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A B S T R A C T   

SETD1A has been identified as a substantial risk gene for schizophrenia. To further investigate the role of SETD1A 
in the genetic etiology of schizophrenia in the Japanese population, we performed resequencing and association 
analyses. First, we resequenced the SETD1A coding regions of 974 patients with schizophrenia. Then, we gen-
otyped variants, prioritized via resequencing, in 2,027 patients with schizophrenia and 2,664 controls. Next, we 
examined the association between SETD1A and schizophrenia in 3,001 patients with schizophrenia and 2,664 
controls. Finally, we performed a retrospective chart review of patients with prioritized SETD1A variants. We 
identified two novel missense variants (p.Ser575Pro and p.Glu857Gln) via resequencing. We did not detect these 
variants in 4,691 individuals via genotyping. These variants were not significantly associated with schizophrenia 
in the association analysis. Additionally, we found that a schizophrenia patient with the p.Glu857Gln variant had 
developmental delays. In conclusion, novel SETD1A missense variants were exclusively identified in Japanese 
patients with schizophrenia. However, our study does not provide evidence for the contribution of these variants 
to the genetic etiology of schizophrenia in the Japanese population.   

1. Introduction 

The genetic architecture of schizophrenia has not been fully eluci-
dated but has been progressively uncovered (Legge et al., 2021 Smeland 
et al., 2020; Sullivan and Geschwind, 2019;). Genome-wide association 
studies have identified 270 loci associated with schizophrenia in Euro-
pean and East Asian populations (Schizophrenia Working Group of the 
Psychiatric Genomics Consortium, 2020), and several rare copy number 
variants have also been associated with schizophrenia in these pop-
ulations (CNV and Schizophrenia Working Groups of the Psychiatric 
Genomics Consortium; Psychosis Endophenotypes International Con-
sortium, 2017 Kushima et al., 2017; Li et al., 2016;). Whole-exome 
sequencing studies have been performed mainly in European pop-
ulations and have revealed that rare variants contribute substantially to 
the genetic risk for schizophrenia (Singh et al., 2020). 

The SETD1A gene has been identified as a schizophrenia risk gene 
with a large effect size (Singh et al., 2016 Takata et al., 2016;). The 

Schizophrenia Exome Sequencing Meta-analysis Consortium confirmed 
that ultra-rare loss-of-function (nonsense, frameshift, and splice site) 
variants and predicted damaging missense variants of SETD1A conferred 
risk for schizophrenia in 24,248 patients, 97,322 controls, and 3402 
parent-proband trios, mainly from European populations 
(https://schema.broadinstitute.org/results Singh et al., 2020;). Five 
novel singleton loss-of-function and missense SETD1A variants were 
found in 786 Ashkenazi Jewish patients with schizophrenia but not in 
463 controls (Lencz et al., 2021). Furthermore, a whole-genome 
sequencing study of 251 families with a proband with schizophrenia 
and related disorders found two rare de novo loss-of-function and 
missense SETD1A variants in Ashkenazi Jewish patients with schizo-
phrenia (Alkelai et al., 2021). However, no de novo SETD1A variants 
were identified in 1695 Taiwanese trios included in the Schizophrenia 
Exome Sequencing Meta-analysis (Howrigan et al., 2020). Further 
studies in non-European populations are warranted to firmly establish 
the association between SETD1A and schizophrenia. 
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A novel missense variant was identified via resequencing of the 
SETD1A coding regions of 390 Japanese patients with schizophrenia 
(Kimura et al., 2016). However, this variant was not associated with 
schizophrenia in 1783 patients with schizophrenia and 2213 controls. In 
this previous study, ultra-rare variants may not have been sufficiently 
identified because of the sample size used for resequencing (n = 390). By 
increasing the sample size, we attempted to further investigate the role 
of ultra-rare SETD1A variants in the genetic etiology of schizophrenia in 
the Japanese population. First, we resequenced the SETD1A coding re-
gions in 974 patients with schizophrenia. Then, we genotyped variants, 
prioritized via resequencing, in 2027 patients with schizophrenia and 
2664 controls. Next, we examined the association between SETD1A and 
schizophrenia in 3001 patients with schizophrenia and 2664 controls. 
Finally, we performed a retrospective chart review to obtain the clinical 
characteristics of patients with prioritized SETD1A variants. 

2. Methods 

2.1. Participants 

This study was approved by the Ethics Committee of each partici-
pating institute, and written informed consent was obtained from all 
participants. 

