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Deep learning classification 
of urinary sediment crystals 
with optimal parameter tuning
Takahiro Nagai 1,2, Osamu Onodera 1 & Shujiro Okuda 2,3,4*

The examination of urinary sediment crystals, the sedimentary components of urine, is useful in 
screening tests, and is always performed in medical examinations. The examination of urinary 
sediment crystals is typically done by classifying them under a microscope. Although automated 
analyzers are commercially available, manual classification is required, which is time-consuming and 
varies depending on the technologist performing the test and the laboratory. A set of test images was 
created, consisting of training, validation, and test images. The training images were transformed and 
augmented using various methods. The test images were classified to determine the patterns that 
could be correctly classified. Convolutional neural networks were used for training. Furthermore, we 
also considered the case where the crystal subcategories were not treated as separate. Learning with 
all parameters except the random cropping parameter showed the highest accuracy value. Treating 
the subcategories together or separately did not seem to affect the accuracy value. The accuracy of the 
best pattern was 0.918. When matched to a real-world case, the percentage of correct answers was 
88%. Although the number of images was limited, good results were obtained in the classification of 
crystal images with optimal parameter tuning. The parameter optimization performed in this study 
can be used as a reference for future studies, with the goal of image classification by deep learning in 
clinical practice.

Abbreviations
ReLU	� Rectified linear unit11

ROC	� Receiver operating characteristic
AUC​	� Area under the curve

Urine sediment examination is the microscopic examination of the precipitated components obtained by cen-
trifuging urine. It is a useful test for the diagnosis of various systemic diseases and is also used as a screening 
test1. If abnormal components are detected, further detailed examinations, such as blood tests, radiographs of 
the urinary tract system, and ultrasound examinations are performed. Urine sediment examination is used in 
routine clinical examinations and is also used in developed countries in the U.S. and Europe. Patients can collect 
their own urine, which is much less invasive than blood testing, making it one of the least invasive tests available.

Accurate classification of urinary sediment crystals requires visual inspection under a microscope by a clini-
cal laboratory technician. Methods have already been developed to analyze the active constituents in urine by 
cytometry using autoanalyzers2 or to image the tangible substances in urine and classify them using an analytical 
system3. However, the price of these devices is extremely high, and the equipment requires periodic calibration 
and the cost of purchasing test reagents is high. Currently, the conventional speculum method is considered 
essential. Despite the simplicity of the urine specimen preparation process, the process of distinguishing the 
components of the urine sediment is time-consuming, and the accuracy depends on the skill of the technician 
and the facility environment of the laboratory, and is subject to variation4.

Many components can be observed in urine sediment, which can be broadly divided into cellular and crystal-
line components. Bacteria can be observed under a microscope. It has been reported that classification of only 
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three components (cells, bacteria, and calcium oxalate crystal) was successful, with 97% accuracy5. Studies have 
also compared various network models for the classification of cells, bacteria, and calcium oxalate6. Among the 
cellular components of the urine sediment, eight types of cellular components (erythrocytes, leukocytes, epi-
thelial cells, crystals, urinary columns, mycelia, and epithelial nuclei) can be detected and classified in less than 
100 ms, with an accuracy of over 80%7. Among the cellular components, erythrocytes and leukocytes are of great 
diagnostic significance, but the morphology of erythrocytes varies depending on the site of leakage from blood 
vessels in the kidney, and the shape of leukocytes is not consistent, making classification a problem8. A study that 
attempted to discriminate 10 components (bacteria, yeast, calcium oxalate, hyaline columns, mucus filaments, 
sperm, squamous cells, erythrocytes, leukocytes, and leukocyte clusters) showed 97% classification accuracy9.

However, for crystal components, even if the crystal names are the same, the apparent shapes are different10, 
requiring expert classification techniques and knowledge, and, to the best of our knowledge, there have not been 
any reports of successful automated classification with the same level of accuracy. In this study, we attempted to 
construct a urinary sediment image classification model using deep learning, a well-known artificial intelligence 
method and neural network technique11. However, it is difficult to obtain a large number of human clinical 
specimens. To perform deep learning under such circumstances, we examined the type of image processing 
that would be desirable. Today, there are some diseases for which fewer than hundreds of cases have been col-
lected worldwide12,13. In such diseases, diagnostic criteria have not been established, and diverse data cannot 
be collected.

