+ k:(f))/2. Having in mind that
k(f(x)) =0 for all x € U, we see that k.(f)|y = 0. Since h|x\y = 0, it can be easily seen that
Ki(f)h = 0. This implies that [l = |2+ ko(/)),/2lle = masc{ [h/2]or [5(F)/20]} = 1/2.
We note that h € Vi, by the choice of h. Since V is a face which contains Vi ., b1 =
(h + ki(f))/2 € V. Tt follows from (1/2)0 + (1/2)(2hy) = hy with 0,2h; € (C}(X)); that
0 € V. Because (f + (—f))/2=0¢€ V for all f e (CF (X)), we conclude that V = (C5(X));.
This contradicts that V' is proper. Hence, we must have V ,, is a maximal norm closed proper
face of (C7(X));. By [71, Lemma 3.3], V; ,, is a maximal convex subset of S(CJ(X)). O

Labelling the maximal convex subsets, VX  of the unit sphere of Cj(X) in terms of

HyTo?
pairs (i, zo) with g € T and xy € X does not produce an unambiguous association because
foo = V/\XM xzo tor all A € T. To avoid repetitions, let us consider the following property: a

non-empty subset S of a principal T-bundle X satisfies the non-overlapping property if for

each t € § we have S N Tt = {t}. Thanks to Zorn’s lemma, we can always find a maximal
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non-overlapping subset X, of X. Let us observe that in this case, TX, = X, actually, for
each t € X there exist unique ty € Xy and p € T such that t = utg. Consequently, the set

{64 : to € Xo} is norming. Furthermore, the set

{Vi

HyZo

€T, xg € Xo}

covers all possible proper maximal convex subsets of S(Cj(X)). Actually, we take arbitrary
maximal convex subset V' of S(C§(X)). it follows from Lemma 2.28 that V' = VX for some
x € X. Since X = TXj, there exist unique p € T and zg € X such that x = uzy. This shows
that V = VX, =VX

e According to the above argument, we obtain the following;

(3.14) there exist unique p € T and ¢ € X, such that V = VX

M50

for each proper maximal convex subset V of S(CJ(X)).
An alternative proof for Lemma 2.28 can be deduced from [71, Lemma 3.3] (see also [38,

Lemma 3.1].
The main result of this section is a solution to Tingley’s problem in the case of abelian

JB*-triples.

THEOREM 2.29. Let X and Y be two principal T-bundles. Then each surjective isometry
A S(CH(X)) — S(CF(Y)) extends to a surjective real linear isometry T : Cj (X) — Cy (V).
Furthermore, there exist a T-invariant clopen subset D C'Y and a homeomorphism ¢ :

Y — X satisfying

A(f)(x) = f(¢(x), o(\x)=Xp(x)  (f€S(CH(X)),Ae€T,z€D), and
A(f)(@) = [(6(2)), o) =Ad(z)  (f€S(CH(X)),A€T,z€X\D).

Consequently, there exists a surjective isometry T : Cg(X) — CE(Y) such that Tlexpy 15
complex linear, T|cr(x\py s conjugate-linear and T(f) = A(f) for all f € S(Cy(X)).

The proof will be given after a series of technical lemmas. Let us begin by recalling a key
result in the techniques developed to study the problem of extension of isometries which is
essentially due to L. Cheng and Y. Dong [14, Lemma 5.1] and R. Tanaka [71] (see also [70,
Lemma 3.5], [73, Lemmas 2.1 and 2.2]).

PROPOSITION 2.30. ([14, Lemma 5.1], [71, Lemma 3.3], [70, Lemma 3.5]) Let A : S(E) —
S(F) be a surjective isometry between the unit spheres of two Banach spaces, and let M be a

convez subset of S(E). Then M is a mazximal proper face of Bg (equivalently, a mazimal convex
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subset of S(E)) if and only if A(M) is a mazimal proper (closed) face of Br (equivalently, a

mazimal convex subset of S(F)).
The next corollary is a consequence of Proposition 2.30 and Lemma 2.28.

COROLLARY 2.31. Let X andY be two principal T-bundles and A : S(C5 (X)) — S(CF(Y))

a surjective isometry. For each v € X, there exist elements y € Y such that

A(FT,) = FY,

=F,.
We have already given some arguments showing that the element (1,y) € T X Y in the

conclusion of the previous corollary need not be unique. To avoid the problem we consider the

next lemma.

LEMMA 2.32. Let X and Y be two principal T-bundles and Xy a maximal non-overlapping
subset of X. We assume that A : S(CJ (X)) — S(CE(Y)) a surjective isometry. For each xq

in Xy, there exists a unique yo = 7(x¢) € Y satisfying
A(Vl);o) = Vl),/T(Io)'
The mapping T : Xog — Y is well-defined and injective.

ProOF. By Corollary 2.31, there exists yy € Y such that

(3.15) AV

1,x0

=W,

lvyO :

We prove that the element y, € Y satisfying the identity in (3.15) is unique. Indeed, if
VY, = Vi, for y1 ¢ Tyo, then we can find a function g € S(CF(Y)) with g(y1) = 1 and
g(yo) = 0 by Remark 2.21 with Lemma 2.22, which is impossible. Hence, y; = uyo for
some ;1 € T. We choose some g € V1Yyo It follows from Vlyy0 = Vlyy1 with yo = my; that
1= g(yo) = g(iy:) = Fig(y) = i, and hence, yo = y1. We st ¢(zo) = yo with the clement o

given by (3.15). The rest is clear from the previous arguments. 0

Henceforth we fix a surjective isometry A : S(CJ (X)) — S(CE(Y)), where X and Y are
two principal T-bundles, a maximal non-overlapping subset Xy C X and the injective mapping

7 : X9 — Y given by Lemma 2.32.

The next step in our strategy isolates a crucial property of 7.

LEMMA 2.33. Let 7 be an element in Xy, and let f be an element in S(Cy (X)) satisfying
f(zo) =0. Then A(f)(7(xg)) = 0.
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PROOF. Let idg, : Bc — C be the identity function defined by idg. (%) = 2 for each z € B¢.

For each 0 < € < 1/2, let ¢, denotes the functions in CJ (Bc) whose restrictions to [0,1] are

given by
(0, 0<t<ef2
2t — €, e/2 <t <k,
we(t) =< t, e<t<1—eg
20— (1—¢), 1—e<t<1-—¢/2,
L1, 1—e/2<t<1.

According to the definition of ¢, it is easy to check that |idg.(t) — we(t)] = |t — we(t)] < € for
all t € [0, 1]. This implies that ||ids. — ¢c|| tends to 0 as e — 0.

Since f € S(CF (X)), there exists z; € Xp such that f € V;,,. It is easy to check that Vi ,,
is a norm closed face of (Cj (X)); by Lemma 2.28 with Proposition 2.30. Having in mind that
el = idy for any € € (0,1/2), it follows from Lemma 2.27 that (¢):(f) = peo f € Vi, since
Vi, is a norm closed face of (C§ (X));. Taking a sequence (a,)S; in (0,1/2) which converges
to 0, we set fr, = (¥4, )t(f) = @a,0f € Vi, for each n € N. Because lim,, o [|ids. —@a, ||oc = 0

from the above argument, we see that
(3.16) i || f = fulle = lim |lidg, o f = ¢a, © flloc = 0.
n—oo n—oo

We choose n € N arbitrarily and fix it. Put U, = {x € X : |f.(2)] < a,/2}. Since
fn(x0) = 0a, (f(z0)) =0 and £, € S(CT(X)), the subset U, is a T-invariant open neiborhood
of zyg. We deduce from the definition of ¢,, that f,(x) =0 for x € U,, and thus, f,|y, = 0. By
Remark 2.21, we can choose a function h, € S(Cj (X)) satisfying h,(z¢) = 1 and h,|x\p, = 0.
It is clear that h, € Vi%, and ||f, £ halls = 1, since fly, = 0 and h|x\y, = 0. By [56,
Proposition 2.3(a)], we have A(=V%, ) = —A(Vy,, ). Therefore, there exists k, € Vi, such
that —A(k,) = A(—hy). It follows from Lemma 2.32 that A(VyY,) = Vﬁ;(mo). This implies that
A(=h,) = =A(k,) € —Vﬁ;(mo), and hence, A(—h,)(7(z0)) = —A(k,)(7(z9)) = —1. Because
A S(CHX)) — S(C(Y)) is an isometry, we deduce from || f,, & |l = 1 that

[A(fu)(7(20)) + 1 = [A(fa) (7(20)) = A(=hn)(T(20))| < [A(S) = Al=hn) [0
= [lfo = (=hn)lle = 1,
[A(fu)(7(20)) = 1] = [A(fa)(T(20)) = Alhn)(7(20))] < |A(fn) = Alhn) oo
= [[fa = Balloo = 1.
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Consequently, we obtain |A(f,)(7(x0)) + 1| < 1 and |A(f,)(7(z0)) — 1| < 1. These two in-
equalities show that A(f,)(7(z¢)) = 0. Since n € N is arbitrarily chosen and A : S(CJ (X)) —
S(CF(Y)) is an isometry, we deduce from (3.16) that A(f)(7(z0)) = lim, 00 A(f0)(7(z0)) = 0.
The proof is complete. 0

LEMMA 2.34. The set Yy = {7(x¢) : o € Xo} is a mazimal non-overlapping subset of Y,
and hence, the set {8, : y € Yo} is norming in C5 (Y). Furthermore, the mapping 7 : Xo — Y

s a bijection satisfying

A(Vfio) = ‘/1},/7(10) Jor all zq € Xy,

and 771 is precisely the mapping given by Lemma 2.32 for A= and Y.

Proor. We shall first show that Y} is non-overlapping. Let z; € X and fix it. We choose
xe € Xo with z1 # 5. Since 7 : Xy — Y is injective, we have 7(t1) # 7(t) in Yy. Having in
mind that X, is non-overlapping, we can find f € ViX, with f(z3) =0 (cf. Remark 2.21). It
follows from Lemma 2.32 that A(f) € Vl’;(m), and thus, A(f)(7(z1)) = 1. On the other hand,
Lemma 2.33 implies that A(f)(7(z3)) = 0, which implies that 7(zs) ¢ T{7(x1)}. Because
x9 € Xo \ {1} is arbitrarily chosen, we conclude that Yo N T{7(z1)} = {7(x1)}. This shows
that Y} is non-overlapping.

Thanks to Zorn’s lemma, there exists a maximal non-overlapping subset Y, of Y such that

Yy C Yo. Applying Lemma 2.32 to A~! and Y, we deduce the existence of an injective mapping
o Yy — X satisfying

(3.17) ATV =V

L,o(yo)

for all yo € Y. By the first part of our argument, applied to A~! and Y, we know that a(ffo)
must be non-overlapping subset of X and contains X,. The maximality of X, implies that
0(}70) — X, and thus, o : Yy — X, is a bijective map.