All participants were unrelated and of Japanese descent. Rese-
quencing of the SETD1A coding regions was conducted on 974 patients 
with schizophrenia (Table 1). Genotyping of variants prioritized via 
resequencing was performed on 2027 schizophrenia patients and 2664 
controls. The population of patients who underwent resequencing did 
not overlap with the population of patients who underwent genotyping. 

Each participant was subjected to a psychiatric assessment, as pre-
viously described (Igeta et al., 2019). In brief, patients were diagnosed 
in accordance with the Diagnostic and Statistical Manual of Mental 
Disorders, Fourth or Fifth Edition criteria by at least two experienced 
psychiatrists. The controls included mentally healthy individuals, with 
no personal or family history (within first-degree relatives) of psychi-
atric disorders. 

We performed a retrospective chart review to obtain the clinical 
characteristics of patients with SETD1A variants that were prioritized 
via resequencing. 

2.2. Resequencing of the SETD1A coding region 

Genomic DNA was extracted from blood leucocytes using a QIAamp 
DNA Blood Maxi Kit (QIAGEN, Germany). 

SETD1A coding regions (RefSeq NM_014712) were resequenced in 
974 patients with schizophrenia using Sanger sequencing (Supplemen-
tary Table 1), as previously described (Nunokawa et al., 2010). 

We prioritized ultra-rare loss-of-function variants and missense 
variants with a Missense badness, PolyPhen-2, and Constraint (MPC) 
score ≥ 2 because these SETD1A variants have been significantly asso-
ciated with schizophrenia (Singh et al., 2020). The MPC score is a 
deleteriousness metric for missense variants (Samocha et al., 2017). An 
ultra-rare variant was defined as a variant with five or fewer alternative 
allele counts in the Tohoku Medical Megabank Organization 8.3KJPN 
allele frequency panel from the Japanese Multi Omics Reference Panel 
(https://jmorp.megabank.tohoku.ac.jp/202,102/variants Tadaka et al., 
2021;), the Genome Aggregation Database v2.1.1 (non-neuro) 

(http://gnomad.broadinstitute.org/ Karczewski et al., 2020;), and the 
Trans-Omics for Precision Medicine freeze 8 database (Taliun et al., 
2021) from BRAVO (https://bravo.sph.umich.edu/freeze8/hg38/). 

We also prioritized novel singleton missense variants that were not 
registered in these three databases because Lencz et al. (2021) reported 
that novel singleton loss-of-function and missense SETD1A variants were 
identified only in patients with schizophrenia and not in controls. 

2.3. In silico analysis 

We predicted the functional impact of the missense variants priori-
tized via resequencing using the MPC score and the Polymorphism 
Phenotyping v2 (PolyPhen-2; http://genetics.bwh.harvard.edu/pph2/ 
Adzhubei et al., 2010;), Sorting Intolerant From Tolerant (SIFT; 
https://sift.bii.a-star.edu.sg/ Sim et al., 2012;), and Combined Annota-
tion Dependent Depletion (CADD) v1.6 (https://cadd.gs.washington. 
edu/ Rentzsch et al., 2021;) tools. 

2.4. Genotyping 

We genotyped variants prioritized via resequencing in 2027 patients 
with schizophrenia and 2664 controls using the TaqMan 5′-exonuclease 
assay (Thermo Fisher Scientific, Waltham, MA, USA; Supplementary 
Table 2), as previously described (Watanabe et al., 2006). 

2.5. Statistical analysis 

To determine whether the SETD1A variants prioritized via rese-
quencing contribute to the genetic etiology of schizophrenia in the 
Japanese population, we performed a gene-based association analysis of 
3001 patients and 2664 controls, including 974 patients who underwent 
resequencing and 2027 patients and 2664 controls who underwent 
genotyping, using the cohort allelic sums test (https://rdrr.io/cran/ 
AssotesteR/src/R/CAST.R Morgenthaler and Thilly, 2007;). A proba-
bility level of p < 0.05 was considered to indicate statistical significance. 

3. Results 

We identified 40 common and ultra-rare variants via resequencing of 
the SETD1A coding region of 974 patients with schizophrenia (Supple-
mentary Table 3). There were no common or ultra-rare loss-of-function 
variants, and one common missense variant was found, with an MPC 
score of 2.42: p.Gln90His (g.30972611G>C; rs976305904). The alter-
native allele count of p.Gln90His was 35 of 16,760 in the Tohoku 
Medical Megabank Organization 8.3KJPN database, whereas this 
variant was not registered in the Genome Aggregation Database v2.1.1 
(non-neuro) or the Trans-Omics for Precision Medicine freeze 8 data-
base. Therefore, p.Gln90His was not ultra-rare and was not prioritized. 