Augmentation is the process of expanding image data by applying various transformations to images to create 
large amounts of new image data. Augmentation can increase the diversity of the data14. Thus, augmentation has 
been performed in studies using deep learning in various fields15,16, but it is not clear what kind of augmentation 
improves the performance of the model. In this study, we tried various augmentation methods to build a better 
deep learning model from a small dataset. By clarifying the optimal parameters for deep learning with a small 
number of images, it is expected that image classification using deep learning will be much easier to apply in 
clinical practice.

Methods
Collected image data.  Images of urinary sediment crystals were collected from the Methods of Urinary 
Sediment Examination 2010 (Japan Society of Clinical Laboratory Technologists, 2010) and from past questions 
of the National Examination for Clinical Laboratory Technologists of Japan. Many of the collected urinary sedi-
ment crystal images had wide margins around crystals or multiple crystals in a single image. Therefore, from 
each urinary sediment crystal image, a single crystal was cropped such that it was located in the center of the 
image, and so that the margins were appropriate. Multiple crystal images cropped from the same image were 
stored as a "group"; if only one crystal appeared in an image, the one cropped crystal was considered a "group." 
Because crystals cut from the same single image have the same background, color, exposure, and other image 
conditions, the system may use factors such as background to classify the images. To avoid this, crystals cut 
from the same image were treated as a group. The types of urinary sediments collected were: magnesium ammo-
nium phosphate crystals, bilirubin crystals, two calcium carbonate crystals, five calcium oxalate crystals, calcium 
phosphate crystals, cystine crystals, two uric acid crystals, and two ammonium urate crystals. Images with the 
same name but different shapes were divided into different categories, which were referred to as subcategories. 
The total number of images collected was 441 images, with 129 groups. A breakdown is presented in Table 1.

These 129 groups were randomly then divided by crystal category in a 6:1:3 ratio for study, validation, and 
testing. Since ammonium urate 1 consisted of only one group, its 28 images were divided by this ratio. For cat-
egories with fewer than 10 groups, at least one group was reserved for validation, and the remaining groups were 

Table 1.   Collected images.

Category Images Groups

Magnesium ammonium phosphate 29 12

Bilirubin 28 13

Calcium carbonate 1 27 6

Calcium carbonate 2 51 6

Calcium oxalate 1 58 15

Calcium oxalate 2 6 5

Calcium oxalate 3 20 3

Calcium oxalate 4 31 6

Calcium oxalate 5 3 3

Calcium phosphate 30 15

Cystine 43 18

Uric acid 1 22 7

Uric acid 2 11 3

Ammonium urate 1 28 1

Ammonium urate 2 54 16



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21178  | https://doi.org/10.1038/s41598-022-25385-x

www.nature.com/scientificreports/

divided in a 2:1 ratio for study and testing. The process of dividing the 129 groups into training, validation, and 
testing was performed 10 times to create 10 test image sets.

Image augmentation process.  For augmentation, we used Python 3.8.517 and the Augmentor 0.2.8 
Python library18, which performs random image processing within a set range on a given image, and outputs 
a specified number of images. Image processing that Augmentor can perform includes: “random_distortion,” 
“random_contrast,” “random_color,” “random_brightness,” “rotate_random90,” “shear,” “flip_random,” “grey-
scale,” “zoom,” “skew,” and “randomcrop.” In this study, we performed augmentation of training images with 
various combinations of these image processes. The parameters of the image processing are specified in Table 2. 
When using Augmentor we specify the number of images we need and each function processes images with the 
probability specified for each. When one image is selected from source images, the probability that each feature 
is performed on the image is shown in Table 2. This Augmentor’s stochastic behavior makes output images rea-
sonably distributed and scattered.

To observe the effect of augmentation, the same augmentation was applied to the images in the test image set 
for each of the 10 image sets; the augmented images were trained, validation was performed on the validation 
images in that image set, and the model was constructed. The model was then used to classify the test images in 
the image set and the accuracy and loss values were calculated. In this manner, we obtained 10 accuracy values 
and 10 loss values from 10 image sets.