Next, we prove that o(7(zg)) = x¢ for o9 € Xy. Choose xy € Xy arbitrarily and fix it. We
infer from Lemma 2.32 that A(V{Y, ) = Vf’;(xo). Combining (3.17) with the last equality, we

obtain
‘/]_,O'(T(IO)) = A_l(‘/l};'(;ro)) = ‘/1)7;0

According to Remark 2.21, we must have o(7(x¢)) € T{z}. We derive from o(7(z¢)) € T{zo}
with o(7(z0)), zo € o(Yp) that o(7(x)) = . Since zo € X, is arbitrarily chosen, we conclude

that o(7(z9)) = xo for all zy € Xo.
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Finally, we show that Yj is a maximal non-overlapping subset and o = 7—!. Suppose that

there exists y; € %\YO. It follows from (3.17) that

(3.18) A*l(mﬁﬂ) =VX

Lo(y1)
We put 4o = 7(0(y1)) € Yy C Y,. Having in mind that Yj is non-overlapping, 3, € Yy \ Yy
and ys € Yy, we see that yo ¢ T{y,;}. By Remark 2.21, we can find g € Vlyy1 vanishing at ys.
Lemma 2.33, applied to A™!, g and 5, implies that A™!(g)(o(y2)) = 0. Since o(7(x0)) = 7o
for all 7 € Xy, we obtain o(y2) = o(7(c(y1))) = o(y1), and hence, A~*(g)(c(y1)) = 0.
On the other hand, we infer from (3.18) with g € V), that A™'(g) € Vl)f,(yl), and hence
1=A"g)(e(y1)) = 0, leading to a contradiction. We must have Yy = Yj, which shows that
Yy is a maximal non-overlapping subset of Y. Applying the argument in the last paragraph
to 7 and o, we obtain 7(c(yo)) = yo for yo € Yy. Therefore, we derive from o(7(xg)) = ¢ for

zo € X that o =771, O

Having in mind that X, and Y, are maximal non-overlapping subsets of X and Y, each
maximal convex subset of S(C; (X)) and S(Cg(Y)) can be labelled by T x Xy and T x Yy,

respectively in the next lemma.

LEMMA 2.35. Let Xy and Yy be as in Lemma 2.34. There exist two maps ¢ : T x Xg — Yy
and ap : T x Xg — T such that

A(V)\),(x) = Va};(k,a;)@()\@) (()\, x) eTx XO).

PrOOF. Let (A\,z) € T x X, and fix it. Having in mind that V/\)’(x = V1XXa;’ we see that

V¥, is a proper maximal convex subset of S(Cj(X)) by Lemma 2.28. It follows from Lemma
2.30 that A(V}Y,) is also a proper maximal convex subset of S(Cj(Y')). Since Yj is a maximal
non-overlapping subset of Yy, there exists (u,y) € T x Yy uniquely such that A(V)ifr) = V;jy
by (3.14). Set p = aa(A, x) and y = ¢(A,x). Since (A, z) € T x X is arbitrary chosen, the
mappings aa : T X Xg — T and ¢ : T x Xg — Yj are well defined and satisfy

A(VA);) = Vai(m),w\,m)
for any (A, z) € T x Xp. O
LEMMA 2.36. The mappings aa and ¢ satisfy
an(—=\,x) = —aa(\ ), and p(—\, ) = ¢(\, ),
forall A € T and x € X,.
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PROOF. A new application of [56, Proposition 2.3(a)] with Lemma 2.35 gives

Va};(—)\,x),qb(—)\,x) = A(Vf\,x) = A<_V)\)§c) = _A(V)\),(x)

Y _ Y
QA(A,$),¢(>\,J)) o V—QA(A,:E),(Z)()\,LL’)’

and thus,

Y _ /Y
(3.19) Vaarao-re) = Voaa(e)o(02)-

Suppose that ¢(—\, x) # ¢(\, x) in Yp. Since Y is a non-overlapping subset of Y, T{¢(—\, z)}N
T{p(A, x)} is empty. By Remark 2.21 with Lemma 2.22, there exists a function go in Va};(—/\,x),qﬁ(—/\,z)
vanishing at ¢(\, z), contradicting the equality (3.19). Therefore ¢(—\,x) = ¢(\ z) and
an(—=Ax) = —aa(\ z). O

PROPOSITION 2.37. The identity

oA x) = o(1,2) = 7(x)
hold for all A € T and x € Xj.

PROOF. Let x € X and fix it. We note that 7(z) € Y and Y} is a maximal overlapping
subset of Y by Lemma 2.34. Combining Lemmas 2.32 and 2.35, we obtain

Y X Y
V, a(Lz),0(l,x) — A(‘/l,a:) = ‘G,T(.I)'

[0}

We note that 7(x) € Y, and Y} is a maximal overlapping subset of Y by Lemma 2.34. Applying
the same argument in the proof of Lemma 2.36 to the above equality, we have ¢(1,z) = 7(z).

Next, we prove that ¢p(\, z) = ¢(1, z) for all A € T. Suppose that ¢(Ng, ) # ¢(1, z) for some
Ao € T with Re(Ag) < 0. Let us observe that ¢(\g, x), ¢(x) € Yy and the subset Y} is a maximal
non-overlapping set of Y. Thus, the subset T{¢(Ao, )} NT{¢(1, z)} is empty. By Lemma 2.22,
we can find two open disjoint neighborhoods of these two points, and hence it follows from
Remark 2.21 that there exist two functions gy, go € S(Cj (Y')) such that g, € F;/A(AJ)@()\J) and
g2 € F;/A(wa(l’z) with [|g1 & go| = 1. It follows from Lemma 2.35 that f; = A™'(g1) € Vi,
and fo = A7'(go) € V5. Since A : S(CH(X)) — C§(Y) is an isometry, we deduce from
Re(A\o) < 0 that

V2 < o= 1] = filz) = f2(2)] < |11 = Lol = IA(F) = Af)] = llgr — 9ol = 1,
which is impossible. Hence, we must have ¢(\g, z) = ¢(1, xq) for all Ay € T with Re(\g) < 0.
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We consider that case that A € T with Re(\) > 0. We note that ¢(Ag,x) = ¢(—No, )
by Lemma 2.36. It follows from the argument in the last paragraph with Re(—X¢) < 0 that
d(Ao, ) = p(—No, ) = ¢(1, ). Therefore, we conclude that p(\,x) = ¢(1,x) forall A € T. O

For simplicity of notation, we shall write ¢(\, z) = ¢(x) for all A € T and = € X,,. This is
well defined by Proposition 2.37. We can rewrite the identity in Lemma 2.35 as

Applying the same argument to A~! : S(CF(Y)) — S(CF(X)) with 771 : Yy — X, there
exists two maps ap-1 : T X Yy — T and ¥ : T x Yy — X satisfying
viy) =v(Ly)=7"()  ((ny) €TxYy) and

(321) A_1<vu},/y) = VX (,9),%(y) ((,LL, y) €T x }/O>a

Qp-1
where we have rewritten ¥ (u,y) = ¢ (y) for all (i, y) € T x Yy.
In the following two lemmas, we shall prove that aa(-,z) : T — T and ap-1(-, ¢(z)) : T — T

are surjective isometries on T for each x € Xy and v : Yy — X is the inverse of ¢ : Xy — Yj.

LEMMA 2.38. For each x € Xq, the mappings an(-,x),an-1(-,¢(x)) : T — T are bijective
and ap-1(-, ¢(x)) is the inverse of aa(-,x). Moreover, the mapping ¢ : Xo — Yy is a bijective

map whose inverse is P : Yy — Xo.
PROOF. Fix an arbitrary z € Xy and A € T. Combining (3.20) and (3.21), we obtain

X -1 X —1/y/Y X
Vie = AT (AWVG)) = AT (Varumee) = Va1 (s () ble))ab(6()

and thus, VX = Va)ifl(aA(/\7x)7¢(x))’¢(¢(x)). Since A € T and = € X are arbitrarily chosen, it
follows from (3.14) that

(322)  aas(oa(ha)0@) =4 and P(é@) =z ((\z) €T x Xo).
Interchanging the roles of A and A™! in the last paragraph, we infer from (3.20) and (3.21)

that VY, = V)

an (-1 (Y)Y (y)

(3.23) an(aa—1 (i, y), YY) =p and o(W(y) =y  ((m,y) € T x Yp).

) oy for any p € T and y € Yo. It follows from (3.14) that

The second equalities in (3.22) and (3.23) assure that ¢ : X, — Yj is a bijective map whose
inverse is ¢ : Yy — Xp.

For each x € Xy, we define two maps a, : T — T and ag(,) : T — T by
az(A) = aa(Nx) and  age)(p) = aa-1(p, o(z)) (A, peT).
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By the first equality of (3.22), we derive from the definitions of a, and a4, that

o) ((A)) = aa-1(az(A), §(2)) = as-1(aa(A 2),o(x) = A (A eT).

Having in mind that ¢(¢(z)) = x, we infer from the first equality of (3.23) that

() (1)) = aalaa-1(p, ¢(1)),¥(o(x)) = (neT).

The last two equalities show that aa(-,z) = a, : T — T is a bijective map and aa(-,z)~! =

0551 = Qg(z) = &A—l(‘,¢<$))- U

We can argue as in Lemma 2.19 to deduce that a(-,z) : T — T is an isometric mapping

for each z € X,.

LEMMA 2.39. For each x € Xy, the mappings aa(:, ), an-1(-, ¢(x)) : T — T are surjective

1sometries.

PRrROOF. Let x € X and fix it. We choose A;, Ao in T arbitrarily. Take an element f € F} .,
and then we note that A1 f € Vi{, and Aof € Vi . Since A(FY ) = Fy, (1, ) o) for j = 1,2
by (3.20), it can be easily seen that

laa(Ar, @) — aa(Ae, 2)| = [AAf)(0(2)) — A(A2f)((2))]
< NAMS) = A = 1A = M) fll = A = Aaf.
This proves that the mapping aa(-,z) : T — T is contractive. Replacing A with A~ we

observe that aa-1(-,¢(z)) : T — T is contractive too. Having in mind that aa-1(-, ¢(z)) is the

inverse of aa (-, ) by Lemma 2.38, we get
|>\1 - >\2| = |OKA71 (ozA(/\l,ac),gb(x)) — AL (OéA(/\%x)v ¢(I))|
S ‘OZA(AM'CE) - OéA(A%:C)‘ g ’)\1 - )\2’7

and hence, |aa (A, z) — aa(Ag, )] = [N — Agf for all A\;, Ay € T. Therefore, an(-,z) : T —
T is an isometry on T. Interchanging the roles of aa(:,x) and aa-1(-,¢(z)), we see that

apn-1(-,¢(z)) : T — T is also an isometry. O

It follows from the previous lemma that aa(-,z) : T — T is a surjective isometry. By the

solution to Tingley’s problem for T = S(C) (see, for example [38]), we conclude that
(3.24) ar(\z) =aa(l,2)A (A€T), or aa(Nz)=aa(l,2)A (VAeT).
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for each * € Xy. The just stated property determines a partition of X, = X U X, with

respect to the following subsets

(3.25) Xf={reXy: an(\,2) =aa(l,z)A (A eT)},
(3.26) Xy ={th€ Xo: aa(\,z) = aa(l,z)X (A€ T)}.

The continuous triple functional calculus explained before Lemma 2.27 is now applied in

our next technical result.