We prioritized two novel singleton missense variants, p.Ser575Pro 
(g.30976925T>C) and p.Glu857Gln (g.30978268G>C Table 2;), which 
were confirmed by repeat PCR analysis and repeat Sanger sequencing 
(Supplementary Fig. 1). The MPC scores for p.Ser575Pro and p. 
Glu857Gln were 0.68 and 0.63, respectively. These missense variants 
were predicted to be probably damaging and damaging by PolyPhen-2 
and SIFT, respectively. The CADD scores for p.Ser575Pro and p. 
Glu857Gln were 25.2 and 24.6, respectively, indicating that these var-
iants were predicted to be among the top 1% of the most damaging 
variants. We also identified a novel singleton synonymous variant: p. 
Ala483Ala (g.30976512C>A; Supplementary Table 3). However, this 
variant was not a missense variant and was not prioritized. 

Next, we genotyped p.Ser575Pro and p.Glu857Gln in 2027 patients 
with schizophrenia and 2664 controls (Table 2). These variants were not 
detected in any of the 4691 individuals. When we combined the samples 
used for resequencing and genotyping, no significant association was 
observed between the set of novel missense SETD1A variants and 
schizophrenia (cohort allelic sums test p = 0.63). 

Table 1 
Characteristics of study participants.  

Characteristic Resequencing Genotyping   
Schizophrenia Schizophrenia Control 

N 974 2027 2664 
Men (%) 504 (51.7%) 1050 (51.8%) 1243 (46.7%) 
Mean age (SD) 42.1 (14.6) 50.3 (15.3) 43.7 (15.8)  
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The clinical characteristics of schizophrenia patients with novel 
missense SETD1A variants are shown in Table 3. Ser575Pro was iden-
tified in a 63-year-old female patient who developed delusions in her 
thirties. At age 60, she visited a psychiatrist for the first time. At age 63, 
her persecutory delusions and disorganized behaviors deteriorated. She 
was hospitalized for 6 months and was treated with perospirone (16 mg/ 
day). Her total scores on the 16-item Brief Psychiatric Rating Scale, 
which ranges from 0 to 96, on admission and at discharge were 32 and 
23, respectively. Her full-scale intelligence quotient was 92, as assessed 
using the Wechsler Adult Intelligence Scale-Revised. Brain magnetic 
resonance imaging showed mild ischemic lesions in the deep white 
matter around the lateral ventricles. She also had type 2 diabetes but did 
not have epilepsy or a family history of psychiatric disorders. Genomic 
DNA samples from her parents were not available, and we were unable 
to determine whether p.Ser575Pro was a de novo or an inherited 
mutation. 

A Glu857Gln variant was identified in a 59-year-old male patient 
who was born one month preterm. He exhibited a prolonged fever at 
approximately 10 months of age and had developmental delays in 
walking and speaking. He presented persecutory delusions and psy-
chomotor agitation at age 33, and these symptoms were successfully 
treated with haloperidol (1.5 mg/day) and sulpiride (100 mg/day). 
Although negative symptoms remained, he continued his job. His- 
intellectual functioning was not evaluated. Brain magnetic resonance 
imaging at age 39 showed mild frontal lobe atrophy. He also had hy-
pertension but did not have epilepsy. His-older brother had also been 
diagnosed with schizophrenia. However, genomic DNA samples from his 
brother and parents were not available. Therefore, we were unable to 
determine whether this brother was heterozygous for p.Glu857Gln and 
if the variant was de novo or inherited. 

4. Discussion 

We identified two novel missense variants (p.Ser575Pro and p. 
Glu857Gln) in patients with schizophrenia via resequencing. These 
variants were not detected in the case-control sample used for geno-
typing. Therefore, Ser575Pro and Glu857Gln were exclusively identified 
in Japanese patients with schizophrenia, although it is possible that 
these patients have some loss-of-function variants of other risk genes for 
schizophrenia. Nevertheless, we were unable to provide statistical evi-
dence for the association of these novel missense SETD1A variants with 
schizophrenia. Our sample sizes for resequencing (974 patients) and 

genotyping (2027 patients and 2664 controls) were larger than those 
used for resequencing (390 patients) and genotyping (1783 patients and 
2213 controls) in an earlier Japanese study (Kimura et al., 2016). 
However, the most recent meta-analysis included 24,248 patients, 97, 
322 controls, and 3402 trios, indicating that ultra-rare loss-of-function 
and putatively damaging missense variants confer risk for schizophrenia 
(Singh et al., 2020). Our negative results may be attributable to an 
insufficient sample size. 