Deep learning and evaluation.  Deep learning using the Keras 2.2.4 Python library19 which is an open-
source neural network processing library, was used to evaluate the training and augmentation results. After aug-
mentation, the training image was scaled down to 3600 pixels (60 × 60 pixels) and trained by Keras. The network 
used was VGG-16, developed by Simonyan et al.20 which was highly rated in the category classification section 
of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)21. Since the early days of deep learning, 
Rectified Linear Unit (ReLU) has been considered the best activation function11, so we used ReLU in this study. 
Finally, we used the softmax layer to adjust the output values such that the overall probability became 1.0. In 
addition, a dropout layer was constructed to mitigate overlearning and improve generalization performance. 
For the loss function, we chose categorical cross-entropy, which is suitable for multiclass classification, and is the 
standard for multiple data classification problems. For the optimization algorithm, we used Adam22, although 
several of these are available in Keras. The choice of these functions affects the prediction results, amount of 
computation, and computation speed19. The learning late was 0.01 and the batch size was 2048. The accuracy 
value is the percentage of test images correctly classified by the model. Because the test images were cut from 
different photos for both training and validation, the test images were unknown to the model in question, so the 
accuracy of the model’s predictions could be evaluated.

Hierarchy of crystal categories.  Thus far, as described in the section “Collected image data,” when the 
same crystal had different shapes, we treated them separately as subcategories and gave them different labels 
(“calcium_oxalate1,” “calcium_oxalate2,” “calcium_oxalate3,” etc.) when training them in Keras. However, dif-
ferences in the shape of same substance crystals depend on the concentration and the concentration of various 
ions10, and are of little significance in the diagnosis of disease, so we then gave the same labels to the crystals 
of the same type, and trained and evaluated them in the same way. In other words, there were one to five sub-
categories of calcium oxalates, and all of them were given the label “calcium_oxalate” and input to Keras. The 
same was performed for the other crystal types. We then examined how the accuracy values would change if 
the subcategories were treated separately or if the subcategories were not distinguished. To evaluate the model 
accuracy, precision, recall, and F1-score were calculated, and the area under the curve (AUC) was calculated 
after the Receiver Operating Characteristic (ROC) curve was obtained. Since this is a multi-class classification, 
their macro-averages were used in the calculation23. We used scikit-learn 0.24.124 for the calculation of metrics 

Table 2.   Parameters of augmentor features.

Feature Probability Other parameters

Random_distortion 0.5 Grid_width = 2, grid_height = 2, magnitude = 5

Random_contrast 0.5 Min_factor = 0.5, max_factor = 3

Random_color 0.5 Min_factor = 0.5, max_factor = 3

Random_brightness 0.5 Min_factor = 0.5, max_factor = 0.5

Rotate_random90 0.5

Shear 0.5 Max_shear_left = 10, max_shear_right = 10

Flip_random 0.5

Greyscale 0.3

Zoom 0.3 Percentage_area = 0.8, randomize_percentage_area = False

Skew 0.5

Randomcrop 0.5 Percentage_area = 0.5, randomize_percentage_area = False
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such as accuracy, precision, recall, and F1-score. We used seaborn 0.11.225 and matplotlib 3.3.226 for drawing 
ROC curves and calculating the AUC.

Comparison with Xception model.  To examine the correctness of the present method, we compared it 
to Xception, a deep neural network developed by Challot27. The learning late was 0.01 (same as VGG-16). When 
the batch size had been set to 2048 (same as VGG-16), a GPU memory error occurred, so it was set to 1536. We 
trained Xception on the same dataset and classified the test set images, comparing the results on precision, recall, 
and F1-score, in addition to accuracy. As in the previous section, the ROC curve was drawn, and the AUC was 
calculated.

Correction using real‑world appearance ratios.  To correct the accuracy of the predictions to match 
the crystal occurrence ratios in the real world, we performed a literature search for studies addressing the eight 
classifications used in this study. We found that Jean et al. reported the ratio of the percentage of crystal appear-
ance in 1603 urine samples from Ouagadougou, the capital of Burkina Faso28. Using this data, we corrected for 
the ratio of appearance in the real world and evaluated the corrected accuracy values.