LEMMA 2.40. Let 2o € Xo and [ € S(CF(X)) with |f(x)| < 1. Set A = &5 if f(x) #0

and A = 1 if f(x) = 0. We take € > 0 arbitrarily and fiz it. Then there exist g. € Vl); and
f- € S(CE(X)) satisfying f-(x) = f(x), |f — f.]| < =, and

rfe+ (L —=r|f(zo)DAge € V5,
forall0 <r < 1.

PROOF. We choose any € > 0 arbitrarily and fix it. The case for f(zy) = 0 is easier.
In this case, it follows from the argument in the proof of Lemma 2.33 that there exists a
sequence f. € S(Cy(X)) such that f. = 0 on some T-invariant open neighborhood U, of
zo and ||f — fello < €. Applying Remark 2.21 to f. with U, there exists g. € S(CJ (X))
such that g.|x\v. = 0 and g.(z¢) = 1. Because f|y, = 0 and gc|x\v, = 0, we observe that
17fe + gelloo = max{r| fellos, lgelloc} = 1 and f(zo) = 0 = fe(xo). It follows from fc(zo) =0
and g.(z0) = 1 that (rf. + (1 — 7| f(z0)[)Ag)(zo) = A, and thus r . + (1 — 7| f(z0) )Ag. € V5,

Suppose next that 0 < |f(x¢)| < 1, and choose a positive € such that |f(zo)| +€ < 1 and
0<|f(zo)| —e. Weset Vi={xe X : |f(x)— f(zo)| <¢/2} and W, = TV.. Having in mind
that TV, = J,cr AVe and AV is an open subset in X for A € T, we observe that W, = TV, is a T-
invariant open neighborhood of zy. Put K. = {z € X : |f(xo)|—€/2 < |f(z)] < |f(x0)|+€/2},
and then, W, is contained in K.. In fact, choose y € W, arbitrarily. There exist A\g € T and
Yo € Ve such that y = Agyo. It follows from yo € Ve that [f(y) — f(Aozo)| = [Ao(f (v0) — f(20))] <
€/2, and thus, |f(y)| < |f(Xoxo)| + €/2 = | f(x0)| + €/2. This implies that y € K., and hence,
we see that W, C K, and

(3.27) FWI < f(xo)l +¢/2 (y € Wo).

Let us find, via Remark 2.21, a function g. € Fff,co such that g.|x\w. = 0.
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We define two maps 7y : [|f(xo)], | f(x0)|+€/2] — [0,1] and no : [|f(x0)|+€/2,|f(x0)|+€] —
[07 1] by
m(s) = —(s=[f(zo)]) (If(@o)| < s <|[f(o)| + %)’

M2(s) =

AN N

(s= (@)l +3)  (f@o)l+5 <5 < |fla)| +e).

It is easy to check that n; is a bijective continuous function for ¢ = 1,2. Let us consider the
following h. € CJ(Bc) whose values on [0, 1] are the following:

(

s, 0 < s < |[f(xo)l,
(1= m()|f (o) +m(s)(| f(xo)] = %) |f(zo)] < s < [f(zo) +€/2,
he(s) = § [f(xo)| — /2, s =|f(zo)| +¢/2,
(L= m2(3)) (1f(xo)| = 5) +ma(s) (| f(xo)| +€) |f(z0)| +&/2 < s <[f(xo)| +e,
L s, |f(zo)| +e<s<1.

Let idp. : Bc — Be denote the identity mapping. We note that idg. € Cj(Bc). By the
definition of h., we see that |idg.(z) — he(2)| < € for all z € Be. Set f. = (he):(f). Since
llidg. — helloo < €, it follows that

If = fell = sup |idp. (f () — (he)(f(2))| <.
Clearly fc(x¢) = f(xo). For any z € X \ W,, we have
[(rfe+ (L =7f(to) DAge) (@)] = [rfe(z)| < v < 1.

Choose © € W, arbitrarily. It follows from (3.27) that |f(z)| < |f(zo)| + €¢/2. Hence, we

observe that
[fe(@)] = [he(f(2)] = |he(e® | f(@))] = [he(| f(@)])] < [f(z0)]
by the choice of h.. Therefore,

|(rfe + (L =7l f(20) DAge) ()] < rlf (wo)| + 1 = r[f(z0) = 1.

Finally the identity

(4 (U1 o)D) o) = ) + (1 = ) 22
Al _ S _,
[fe(zo)l  [f(zo)|
proves that 7 f. + (1 — 7| f(z0)|)Age € FRy,, as desired. O
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In the next proposition, we shall determine the point evaluations of elements in the image

of A at the points of the form ¢(ty).

LEMMA 2.41. For each o € Xo and each f € S(CJ (X)), we have

F(z0) ana (1,z0) f(zo), if xo € X,

|f (o)

A O(r0)) = as (HEL 20 ) )] =

an (1,x0) f(zo), ifxo€ X,

PROOF. Let us fix 7y € X and f € S(CJ(X)). The case f(xg) = 0 follows from Lemma
2.33. If |f(zo)| = 1, then we have f € Vf)((:co) and thus,

,Zo!

ana (1, z0) f(zo), if zo € Xy,
A(f)(@(x0)) = an(f(xo), z0) =
an (1,20) fxg), if zo € X5

by (3.20) with (3.24). We can therefore assume that 0 < |f(zo)| < 1. Set A = éﬁﬁ&
We shall first show that

(3.28) [A(f)(¢(w0))] = [f (o)l
For each ¢ > 0, there exist g. € FT,, and f. € S(Cj (X)) satisfying
hye=1fc+ (1 —r|f(zo)])Age € VA{;D (0<r<1),
fe(xo) = f(zo) and ||f — f|| < € by Lemma 2.40. In particular,
(3.29) A(hre)(9(z0)) = aa(A, zo),
and by definition,
[hre = fell < (U =7) +1 = 7r[f(z0)] = 2 —7 = r[f(20)]-
On the other hand, it follows from (3.29) with the last equality that

L= A(f)(@(t0))] = laa(A, zo)| — |A(f)(d(0))]
< Jaa(A zo) — A(fe)(¢(xo))]
(3.30) = |A(hre)(p(x0)) — Alfe)(D(x0))]
< NA(hre) = A = 1Are = fell
<2—r—r|f(zo)l,

81



which implies that r + r|f(zo)| — 1 < |A(fe)(d(xo))| for all 0 < r < 1. Letting r — 1, we get
|f(zo)] < |A(fe)(d(x0))|- Now, it follows from ||A(f) — A(fe)|leo = ||f — felloo < € that
[ (zo)| < [A(fe(¢(0)))| < [A(F)(D(20))] + €.

Since € > 0 is arbitrarily chosen, we conclude that |f(x)| < |A(f)(é(z0))]-
We note that ¢ = ¢! by Lemma 2.38. Applying the same argument to A, o, A(f) and
¢(xg) in the roles of A, ¢, f and xg, we get

AU (G(o)] < [ATA) (W ((@o))] = | f (o),

which concludes the proof of (3.28).
If we take limits » — 1 and € — 0 in the inequalities given by the second and last lines of

(3.30), we arrive to

(3.31) a (A, o) = A(f)(O(x0))| <1 —=[f(20)]-
Consequently, we deduce from (3.28) that
1= Jaa(hto)] < laa(h, o) — AF)(6(x0))] + AU (S(0))]
< 1—[f(zo)| + [f(zo)] = 1.
It then follows that the equality holds in a triangular inequality, so there exists a positive

number ¢ > 0 such that taa (X, zo) = A(f)(P(x0)). In particular ¢t = |A(f)(P(x0))| = | f(z0)].
Having in mind that A = f(x¢)/|f(z0)|, we have proved that

AUolen) = 0 ((FE a0 11(au)]
The rest is clear from the equalities (3.24), (3.25) and (3.26). O

ProoF orF THEOREM 2.29. We denote by X and Y the maximal non-overlapping subsets
employed in the previous arguments. Let ¢ : Xy — Y, be the bijection presented in Lemmas
2.35 and 2.38. As we have already commented after Lemma 2.28, the sets {d,, : 2o € Xo} and
{84(z0) : o € Xo} are norming in Cj (X) and Cj (Y'), respectively.

We define a mapping 7' : C} (X) — CJ(Y) by

S (). itrecieonon
0, if f=0.

We can follow a similar argument to that in the proof of Theorem 2.1, and employ the

identity in Lemma 2.41 to prove that the mapping 7 : CJ(X) — Cj(Y) is a surjective
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real linear isometry which is an extension of A. The final conclusions are straightforward

consequences of Lemma 2.26. [
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CHAPTER 3

Tingley’s problem for a Banach space of Lipschitz functions on the

closed unit interval

Abstract

We prove that every surjective isometry on the unit sphere of Lip(7) of all Lipschitz con-
tinuous functions on the closed unit interval [ is extended to a surjective real linear isometry
on Lip(I) with the norm || f|lo = [f(0)] + ||.f'||ze-

1. Introduction and main results

Let £ and F' be Banach spaces whose unit spheres are S(E) and S(F), respectively. In
1987, Tingley [74] asks whether each surjective isometry A: S(E) — S(F) is extended to a
surjective, real linear isometry from £ onto F'. Since then, many mathematicians have given
affirmative answers to the Tingley’s problem for particular Banach spaces. There is a huge list
of the research of the problem, here we show only some of them. Tingley’s problem is treated
for function spaces in [20, 38, 47, 48, 76, 77|, and for operator spaces in [26, 27, 28, 29, 30,
31, 61, 62, 63, 71, 73, 72]. Besides the Tingley’s problem, the Mazur—Ulam property for
Banach spaces has been studying actively; a Banach space F has the Mazur—Ulam property if I
is any Banach space, every surjective isometry from S(E) onto S(F') admits a unique extension
to a surjective real linear isometry from E onto F. See, for example, [2, 19, 36, 57, 68, 69].

Let Lip([) be the complex linear space of all Lipschitz continuous complex valued functions
on the closed unit interval I = [0, 1]. For each Banach space E, we denote by S(F) the unit
sphere of E. We define ||f||, for f € Lip(I) by

1£lle = 1£ O+ [l zoe

where || || L~ denotes the essential supremum norm on /. It is well known that each f € Lip([/)
has essentially bounded derivative f’ almost everywhere. Hence, f’ belongs to L>([), the
commutative Banach algebra of all essentially bounded measurable functions on I with the
essential supremum norm || - ||z~. Consequently, | - ||, is a well defined norm on Lip(/). The

purpose of this paper is to prove that every surjective isometry on S(Lip(7)) admits a surjective
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real linear extension to Lip([), which gives a solution to Tingley’s problem for Lip(/). The

followings are the main results of this paper.

THEOREM 3.1. Let A: S(Lip(I)) — S(Lip(1)) be a surjective isometry with || - ||,. Then

A is extended to a surjective, real linear isometry on Lip([).

COROLLARY 3.2. For each surjective isometry Ty: Lip(I) — Lip(I) with || - ||, there exist
a constant a of modulus 1, hg € Sre(ry and a real algebra automorphism ¥ on L>*(I) such

that
TU(F)(t) = A (0)(t) + af(0) + / hoW(f') dm (tel, felip(l), or
T = 2400+ a0 + | heU(f)dm  (tel, f e Lip(D))

where m denotes the Lebesque measure on 1.