The SETD1A gene (MIM 611,052) has not only been associated with 
schizophrenia but has also been associated with developmental disor-
ders (Kaplanis et al., 2020 Singh et al., 2016;) Kummeling et al. (2021). 
reported the clinical phenotypes of 15 patients who had de novo 
loss-of-function and missense SETD1A variants and neurodevelopmental 
disorders, which were characterized by global developmental delays, 
intellectual disability, subtle facial dysmorphisms, and psychiatric 
problems (MIM 619,056) Yu et al. (2019). identified four missense 
SETD1A variants in patients with early-onset epilepsy (MIM 618,832). 
Moreover, delayed speech has been frequently observed in individuals 
with loss-of-function and missense SETD1A variants (Eising et al., 2019 
Kummeling et al., 2021; Singh et al., 2016;). In our study, a schizo-
phrenia patient with a p.Glu857Gln variant also had developmental 
delays in walking and speaking. These findings suggest that 
loss-of-function and missense SETD1A variants may cause several 
neuropsychiatric phenotypes. 

The SETD1A gene encodes the histone-lysine N-methyltransferase 
SETD1A, which modulates mono-, di-, and trimethylation of lysine 4 at 
histone H3 and regulates gene transcription (Wang et al., 2021a). 
SETD1A haploinsufficient mice exhibited abnormalities in working 
memory (Mukai et al., 2019 Nagahama et al., 2020;), social interaction 
(Nagahama et al., 2020), sensorimotor gating (Nagahama et al., 2020 
Bosworth et al., 2021;), and sensory processing (Hamm et al., 2020). 
These mice also showed reductions in spine density (Mukai et al., 2019 
Nagahama et al., 2020;), deficits in short-term synaptic plasticity 
(Mukai et al., 2019), and attenuation of excitatory synaptic transmission 
(Nagahama et al., 2020). Increased morphological complexity and 
functional increases in bursting activity were observed in neurons from 
human induced pluripotent stem cells with a heterozygous frameshift 
SETD1A variant (Wang et al., 2021b). Additionally, DNA damage repair 
was impaired in lymphoblastoid cell lines derived from neuro-
developmental disorder patients with loss-of-function or missense 
SETD1A variants (Kummeling et al., 2021). Moreover, the dendritic 
spine density was decreased in cultured mouse cortical primary neurons 
expressing missense SETD1A variants that were identified in patients 
with early-onset epilepsy (Yu et al., 2019). Taken together, these find-
ings suggest that loss-of-function and missense SETD1A variants are 
involved in the pathogenesis underlying schizophrenia, developmental 
disorders, and early-onset epilepsy. The novel SETD1A missense variants 
(p.Ser575Pro and p.Glu857Gln) exclusively identified in our patients 
with schizophrenia were predicted to be damaging via several in silico 
analysis metrics. These variants are located outside of the four domains 
of STED1A (RNA recognition motif, n-SET, SET, and post-SET domains) 
(Wang et al., 2021a), and the effects of these variants on the function of 

Table 2 
Novel missense SETD1A variants.  

Positiona Alleleb Amino acid In silico analysis Genotypec    

MPC PolyPhen-2 SIFT CADD Resequencing Genotyping         
Schizophrenia Schizophrenia Control 

30976925 T/C Ser575Pro 0.68 Probably damaging Damaging 25.2 973/1/0 2026/0/0 2663/0/0 
30978268 G/C Glu857Gln 0.63 Probably damaging Damaging 24.6 973/1/0 2027/0/0 2664/0/0 

CADD, Combined Annotation Dependent Depletion; MPC, Missense badness, PolyPhen-2, and Constraint; PolyPhen-2, Polymorphism Phenotyping v2; SIFT, Sorting 
Intolerant From Tolerant. 

a Position according to GRCh37. 
b Reference/alternative. 
c Homozygous for reference allele/heterozygous/homozygous for alternative allele. 

Table 3 
Clinical characteristics of patients with novel missense SETD1A variants.  

Variant Sex Age Age 
at 
onset 

Full- 
scale 
IQ 

Developmental 
delay 

Epilepsy 

Ser575Pro Female 63 30s 92 None None 
Glu857Gln Male 59 33 No 

data 
Delays in walking 
and speaking 

None 

IQ, intelligence quotient. 
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SETD1A remain to be determined by functional analyses. 
In conclusion, we identified novel putatively functional SETD1A 

missense variants (p.Ser575Pro and p.Glu857Gln) exclusively in Japa-
nese patients with schizophrenia, and a patient with a p.Glu857Gln 
variant had developmental delays. However, our study did not provide 
evidence for the contribution of these variants to the genetic etiology of 
schizophrenia in the Japanese population. 
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