REMARK 3.3. We should note that Theorem 3.1 is deduced from [77, Theorem 3.5]. In
fact, Lip(I) equipped with || - ||, is identified with the ¢!-sum of R? and C'(X,R?) for some
compact Hausdorff space X. Here, C(X,R?) is the Banach space of all continuous R? valued
maps on X with the supremum norm. In this paper, we will give a different proof from that
of [77] of Tingley’s problem for Lip([).

Koshimizu [45, Theorem 1.2] gave the characterization of surjective complex linear isome-

tries on Lip(/) with || -||,. We will characterize surjective isometries on Lip([) in Corollary 3.2.

2. Preliminaries and auxiliary lemmas

We denote by T the unit circle in the complex number field C. Let M be the maximal
ideal space of L>(I): Then M is a compact Hausdorff space so that the Gelfand transform,
defined by ﬁ(n) = n(h) for h € L*(I) and n € M, is a continuous function from M to C.
Let C(X) be the commutative Banach algebra of all continuous complex valued functions on
a compact Hausdorff space X with the supremum norm || - ||, on X. The Gelfand-Naimark
theorem states that the Gelfand transformation I': L(I) — C(M), defined by I'(h) = h for
h € L*(I), is an isometric isomorphism. Thus, ||h||f~ = sup, (h(n)| = ||h]|e for b € L=(1).
We define

~ ~

(2.1) f(n,2) = f(0)+ f'(n)z
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for f € Lip(I) and (1,2) € M x T. Then the function f is continuous on M x T with the
product topology. We set

B={feCMxT): feLip(I)}.

Then B is a normed linear subspace of C(M x T) equipped with the supremum norm || - ||o
on M xT.

We define a mapping U: (Lip(1), || - |lo) = (B, ]| - |l) by U(f) = f for f € Lip(I). We sece
that U is a surjective complex linear map from Lip(/) onto B. In addition, ||U(f)||c = ||fll»
holds for all f € Lip(/): In fact, for each f € Lip([), there exist zg,z; € T and 1y € M such
that f(0) = [£(0)|z0 and f'(1j0) = || f'||ccz1. Then

U (f) (0, 2070)] = |£(0) + F'(n0)207i] = |(|£(0)] + [ F']|oc) 0]
=[SO+ 11l = LFO) + [1f N[z = £

We thus obtain ||f||, < ||U(f)||s- For each (n,z) € M x T, we have
U, 2)| = 1£0) + F)z| < 1O+ 1P )] < 1O+ 1P lloe = [1f 1o
which yields ||[U(f)|lco < ||fllo- Consequently,

1flloe = 10U (Hlloe = £l (f € Lin(1)).

Therefore, the map U is a surjective complex linear isometry from (Lip(1), ||||s) onto (B, |||l )-
In particular, U(S(Lip(Z))) € S(B). Since U~! has the same property as U, we obtain
U~1(S(B)) c S(Lip(I)), and hence, U(S(Lip(I))) = S(B).

For each f € Lip(I), we observe that f is absolutely continuous on /. Thus, the following
identity holds:

(2. o -10 = [ fdm o (tel),

where m denotes the Lebesgue measure on [ (see, for example, [67, Theorem 7.20]). Having
in mind {h : h € L®(I)} = C(M), for each u € C(M) there exists a unique h € L*(I) such
that u = h. We define Z(u) by

t
I(u)(t):/ hdm (tel).
0
We observe that Z(u) is a Lipschitz function on I with
Z(u)(0) =0 and Z(u) =h ae.
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In particular, we obtain
(2.3) Z(u)" = u.
Here, we note that Z(u) € S(Lip(1)) for u € S(C(M)): In fact,

IZ()ls = [Z(@) ()] + () [z = |Z(u) lloo = ulloe = 1,

which yields Z(u) € S(Lip(I)). Hence, Z(S(C(M))) C S(Lip(I)).
Let A: (S(Lip(1)), || - [|lo) = (S(Lip(1)), ]| - ||») be a surjective isometry. We define T' =
UAU™Y; we see that T is a well defined surjective isometry from (S(B),|| - ||o) onto itself,

since U is a surjective complex linear isometry from (Lip(7), | - ||,) onto (B, | - |l) with
U(S(Lip(1))) = S(B).
S(Lip(1)) —== S(Lip(I))
al |v
S(B)  —— S(B)

The identity TU = UA implies that

(2.4) T(f)=Alf)  (f € SLip(]))).

For each A € T and € M x T, we define

AV, = {f € S(B) : J(x) = A},

which plays an important role in our arguments. In the rest of this paper, we denote 1; and

1, by the constant functions taking the value only 1 defined on I and M, respectively.

LEMMA 3.4. If MV, C AV, for some (A1,x1), (Ag,22) € T x (M x T), then (A1, z1) =
()\2,132).

PROOF. We first note that 1; is a constant function on M x T by (2.1). Then M1 €
MV, C AV, which yields Ay = M\ 1;(z1) = A1;(x2) = Xo. This implies A\; = Ao

Setting x; = (n;,%;) for j = 1,2, we first prove n; = . Suppose, on the contrary,
that 1 # mp. There exists u € S(C(M)) such that u(n) = 1 and u(ny) = 0. We set
f = Z(Mzuw) € S(Lip(1)), and then f(n,21) = A and f(2,2) = 0 by (2.3). This shows
that ]76 MV, \ A2V, which contradicts the assumption that AV, C A\V,,. Consequently,

we have 17, = ns.
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Finally, we shall prove z; = 2z5. By (2.3), we see that g = Z(\1Z1 1) satisfies g € S(B) and
g(m,z1) = A\;. We thus obtain g € AV, C A2V, and hence Ay = (72, 22) = A\1Z122 by the
choice of g. This implies z; = 25, since A\ = Ag. We have proven that (A, z1) = (Mg, 22). O

We denote by F(B) the set of all maximal convex subsets of S(B). Let ext(B7) be the set
of all extreme points of the closed unit ball B; of the dual space of B. It is proved in [38,
Lemma 3.1] that for each F € F(B) there exists £ € ext(B}) such that F = £71(1) N S(B),
where €71(1) = {F € B : £(F) = 1}. Let Ch(B) be the Choquet boundary for B, that is,
Ch(B) is the set of all x € M x T such that the point evaluation d,: B — C at x is in ext(B7).
By the Arens—Kelley theorem (cf. [32, Corollary 2.3.6]), we see that ext(B}) = {\d, € B :
AeT, z e Ch(B)}.

LEMMA 3.5. For each xo = (1o, 20) € M X T, the Dirac measure concentrated at zq is

unique representing measure for d,,.

PRrROOF. Fix an arbitrary open set O in M with 7y € O. By Urysohn’s lemma, we can find
u € S(C(M)) such that u(ny) = 1 and v = 0 on M \ O. Take any representing measure o
for d,,, that is, o is a regular Borel measure on M x T satisfying d,,(9) = | M 9 do for all
g € B and ||o|| = 1, where ||o|| is the total variation of ¢. Having in mind that the operator
norm ||d,,|| of d,, satisfies ||d,,| = 1 = 4,(1;), we observe that o is a positive measure

(see, for example, [7, p.81]). Setting f = Z(u) € S(Lip(I)), we obtain f(n,z) = u(n)z for
(n,2) € M x T by (2.1) and (2.3). Since u =0 on M\ O, we get

1ﬂm:mﬁwﬁ/ Faol <| [ %aﬂ/ Fdo
MXT OxT (MxT)\(OXT)

< [ 1l < |flcr(O X T) =o(0x ) < [l = 1.
OxT

<

Consequently, o(O x T) = 1 for all open sets O in M with ny € O, and therefore, we observe
that o({no} x T) =1 by the regularity of o. We thus obtain

20 = 0o (f) :/ fdaz/ u(n)z&f:/ z 0.
{no}xT {no}xT {no}xT

We derive from o({n} x T) = 1 that f{m}xT(zO — z)do = 0. Setting Z = {no} x (T \ {z0}),
we obtain [,(1 — Zz)do = =% [,(z — 29) do = 0, which yields [, Re(1 —Zjz)do = 0. As
Re(1 —Z5z) > 0 on Z, we conclude o(Z) = 0, and thus o({n} x {#20}) = 1. This proves that

any representing measure for J,, is the Dirac measure concentrated at x. U
LEMMA 3.6. For each xo = (19, 20) € MXT, we have xy € Ch(B), that is, Ch(B) = MxT.
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PRrOOF. We shall prove that d,, belongs to ext(Bj}). Suppose that d,, = (& + &2)/2 for
§1,&2 € BY. For j = 1,2, there exists a representing measure o; for ; by the Hahn-Banach
theorem and the Riesz representation theorem (see, for example, [67, Theorems 5.16 and 2.14]).
Since & (17) + & (1) = 20,,(17) = 2 with |(17)] < 1, we have &(1;) = 1 = [|§]| for j = 1,2,
Applying the same argument in [7, p.81] to o;, we see that o; is a positive measure. We put
o = (01 + 02)/2, and then o is a positive measure.

First, we prove that o is a representing measure for d,,. Because o; is a representing

measure for §;, we get

/M T]?dO':/M de(dl‘;‘UQ) _ 51(f);‘€2(f) :5550(.?) (}76 B)

Entering ]7: 1; into the above equality, we have oM xT)= [ MxT 1;do = 1, which shows
that ||o|| = 1 = ||04]|- Therefore, o is a representing measure for ¢,,. By Lemma 3.5,
o = (01 + 03)/2 is the Dirac measure, 7,,, concentrated at z.

We note that o; is a positive measure with j = 1,2. For each Borel set D with z, ¢ D,
we obtain (o1(D) + 09(D))/2 = o(D) = 0, and thus, ¢;(D) = 0. Having in mind that ||o;|| =
l€1I = 1, we conclude that o; = 7, for j = 1,2. Hence, @-(]7) = [t fdaj = f(zo) = 5x0(f)
for any f € B, which implies that & = 0z = &2. This proves 6,, € ext(Bj), which yields
xo € Ch(B). O

We now characterize the set of all maximal convex subsets F(B) of S(B). The following
result is proved by Hatori, Oi and Shindo Togashi in [38] for uniform algebras. The proof

below of the next proposition is quite similar to that of [38, Lemma 3.2].

PROPOSITION 3.7. Let F' be a subset of S(B). Then F € F(B) if and only if there exist
ANeT and x € M x T such that F' = \V,,.

PROOF. Suppose that F' is a maximal convex subset of S(B). By [38, Lemma 3.1], F' =
£711) N S(B) for some & € ext(By) = {\d, € Bf : A € T, z € M x T}, where we have used
Lemma 3.6. There exist A € T and x € M x T such that £ = A\d,. Now we can write

F=(6,)""(1)NS(B) ={f € S(B): \f(z) =1} = AV,.

We thus obtain F = AV, with A€ Tand 2z € M x T.
Conversely, suppose that F' = AV, for some A\ € T and x € M x T. It is routine to
check that F is a convex subset of S(B). Using Zorn’s lemma, we can prove that there exists

a maximal convex subset K of S(B) with ' C K. By the above paragraph, we see that
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K = pV, for some pp € T and y € M x T. Then AV, = FF C K = uV,. Lemma 3.4 shows
that (A\,z) = (i, y), which implies that F' = K. Consequently, F' is a maximal convex subset
of S(B). O

Tanaka [70, Lemma 3.5] proved that every surjective isometry between the unit spheres of
two Banach spaces preserves maximal convex subsets of the spheres (see also [14, Lemma 5.1]).

By these results, we can prove the following lemma.

LeEMMA 3.8. There exist maps a: TX (M xT) =T and ¢: Tx (M xT) - M xT such
that

(2.5) TAVe) = (X, 2)Voaa)
for all (A\,z) € T x (M xT).

ProOOF. For each (A\,z) € T x (M x T), AV, is a maximal convex subset of S(B) by
Proposition 3.7. By [70, Lemma 3.5], surjective isometry 7': S(B) — S(B) preserves maximal
convex subsets of S(B), that is, there exists (u,y) € T x (M x T) such that T(A\V,,) = pV,. If,
in addition, T'(AV,) = p'V,, for some (1/,y’) € T x (M x T), then we obtain (p,y) = (¢, y')
by Lemma 3.4. Therefore, if we define a(\,z) = p and ¢(\,z) =y, then a: Tx (M xT) - T
and ¢: T x (M x T) = M x T are well defined maps with T'(AV,) = a(\, 2) Vs z)- O

LEMMA 3.9. The maps a and ¢ from Lemma 3.8 are both surjective maps satisfying
Oé(—/\,ﬂf) = —Oé()\,l') and (b(_A’x) = (b()‘u SL’)
for all (A\,z) € T x (M xT).

Proor. Take any (A, x) € Tx(MxT), and then AV, is a maximal convex subset of S(B) by
Proposition 3.7. We get T'(—AV,) = =T (AV,), which was proved by Mori [56, Proposition 2.3]
in a general setting. Lemma 3.8 shows that a(—\,z)Vy_r. = T(=AV,) = =T(\V,) =
—a(X, 2)Vyo ) Applying Lemma 3.4, we obtain a(—\,z) = —a(X, z) and ¢(=\, z) = ¢(A, x).

There exist well defined maps : T x (M x T) — T and ¢: T x (M x T) - M x T such
that

T V) = B ) Viuyy  ((15y) € T x (M x T)),

since T~! has the same property as T. For each (u,y) € T x (M x T), we have, by (2.5),

pVy =TT (V) = T(B(1 9) Vi) = (B 9), (11 ) Vi B) () -
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We derive from Lemma 3.4 that u = a(8(u,y),¥(p,y)) and y = &(B(1,y), ¥ (k,y)). These

prove that both a and ¢ are surjective. U

By definition, ¢(\,z) € M x T for each (A\,z) € T x (M x T). There exist ¢,(\,z) € M
and ¢a(\, z) € T such that

Qb()V $) = (¢1(>‘7 J?), ¢2(>‘> I))

We shall regard ¢; and ¢, as maps defined on T x (M x T) to M and T, respectively. By

Lemma 3.9, both ¢; and ¢ are surjective maps with
(2.6) bi(-Na) = B(01)  (Ao) €T x (MxT), j=1,2),

LEMMA 3.10. Let \; € T and (nj,2;) € M x T for j =1,2. If y1 # 1o, then there exist
]7]- € S(B) such that f] € \jVin;zy) Jor j =1,2 and 11 = folloo = 1.

PRrROOF. Take j € {1,2} and open sets O; in M with n; € O; and O; N Oy = 0. By
Urysohn’s lemma, there exists u; € S(C(M)) such that u;(n;) =1 and v; =0 on M\ O;. Let
fi = Z(\;Zju;), and then we see that E(n, 2) = Nz uj(n)z for all (n,2) € M x T by (2.1) and
(2.3). Tt follows from f; € \;Viy, ., for j = 1,2 that 1 = | fi(m, 21) — fa(m, 20)| < i — folleo-
Hence, it is enough to prove that || f; — fa]le < 1. We shall prove | f1(n, z) — fa(n, 2)| < 1 for all
(n,z) € M xT. Fix an arbitrary (n,z) € M xT. If n € Oy, then uz(n) = 0, since O1NOy = 0,
and thus

1F1(n,2) = fa(n, 2)| = I\ Zrun(n) — AaZzuz(n)] < Jur(n)] + |uz(n)] < 1.

If n € M\ Oy, then |]71<77, z) — fg(n, z)| <1 by the choice of u;. We conclude that |ﬁ(n, z) —
]72(77,2')| < 1 for all (n,2z) € M x T, which yields ||ﬁ — fg”oo < 1. O

LEMMA 3.11. If A€ T and x € M x T, then ¢1(\, x) = ¢1(1, z); we shall write ¢p1(\, x) =
é1(x) for simplicity.

ProOOF. Take any A € T and x € M x T. Then T(V,) = a(l,2)V41.) and T(AV,) =
a(A, 2)Vye) by (2.5). Suppose, on the contrary, that ¢;(A\,z) # ¢1(1,2). There exist
fi € a(l,2)Veae = T(V,) and fo € a(X, z)Vene = T(AV;) such that 1fi = falloo = 1
by Lemma 3.10. We infer from the choice of ]71 and ]?2 that T‘l(]?l) €V, and T_l(]?;) € NV,
which implies that 7-'(f,)(z) = 1 and T-'(f2)(z) = A. If ReA < 0, then |1 — | > /2, and
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thus

V2 < 1= = [T (f) (@) - T7'(f2) (=)
<IT7MA) = T (oo = I/ = follow = 1,

where we have used that 7" is an isometry on S(B). We arrive at a contradiction, which shows
d1(N, ) = ¢1(1, z), provided that Re A < 0. Now we consider the case when Re A > 0. Then
o1(—A\,x) = ¢1(1,z), since Re(—A) < 0. By (2.6), ¢1(\,z) = ¢1(—\,z) = ¢1(1,x), even if
Re A > 0. O

LEMMA 3.12. For each A\, 2 € T and x € M x T, the following inequality holds:

(27) |/\1 — /\2| S |]. - Oé(/\l,.T)Oé(/\g,l‘)|.

PROOF. Fix A\, A\ € T and z € M x T. We set f; = a();,z)1; € S(Lip(I)) for each
j € {1,2}. We see that f; € a(\j, )V, = T(\;Va) by (2.5). Then T7'(f;) € A;V,, and
hence Tfl(]?;)(x) = )\,;. We obtain

A= ol = [T ()(@) = T (R) (@) < I T () = T (B)lloe = 11 = Folloo
= a(Ar,2) = aQhg, 2)] 111l = |1 = a(Ar, 2)a(X, ).

Thus, [N\ — Xo| < |1 — a(A, z)a(Ae, x)| holds for all A;, A\ € T and z € M x T. O

LEMMA 3.13. For each v € M x T, there exists eo(x) € {£1} such that a(\ z) =
Xo@a(1,z) for all X € T; for simplicity, we shall write (1, z) = o(x).

PROOF. Let A € T\ {£1} and z € M x T. Taking A\; = 1 and Ay = £\ in (2.7), we obtain

1—)A <|1—-a(l,x)a(Az)] and |14+ A < |14+ a(l,z)a(A, x),

where we have used Lemma 3.9. Since a(1, z)a(), z) € T, we conclude that
all,z)a(\, z) € {\ AL

If we consider the case when A = ¢, then we have «a(1,z)a(i,z) € {£i}. This implies that
a(i,z) =igo(x)a(l, z) for some eg(x) € {£1}. Entering Ay =i and Ay = X into (2.7) to get

li = Al < |1 —a(i,z)a(A z)| = |1 +igo(x)a(l, z)a(N, )| = |i —eo(x)a(l, x)a(A, x)|,

and thus |i — A\| < i — go(x)a(l, x)a(A, z)|. Because a(—\,z) = —a(A, z) by Lemma 3.9, we
get |i + A| < |i +eo(z)a(1, z)a(A, x)|. These inequalities imply go(z)a(1, z)a(X, ) € {\, =A},
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since o(z)a(l, z)a(A, z) € T. Then

a(l,z)a(\ ) € {\ A} N {eo(2)A, —eo(z) A}

We have two possible cases to consider. If £o(z) = 1, then we obtain a(1, z)a(),z) € {\, A} N
{\, =A}. Since A # £1, we conclude that a(1, z)a(), ) = A, and hence a(\, z) = A*@a(1, z).
If eo(z) = —1, then a(1,z)a(X,z) € {\, X} N {=X, X}, which yields a(1,z)a(\, z) = X. Thus,
a(\, x) = X0@q(1,r). These identities are valid even for A = £1. By the liberty of the choice
of A € T, we conclude that (), z) = X**@aq(1,z) for all A € T and € M x T. O

By Lemmas 3.11 and 3.13, we can rewrite (2.5) as
(2.8) T(AV2) = XD (2)Vigy )65 0020
forall A\ € T and z € M x T.

DEFINITION 3.14. Let AV, and pV, be maximal convex subsets of S(B), where A\, u € T
and z,y € M x T. We denote by dy(\V,, 1V},) the Hausdorff distance of AV, and pV,, that is,

(2.9) dir(\V,, uV,) = max{ sup d(F, uV,), sup d(AV;.3) ¢,
FeNV, geuvy
where d(F, puV,) = infr_,,, [|F = hl|o and d(AV2,§) = inf5 .y, [[B = Flo-

Since T is a surjective isometry on S(B), we obtain

dT(F),T(nV,)) = _inf |T(F) =hllw= inf |F=T"(h)]e = d(F,uV,)

heT (uVy) T-1(h)EpV,

for every F € AV,. Hence, SUD 1 Fyer(Av,) d(T(F), T(uVy)) = subpcyy, d(F, 1V,). By the same
reasoning, we get suprer(uy,) AT (AVz), T(9)) = supge,y, d(AVz, ), and thus

(2.10) dug(T(AV,), T(1Vy)) = dg(AVy, 1Vy) NpeT,z,ye MxT).
REMARK 3.15. Let A € T and (1, 2) € M x T. For each Fe AViy,2), We observe that
Af(O) €[0.1] and Fi(m)Az =[]l
In fact, £(0)+ f'(n)z = A by the definition of AV, ). Then
L=XF0) + ')z} = PLFO) + P23 < IO+ Azl < IIfllo = 1,

and thus, [Af(0) -+
¢t > 0, provided f'(n) # 0. Since MF(0) + f’(n)z} = 1, we have f’( YAz
Af(0) =t/(141t) €[0,1]. If ]?’(77) = 0, then A\f(0) = 1, and hence \f(0)

F/(mXz| = [Nf(0)|+ | f'(n)Xz|. This implies that Xf(0) = ¢f'(n)Az for some
( 1/(1 + ) and

€ [0,1] as well. In
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particular, Af(0) = |f(0)|. We infer from ]?’(n)x,z =1 - Af(0) and Hf/HOO =1—1[f(0)| that
Fxz = [ flloo-

LEMMA 3.16. For eachn € M, z € T and k € {£1}, the following equalities hold:

(2.11) sup d(ﬁ,kV(W)) = sup d(kVime,9) = |1 — k2|
FekViyp GERV(n,2)

In particular, dg(kViy k), kViy.2) = |1 — k2| for alln e M, 2 € T and k = £1.
Proor. Fix an arbitrary Fe kViyx and g € kV,, .), and then
(2.12) FO)+ ik =k and g(0)+g(n)z=k.

We notice that kf(0), kg(0) € [0,1], F'(n) = ||f|l and ¢/(n)kz = ||¢/||c by Remark 3.15. We
deduce from the choice of f and § that
(1 = k2)(kf(0) = 1) < [kf(0) — kg(0)| + [kg(0) — 1 — kz(kf(0) — 1)
= [£(0) — 9(0)] +12(9(0) — k) — (kf(0) — 1)]
= 1£(0) = 9(0)| + |g'(m) = F'(m) by (2.12)
< 1£(0) = g(O) + [ /' = &'lloo = IIf = gllo = L = G-
That is, |1 — kz|(1 — k£(0)) < ||f — Gllee. We also have |(1 — kz)(kg(0) — 1)] < ||f — §lls by a

similar calculation, and thus, |1 — kz|(1 — kg(0)) < ||f — §lle. By the liberty of the choice of
fe kEVipry and g € kV,, .), we obtain

L= k2l(1 = kf(0) < d(f,kViy) and |1 —kz|(L = kg(0)) < d(kViyu), 9)-

Setting f; = f(0) —|—I(k;§f’) and g1 = g(0) + Z(kzg'), we see that fi(n,z) = f(0) + kf’(n) =k
and G (n, k) = g(0) + z¢'(n) = k by (2.12), where we have used that Z(u)(0) = 0 for u € A.
Consequently, ]?1 € kViy») and g1 € kV{;, ). By the choice of f;, we have

If = Flle= sup |F(Cv)—ACv) = sup |(1—k2)F (vl
(CV)EMXT (C,v)EMXT
= |1 = k2| || ']l = |1 — k2| f'(n) = |1 — k2| (1 — kf(0))
by (2.12). In the same way, we get

151 = Gllo = sup |(kz = 1)g'(Qw| = [kz = 1] [|g'lloc = |1 = k2|(1 = kg(0)),
(C,v)EMXT
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which yields d(/, kVips) =1 —kz|(1 = kf(0)) and d(kViy k), 9) = |1 — kz|(1 — kg(0)). Having
in mind that kf(0),kg(0) € [0,1], we conclude that SUDFepy, d(f, EVigs) = 11— kz| =
SUDgekv, ., d(kVink), 9)- O

LEMMA 3.17. The identity ¢1(n,z) = ¢1(n, 1) holds for allm € M and z € T; we shall
write ¢1(n, z) = ¢1(n) for the sake of simplicity of notation.

PRrOOF. Fix arbitrary k € {£1}, n € M and z € T\ {£1}. We assume that ¢(n, z) #
¢1(n, k). There exists uy, € S(C(M)) such that

ur(1(n, 2)) = ka(n, 2)p2(k, (0, 2)) and  up(dr(n, k) = —ka(n, k)da(k, (1, k)).

Setting gr = Z(ug), we see that gp € ka(n, 2) Vi, m,2)) N (—ka(n, k) Vi, (n.k)), Where we have
used ¢1(\, z) = ¢1(z) by Lemma 3.11. For any f € ka(n, E)V(k,n,k)), We obtain

2 = [ka(n, k) + ka(n, k)| = [ F($(k, (n.%))) = Ge(@(k, (0, k)] < |If = Glloe < 2,

which shows d(ka (1, k) Vi, m.k)), 9x) = 2. Combining (2.8), (2.9), (2.10) and (2.11), we get

9 < sup d(ka(n, k) Ve ), 9)
9€ka(n,2) Vo (k,(n,2))

< du(ka(n, k) Vo (n.r), ke (, 2)Vok.;m.2)) = di(T(kVigr), T(kVi.2)))
= dH(k‘/(nvk)’ k‘/(nvz)) = |1 - kz|’
which implies z = —k. This contradicts z # £1, and thus ¢1(n, z) = ¢1(n, k) for z # +1.

Entering z = i and k = %1 into the last equality, we get ¢1(n,1) = ¢1(n,7) = ¢1(n, —1).
Therefore, we conclude ¢1(n, z) = ¢1(n, 1) foralln € M and z € T. d

LEMMA 3.18. The following inequalities hold for all A\, € T and x € M x T;

(2.13) X o (N, ) o, ) — po W] < [N = pl,
and  [N°W Gy (X, 2)da(, ) + 4] < [N+ pl.

Proor. Take any \,u € T and x € M x T. For each fe AV, and g € uV,, we obtain
A=l = f(2)=G(2)| < | f=Glloc, which yields |A\—p| < d(f, uV2). Set fo = Auf, and then we
see that fo € uVy with |[f = follo = [[(1 = M) fllee = |A — p|. This implies d(f, uVa) = |A — pl.
By the same argument, we see that d(AV,,q) = |\ — u|. Consequently, dg(AV,, uVy) = |\ — p|
by (2.9).

Let us define f; = a(X, 2)da(X, #)Z (1), and then we see that f; € a(), )Veong = T(AV;)
by (2.3) and (2.5). Set g1 = T'(g) for each g € uV,. Then g, € T(uV,) = o, x)Vy(uq)- By the
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definition of the set vV}, we have f{(qﬁl (2))pa (N, ) = A0 a(z) and g, (O)—l—gA{((ﬁl(x))(bg(u, x) =
p@a(x), where we have used (2.8). We deduce from (), ¢o(\, x), ¢a(p, x) € T that

0@ g (N, ) — 2@y, 2)| < |F(61(2)) — g5 (61(2))] + 191 (0)]
<1 £1(0) = g1 (0) + 1171 = Gilloe = L1 = g1lle = |3 = Gillsos

which shows [A0@ gy(X, ) — 2@y (u, 2)| < d(f1, T(11V,)). We infer from (2.9) and (2.10)
that

N2 Da(N, 2) = p Dy, 0)| < sup  d(T(f), T(nV2)

T(f)eT(A\Vy)

< du(T(AV2), T(pVz)) = da(AVa, pVe) = [A = pil.

Thus, P\EO(I)¢2<)‘7:E)¢2(N7 .flf) - MEO(I)’ < ’)\ - lu‘ NOtng that QSQ(—,U,.Q?) = ¢2(,U,.T) bY (26)7 we
obtain [A0@ gy (N, ) o (1, ) + p@ | < |\ + pl. O

LEMMA 3.19. For each x € M x T, there exists e1(x) € {£1} such that ¢2(\,x) =
@ =e1@ g (1, 2) for all N € T.

PROOF. Fix arbitrary z € M x T and A € T \ {£1}. We obtain
Ny (N, 2)ga(1,2) £ 1] < [N+ 1
by (2.13) with g = 1, which implies A°@ g, (X, 2)po(1, ) € {\, X}. Hence,
O3\, 2)ga(1, ) € (A0 Aoy,

In particular, ¢o(i,2)p2(1,2) € {£eo(x)}, and thus ¢a(i,x) = e1(x)eo(x)pa(l, z) for some
e1(x) € {£1}. Entering p = i into (2.13), we get

A —i| 2 M@y (N, 2)gn (i, x) — eo(2)i] = X do (N, 2)er (2)da(1, 2) — i].

By the same reasoning, we have |\ +i| > |A\0®@gy(\, x)e; (2)¢po(1,2) +1i|. Then we derive from
these two inequalities that MA@ ¢y (X, z)e; (7)p2(1, 1) € {A\, —A}. Thus, e1(z)p2(\, 2)po(1, ) €
{Al==0(@) _\~1==0(=)} Now we obtain

Do\, ) pa(1, ) € {AL50@ \~1==0@ A L) () NI720@) gy ()N TLmE0l@

Note that A # +1. If £1(z) = 1, then we get ¢o(\, 2)¢o(1, ) = A1 750 and if £, (z) = —1, then
da( N, 2) o (1, ) = A1) These imply that (X, 2)po(1, 2) = A1 @20 for X € T\ {£1}.
The last identity is valid even for A € {+1} by (2.6). Therefore, we conclude that ¢o(\, z) =
Aeo@=e1(@) gy (1, x) for all A € T. O
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We shall write ¢o(1,2) = ¢o(z) for 2 € M x T. Let A € T and x € M x T. By (2.8),
(f)(¢1( ), d2(A, ) = ANo@a(z) = a(\,z) for f € S(Lip(I)) with f € AV,. Noting that
T(f) = A(f) by (2.4), we infer from Lemma 3.17 that

(2.14) A(0) + A (61(m)ds(A, ) = a(A, z)

forall A\ €T, z=(n2) € MxTand f € S(Lip(I)) with f € AV,. If we apply Lemma 3.19,

then we can rewrite the last equality as
(2.15) A(F)(0) + AF) (@1 () A=y (2) = A*Pa(z)
for \€ T,z =(n,2) € M x T and f € S(Lip(])) satisfying f € AV,.

LEMMA 3.20. Suppose that A(Ao17)(0) = 0 for some A\g € T. Then Am)’ =0on M
for the identity function id; on I.

PRroor. Fix arbitrary n € M and z € T, and we set x = (n,z). We note Ml; € AV,
and then equality (2.15) shows that A(//\OTI)’(gbl(n))/\gel(m)gzb(x) = a(z). We set e(n) =
()\0 1;)/(¢1(n)) for the sake of simplicity of notation. Then we can rewrite the above equality

as
(2.16) ey ™ “da(x) = ala).
Since Agid; € M2V, we get, by (2.15),
A(aid;)(0) + AQidr) (61(1) (Mo2)* @~y (2) = (M2)*@ar(a).

Combining (2.16) with the last equality, we obtain

Aoidr)(0) + AQgidy ) (61(1) (o2) @Dy () = (M) @e(n)Ag ™ D (a),
which leads to

A(Noidr)(0) = (2)* @ {e(n)2) — Alroid;) (61(1)) } (o2) @ a(2).

Note that |e(n )| = 1by (2.16). Taking the modulus of the above equality, we get |A(Agid;)(0)| =
|251@) —e(n) A (/\gzdf) (¢1(n))|. Since z € T is arbitrary, the last equality holds for z = £1, 1.
Then we have A()\Oidl) (¢1(n)) = 0. Having in mind that n € M is arbitrarily fixed, we obtain
Am)’ = 0 on M, where we have used ¢ (M) = M by Lemmas 3.9, 3.11 and 3.17. O

LEMMA 3.21. For each A € T, the value A(A1;)(0) is nonzero.
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—

PROOF. Suppose, on the contrary, that A(Ag1;)(0) = 0 for some A\g € T. Then A(ANgid;)" =
0 on M by Lemma 3.20. We define a function fy € S(Lip(I)) by fo = Ao(2id;+id3)/4. We shall
prove that ]?(/)(770) = )\ for some 1y € M. Let R(id;) be the essential range of id; € Lip(I),
that is, R(id;) is the set of all { € C for which {t € I : |id;(t) — (| < €} has positive measure
for all € > 0. By definition, we see that R(id;) = id;(I) = I. For the spectrum o(id;) of
idy, we observe that R(id;) = o(id;) = %/al\l(./\/l) (see, for example, [23, Lemma 2.63]). Thus,
there exists 1y € M such that zb/d\](no) = 1, which yields j/?](no) = No(2+ 2@(7}0))/4 =)o as is
claimed. Fix an arbitrary z € T, and then we see that )\O/E € AozV(yy,z) with Am)’ =
on M. Applying (2.14) to f = Agidr, we have A(Agidr)(0) = a(Noz, (10, 2)). Having in mind
that z € T is arbitrary, we may enter z = %1 into the last equality. Then we get

(2.17) (Ao, (10, 1)) = a(=Ao, (0, —1)).

Note also that ]70 € X02V(y,2), and thus

A(f0)(0) + A{fo) (61(m))d2(oz. (0. 2)) = a(Aoz. (. 2)
by (2.14). Since A(Agid;)(0) = a(Noz, (1m0, 2)), we can rewrite the above equality as

—

(2.18) A(fo)(0) + A(fo) (¢1(n0))2(Xoz, (no, 2)) = A(Aoid)(0),

— o —

which yields |A(Aoid;)(0) — A(£o)(0)] = [A(fo) (¢1(110))] < IIA(fo)llec. We thus obtain

2| A(fo) lloe = |Aidr) (0) = Afo) (O)] + 1A(fo) [l

—

= [A(Aoidr)(0) = A(fo)(O)] + [[A(Aoidr)" = A(fo) [l

. . 1.~ — 1
= [A(Noidr) — A(fo)llo = [[Moidr — follo = §||1f —idr]|o = 5

—

Hence, we have ||A(fo)'[lcc > 1/4, which implies |A(fy)(0)] < 3/4, since ||A(fo)ll, = 1. It
follows from (2.18) that

—

1= fa(Xoz, (0, 2))| = [A(Aoidr) (0)] = |A(f0)(0) + A(fo) (61(10))P2(Aoz, (10, 2))]

—

Since |A(fo)(0)| < 3/4, we see that A(fo)'(¢1(m0)) # 0. By the liberty of the choice of z € T,
we deduce from (2.18) that ¢o(Aoz, (10, 2)) is invariant with respect to z € T. Entering z = +1

into ¢2(Aoz, (o, 2)), we get

(2.19) P2(Ao, (M0, 1)) = Pa(—Ao, (10, —1)).
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Set f1 = \o(2 + id?)/4 € S(Lip(I)), and then we have fi € AoVino,1), because zd](no) =1 We
deduce from (2.14) that

—

(2.20) A(f1)(0) + A1) (d1(m0))D2(Ao, (M0, 1)) = (Ao, (10, 1))-

Combining (2.17) and (2.19) with (2.20), we have

A(f)(0) + A1) (61 (10))da(— Ao, (mo, —1)) = (=, (110, —1)).

Here, we recall that T(f)) = K(\fl/) by (2.4). Then the above equality with (2.5) and

(2.14) implies that T(f;) € a(=Xo, (M0, =1))Va=ro,tm—1) = T(=XoVino,—1)), which shows

]71 € (—=A0)V(no,—1)- Consequently, ]?1 € (—=20)Vino,—1) N XoViyo,1), and therefore, we obtain
f1(0) = fi(no) = =Ao = —{f1(0) + fi(m0)}.

This leads to f1(0) = —f1(0), which yields f1(0) = 0. On the other hand, f;(0) = \o(2 +
id?(0))/4 = Xo/2 # 0. This is a contradiction. We conclude that A(A1;)(0) # 0 for all
AeT. U

LEMMA 3.22. The values a(x) and eo(x) are both independent from the variable x € M X T;

we shall write a(x) = a and go(x) = £.

PROOF. Take any A\ € T and z = (n,z) € M x T. According to (2.14), applied to f = A1y,

we have
1= \*@a(z)] = [ANL)(0) + Aﬁywn»w,xﬂ
< JAMNL)(0)] + [AALY (61 (m)] < ALy = 1.
The above inequalities show that
[AGL)(0) + ALY (61(0)da(X, x)] = 1 = [ANL)(0)] + |ANLY (61(n))].
Note that A(AII)(O) # 0 by Lemma 3.21. By the above equality, there exists ¢ > 0 such that
ALY (61(7)da (A, 2) = tA(NL;)(0). We thus obtain
AL (0)] = ALY (é1(n)] = 1 — |AAL)(0)],

which yields (1 4 t)|A(A1;)(0)] = 1. Consequently,

A(A1;)(0)

Ao a(z) = AL (0) + ALY (61 (n)do (A, 2) = (1 + )A(NL)(0) = [A(AL)(0)]
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by (2.14). Then a(z) = A(1,)(0)/|A(1;)(0)| is independent from = € M x T. Letting A =1
in the above equality, we get igo(z)a(z) = A(i17)(0)/|A(i17)(0)]. Thus, ¢ is constant on
M x T. O

By Lemma 3.22, we can rewrite (2.15) as

(2.21) AF)(0) + AU ($1(m)A 1P gy(2) = A0
forall A\ €T, z = (n,z) € M x T and f € S(Lip(I)) with f € AV,.

LEMMA 3.23. Let n € M, A € T and f € S(Lip(I)) be such that f'(n) = X. Then A(f)
satisfies A(f)(0) =0 and

(2.22) A (1) da(Az, (0, 2)) = (A2)™a

forall z € T.

PROOF. Fix an arbitrary z € T. By the choice of f, we have fe A2V ). By (2.21) with
¢2<)‘27 (777 Z)) = ()‘2)60_61(”7z)¢2(777 Z)a we obtain

(2.23) A)(0) + A(FY (b1 (M) b2 (A2, (1, 2)) = (A2)Pa.

We observe that HA( ) ||loo # 0; for if HA( ) |loo = 0, then we would have A(f)(0) = (Az)=«
for all z € T, which is impossible. Equality (2.23) shows that

—

1 =[A(f)(0) + A(f) (¢1(n)P2(Az, (0, 2))]
< IAHO)] + A (@) < AP0 = 1,
and hence, |A(f)(¢1(1))] = [|IA(f) |l # 0. Then there exists s > 0 such that
(2.24) A(F)(0) = sA(FY (1 (m) oAz, (. 2)).
It follows from (2.23) that

(14 $) A (61 () ba(Az, (m, 2)) = (A2)*a,

which yields (1—}—3)HA( ) |leo = 1, or equivalently, SHK(\)HOO =1- HA( )|loo- These equalities
show that

AV (@n(m)oa(Az, (n.2)) = [A(Y | (Az) 00
We deduce from the last equality with (2.24) that A(f)(0) = s||A( ) |loo(A2)®ax = (1 —
HA( ) |loo) (A2)%0cv, that is,

AF(0) = (1= [A(fV]le)(A2) 0
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By the liberty of the choice of z € T, we get 1 — ||A( )]le =0 = A(f)(0). Thus, by (2.23),
(f) (p1(n))p2(Az, (n,2)) = (Az)®«a for all z € T. 0

LEMMA 3.24. For each \,z € T and n € M,
da(N, (1, 2)) = X051 Mgy (1, (n, 1)) 252,
where e1(n) = e1(n, 1).

PROOF. Fix arbitrary A,z € T and n € M. Setting p = A\Z and v = ply € S(C(M)), we
see that Z(v) € S(Lip(I)) satisfies I/(\v)’(n) = p by (2.3). We may apply (2.22) to f = Z(v),
and we get A@)’((bl (n))p2(pz, (n, 2)) = (1z)*°a. Therefore, we obtain

AT ) (61 (0)balpz, (n,2) = par - 2 = AT (0) (6(1)) o, (1, 1)) 2.
Then A(Z(0))(¢1(1)) # 0, and hence ¢o(uiz, (1, 2)) = (i, (1, 1))2%. This implies
do(\, (n,2)) = da(NZ, (n,1))=".
Applying Lemmas 3.19 and 3.22 to the last equality, we now get

Ga(, (n,2)) = d2(AZ, (0, 1)) 27 = (A2)™ 7 Wa(1, (n, 1))
_ )\50—51(77)(;52(1’ (77’ 1))251(77)‘

Consequently, ¢o(X, (17, 2)) = X051 Mgy (1, (n, 1)) 2520, 0
We shall write ¢o(1, (n,1)) = ¢a(n) for simplicity. According to Lemma 3.24, we can write

(2.25) Ba(N, (1, 2)) = X051 g5, (1) 251 ()

for all A € T and (7, z) € M x T. Combining (2.21) and (2.25), with ¢y(\, 1) = A\0~51 @) gy (1),

we obtain

(2.26) A(F)(0) + A(FY (1 (m) A== 0gy (1) 2510 = N0y
forall A€ T, (n,z) € M x T and f € S(Lip(I)) with f € AVinz)-

LEMMA 3.25. Let A\ € T, (n,2) € M xT and f € S(Lip(1)) be such that fe AV, Then

AN 0) = AN ONa and A (61(1) = D) AP ady ()21,

In particular,

(2.27) A O)] + A ()] = 1£0)] + ()]
for all f € S(Lip(I)) with f € \V,..).
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PROOF. By assumption, (2.26) holds. Taking the modulus of (2.26) to get
(2.28) L < A O]+ [ACS) (91(n) Ay (1) 27|
< IADO]+ 1A e = Ao = 1.

We derive from the last inequalities that |A(f) (P1(n))| = ||A( ) || oo-

If A(f)(0) = 0, then the identity A(f)(0 ) = |A(f)(0)|\*°«v is obvious; in addition, HA/(f\)’HOO =
IA(f)]|, = 1, and hence A(f) (p1(n)) = ||A( ) loo AT v (1 ) —51() by (2.26). We next con-
sider the case when A(f)(0) # 0. There exists s > 0 such that A(f) (¢1(n)) A0t oy () 251N =
sA(f)(0) by (2.28). Entering the last equality into (2.26) to get (1 + s)A(f)(0) = A*°a. We
thus obtain (1 + s)|A(f)(0)] = 1, and consequently, A(£)(0) = |A(f)(0)|A0« holds even if
A(f)(0) # 0. Having in mind that |A(f)(0)| + HA( )|lc = 1, we infer from (2.26) that

IA(f) oA = (1= |A(S)(0))A"a = X — A(f)(0)
= A(f) (@1 (m) A0 gy (1) 2510,
This shows that A(f)(¢1(1) = |AF) A D aga(n)z—1®). Since f € AV, we get
L=\ = [£(0) + F(m)zl < 1FO)]+[F )] < Ifle =1,
and hence [A(f)(0)] + [A(f) (é1(m) = 1 = [£(0)] + |/ (n)]: O
For each A € T and n € M, we define AP, by
AP, = {u € S(C(M)) : u(n) = A}

LEMMA 3.26. Let g € M and f € S(Lip(I)). We set A = f'(no)/| ' (mo)| if F'(mo0) # 0,
and A =1 if ]?/(770) = 0. For eacht € R with 0 <t < 1, there ewists u; € P,, such that

L) +1F + {1 = [ (O)] = [tF/(m0) | Aus € AP,
PROOF. Note first that 1 — [t£(0)| — [tf(110)| > 0, since [t£(0)] + [tf'(no)| < |[tf]l» < 1.
We set 7 =1 — [tf(0)| = [tf'(no)l,
Go = {ne M:tFn) — tFm)| = 7}
and G = {n€ M: s < [tF () = tF (n0)| < 577 }

for each m € N. We see that G,, is a closed subset of M with ny ¢ G, for all n € NU{0}. For
each n € NU {0}, there exists v, € P,, such that

(2.29) v, =0 on G,
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by Urysohn’s lemma. Setting u; = vy >, v,/2", we see that u,; converges in C'(M), since

|vn]lo = 1 for all n € N. We observe that

|n ] oo
2n

1= () < [Juelloo < [lvolloe Y =1
n=1

and hence u; € P,,. Here, we define
wy = [tFO)A +tf + rAu, € C(M).
We shall prove that w, € AP,,. Since u;(19) =1 and t]/f\’(no) = \t]?’(no)\)\, we have

wi(m) = [F O+ ¢F/ (o) + {1 = L O] — [t ()| } A = .

Fix an arbitrary n € M. To prove that |w(n)| < 1, we shall consider three cases. First, we
consider the case when 7 € Gy. Then vy(n) = 0 by (2.29), and hence u,(n) = 0 by definition.
We thus obtain |w(n)| < |]tf(0)|)\+t]?’(n)\ < ||tflls < 1, and consequently, |w;(n)| < 1 if
n € G.

We next consider the case when n € U2 ,G,,, and then n € G, for some m € N. By the
choice of G, we get [tf/(n) —tf (no)| < /2™ +1. Thus, |tf'(n)] < [tf (no)|+7/2™ 1. We derive
from (2.20) that [rAwc(n)] < rlto(n)] Sy [tn(m)]/2" < r(1—277). Since [¢£(0)] + [£F ()] =

1 — r, we obtain

)] < [LFO)+ P + ()] < 6O+ 1T O]+ g+ (1= 5

=(1-r)— +r=1 <1

gm+1 B gm+1

Hence, |wy(n)| < 1 for n € U2 ,G,.

Finally we consider the case when n ¢ U® (G,,. Then J/C\’(T)) = J?’(ng), and hence |w;(n)| <
ltf(0)] + |tf’(770)| +r = 1. We thus conclude that |w;(n)| < 1 for all n € M, and consequently,
wy € APy, 4

3. Proof of Main results

Proof of Theorem 3.1. Fix arbitrary f € S(Lip(I)) and n € M. Set ¢ = ¢1(n) and

X = F)/[f (] if F'(n) # 0, and A = 1if f'(5) = 0. Thus, f'(n) = |['(n)|A. For each t € R
with 0 < t < 1, we define r = 1 — |tf(0)]| — ]t]/"\’(n)|, and then r > 0. By Lemma 3.26, there
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exists u; € P, such that w, = [tf(0)|\ + tf + riuy € AP,. We obtain
lwe = Flloe = IEFO)A+ (& = 1) F + rAue]o
< EFO)] + (L= Ol Flloo + 1 = [££(0)] = [¢F/(n)]
= (L= )| f'lloc + 1 = [t ().

L — —_—

Since wy € AP,, we see that Z(wy)' () = we(n) = A, that is, Z(w;) € AV, 1). Then A(Z(wy))(0) =
0 and A@))’(C) = A@))’(qﬁ(n)) = A1 agpy(n) by Lemma 3.25. We get

1= [AUY(Q)] = N Dagy()] — A (O] < A Paga(n) — A Q)
= |AZ(w))(¢) = AUY(O] < IAT(w) — AVl
= AT (w)) — Ao — [AF)O)]
= |1 Z(w) — fllo = A = 1£O)] + lwr — Flloe — |A)(0)]
<1FO)]+ (1 =Dl Pl + 1~ L7 ()] — 1A O],
where we have used that A(Z(w;))(0) = 0 = Z(w;)(0) and A is an isometry. Letting ¢ 1 in
the above inequalities, we have

31) 1= AU < N Dags(n) — AVl < [FO0)] + 1= ()] — |AU)(O)]-

In particular, we obtain [A(f)(0)] — [A(f)/(C)] < [£(0)| — |f/(n)], that is,

(3.2) IACFO)] = A (d ()] < 1£O)] = [F(n)].

Let g € M be such that | /()| = | /'lloc. There exist 1, z € T such that f(0) = [f(0)| and
J'(0) = 17 ()] = 1/l Thus,

1)+ J'(o)zi = (LSO + [ Flloc)tt = 1 fllor =

and hence f € Vo zn)- Equality (2.27) shows that

(3.3) IA)O)] + [AF) (6 (n0))| = 1£O)] + |F ().

Note that |A(f)(0)] — ]K(f\)’(qbl(no))\ < |f(0)] — \f’(no)| holds by (3.2). If we add the last
inequality to (3.3), we get |A(f)(0)] < |f(0)|. We may apply the above arguments to A~1,
then we obtain [A™(g)(0)] < |g(0)] for all ¢ € S(Lip(/)). Entering g = A(f) into the last
inequality to get |f(0)] < |A(f)(0)], and thus



It follows from (3.2) that |f'(n)] < |A/(f\)’(gb1(n))| Having in mind that f € Vi zy and
f(0) =|f(0)|u, we derive from Lemma 3.25 that

(3.4) A(S)0) = [ANO)pa = [f0)|pa = [f(0)]Fa,

where V] =vifeg=1and [y =7 if gy = —1 for v € C.

Now we shall prove that ¢; is injective. Suppose that ¢1(n1) = ¢1(n2) for m,my €
M. Set f1 = I(lM) and thus ]?{(nj) =1 for 5 = 1,2 by (2.3). Equalities (2.22) and
(2.25) show that A(fl) (p1(n;))P2(n;) = « for j = 1,2. Since ¢1(m) = ¢1(n2), we have
¢2(m) = ¢2(n2). Applying Lemmas 3.17, 3.22 and 3.24 to (2.8) with A = 1, we obtain
T(Via,n1)) = aVigim).ea(n))- Therefore, we get T'(Vi (m,1))) = T (V(1,(ne,1))), and consequently,
Vo) = Vit,me,1))- Lemma 3.4 shows that 1, = 7, which proves that ¢, is injective. Now,
we may apply the arguments in the last paragraph to A~' and ¢;', and then we obtain
AUY(Q < 1A ALY (@1 ()], which shows [A(F) (61(n))] < [F/(m)]- We thus conclude
that [A()(O)] = [AUFV(@(n)] = [F(m)]. By inequalities (3.1) and |A(f)(0)] = |f(0)], we

obtain
XD aga(n) — A(f) (O + A Q)] = 1.
The above equality implies that K(f\)'(g ) = s\t Mag,(n) for some s > 0. Then

s = s\ Caga ()| = A Q)] = [T (),

~

[F))10, since J'(5) = [ F/(n)|A. We infer from A(f)(¢) =
)5 ozgzﬁg—(n). Hence,

and thus, s\*1() = ]f’(n)\)\al =
A= agy(n) that A(F)(C) = [F(

(3.5) A(FY(@1(n) = ada(m) [F ()]

for all f € S(Lip({)) and n € M.
We now define 7" : Lip(/) — Lip(/) by

ol () it g e L\ (),
T(g) = gl
0 it g=0.
By the definition of T" with (3.4) and (3.5), we observe that

(3.6) T(9)(0) = alg(0)) and T (g)(¢r()) = ads(m)lg' ()]
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for all g € Lip() and n € M. We thus obtain

—_—

IT(91) = T(g2)llo = [T(92)(0) = T(g2)(0)] + sup T(91)"(¢1(n)) = T(g2)'(61(n))]

= ‘91(0) - 92(0)’ =+ sup ‘9’1(77) - 95(77)’ = Hgl - 92“a
nemM

for all g1, g € Lip(I), where we have used ¢(M) = M. Hence T is an isometry on Lip(/). We
infer from (3.6) that 7" is real linear. We deduce that 7' is surjective, since so is A. Therefore,

T is a surjective, real linear isometry on Lip([) that extends A to Lip([). O

Proof of Corollary 3.2. Let 77 be a surjective isometry on Lip(/). By the Mazur-Ulam
theorem [52], 77 —T7(0) is a surjective, real linear isometry. Without loss of generality, we may
and do assume that 7} is a surjective real linear isometry. Since 75! has the same property as
Ti, we see that T} maps S(Lip()) onto itself. Now we may apply (3.4) and (3.5) to T}, and

then we obtain

Ti(f)(0) = alf ()] and Ty(f)(¢1(n)) = aga(m)[F'(n)"*®

for all f € Lip(I) and n € M, where a € T, g9 € {£1}, ¢1: M — M, ¢o: M — T and
e1: M — {£1} are from proof of Theorem 3.1. As we proved in the second paragraph of
Proof of Theorem 3.1, we know that ¢ is injective. By Lemma 3.9, ¢, = ¢; ' is well defined,

and then we have

—

(37) Ti(F) () = ada(a ) [P/ (wn () )

for f € Lip(/) and n € M. We shall prove that ¢, and ¢ are both continuous. Let {n,} be a
net in M converging to n € M. By the continuity of TT(\f)’ , we see that ]TT(\f)’(na)] converges
to |T/1(-f\)’(77)| for each f € Lip(/). This implies that |f’(@[)1(77a))| converges to |f’(@/}1(77))| for
every f € Lip(I) by (3.7). Since the weak topology of M induced by the family {\f’\ cfe
Lip(/)} is Hausdorff, we observe that the identity map from M with the original topology
onto M with the weak topology is a homeomorphism. Hence, 1(n,) converges to v (n) with
respect to the original topology of M, and thus v is continuous on M. Since 1 is a bijective
continuous map on the compact Hausdorff space M, it must be a homeomorphism. Let id;
be the identity function on I. Then we have Tl/(id\l)’ = agy 0Py by (3.7), which implies the
continuity of ¢, on M. Moreover, the identity Tlazbz))’ = apy 0y i(e; 0 1)y) shows that
£1 0 ¢ is continuous on M. Since 7, is a homeomorphism, we have €; = (g1 0 1) o @Z)l_l is

continuous on M as well. Then M; = {n € M : e;(¢1(n)) = 1} is a closed and open subset
of M with €1(¢1(n)) = —1 for all n € M\ M;.
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We define a map ®: C(M) — C(M) by ®(u)(n) = [u(y1(n))]**@* @) for v € C(M) and
n € M. We see that ® is a well defined real linear map on C(M). For each vy € C(M),
we set ug(n) = [vo(¥7 (n))]™ for n € M. Then we have ®(ug)(n) = [uo(¥y1(n))]* @) =
[vo ()] (WrmMIer@i() — 4)0(n), which shows that ® is surjective. It is routine to check that &
is an injective homomorphism, and consequently, ® is a real algebra automorphism on C'(M).
Let I" be the Gelfand transformation from L*°(I) onto C' (M), that is, I'(h) = R for h € Lo(I).
We define a real algebra automorphism ¥ = T'"* o ® o' on L°°(I). For each f € Lip(/) and
n € M, we obtain

P )] @) = (F) () = (@ o T)(f) () = (Do W)(f)(n) = T(¥(f))(n).

By the continuity of ¢, and 1, we may set hg = I' ! (ago 0 1p1) € L=(I). We derive from (3.7)
that

— —

T (f) () = T(ho) ()T (W () (n) = T (ho W () (n) = ho¥ (f")(n)
for all n € M. Therefore, we conclude T1(f)" = hoW(f’) for every f € Lip(J). According to
(2.2), we have

T(F)(t) = Tu(£)(0) + / Ty(f) dm = alf(0)] + / hoW(f) dm

for every t € I and f € Lip(I). O
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