Results
Consideration of augmentation process.  First, all 11 augmentation features were processed, and the 
average accuracy value was calculated; the accuracy value was 0.774 ± 0.010 (value ± standard error, same below) 
for 4000 augmented images, 0.811 ± 0.012 for 20,000 images, and 0.809 ± 0.020 for 60,000 images. This was not 
considered a sufficiently high classification accuracy. The evaluation of the 11 features was then performed indi-
vidually, as shown in Fig. 1a,c. Comparing the results for the case of 4000 images and the case of 60,000 images, 
only three of them, “skew,” “randomcrop,” and “zoom,” showed a higher accuracy with 60,000 augmented images.

Therefore, we augmented the combination of these three parameters, “skew,” “randomcrop,” and “zoom,” and 
evaluated them in the same way; the accuracy value was 0.727 ± 0.008 for 4000 augmented images, 0.752 ± 0.015 
for 20,000 images, and 0.757 ± 0.013 for 60,000 images. This was worse than that for learning using all the 11 
features. This suggests that the accuracy tends to improve when more image features are used.

Next, we performed a learning pattern in which only one parameter was excluded and the others were used. 
The overall trend was that the accuracy tended to be higher for patterns that excluded one parameter than for 
patterns that only used one parameter in the augmentation process (Fig. 1a,b). In the pattern that excluded a 
single parameter, the higher the number of images obtained by augmentation, the higher the accuracy. The high-
est accuracy value was obtained in the pattern that excluded “randomcrop” and used the other features on 60,000 
images, with an accuracy value of 0.852. The pattern that excluded “randomcrop” and used the other features 
obtained a higher accuracy value than that obtained for the other patterns when augmentation was performed 
on 4000 and 60,000 images, but was inferior to the patterns that excluded “zoom,” “skew,” or “flip_random” on 
20,000 images. Interestingly, the pattern that excluded “randomcrop” and used the other features obtained a 
higher accuracy value than the pattern that used all 11 parameters when augmenting 60,000 images. Loss did not 
increase even when the number of images obtained by augmentation was increased, and we did not consider it to 
be a particular problem (Fig. 1c,d). The accuracy and loss values for these trials are available in Additional File 1.

Therefore, we decided that the best results would be obtained if the number of images generated by augmen-
tation was set to 60,000 and the “randomcrop” pattern was excluded, which was used for the following analyses. 
The results of this pattern are presented in Table 3.

The percent correct values for each type of crystals in the 10 trials under the conditions described in the 
previous paragraph were summarized in a confusion matrix (Fig. 2a). For this evaluation, we used the set of test 
images that were pre-separated for each trial and not used for training. There were two trials that produced the 
highest accuracy value of 0.820. Among the two, for the trial with the smaller loss, a confusion matrix was cre-
ated to visualize the relationship between the categories of correct answers and the categories predicted by the 
model (Fig. 2b). The prediction accuracy of calcium oxalate 5 was poor, which was the same for the other test 
sets. However, calcium carbonate and calcium oxalate 3 showed good accuracy. Those of other crystals, such as 
uric acid, were generally poor. We considered that a certain trend was observed for each category of crystal and 
that the differences due to repeated trials were lower than the differences due to category.

Deep learning for hierarchical crystal categories.  Subsequently, learning was conducted using upper-
level categories without distinguishing between the crystal subcategories. The number of output images after 
augmentation processing for the training images was 60,000. The mean accuracy value when the subcategories 
were treated separately was 0.852 (Table 3), whereas the mean accuracy value in the case without distinguishing 
subcategories was 0.866 (Table 4).

As well as distinguishing subcategories of crystals, the percent correct values for each type of crystals in the 10 
trials under the conditions described in the previous paragraph were summarized in a confusion matrix (Fig. 3a). 
Similarly, for this evaluation, we used the set of test images that were pre-separated for each trial and not used for 
training. The trial with the highest accuracy value among the 10 test image sets was 0.918. A confusion matrix 
was created to visualize the relationship between the categories of correct answers and the categories predicted 
by the model (Fig. 3b), showing that within the 10 trials, there was a constant trend for each crystal type and that 
the difference between repeated trials was less than that between the different subcategories. The percentage of 
correct answers was high for calcium carbonate, bilirubin, and ammonium urate, but was low for magnesium 
ammonium phosphate and uric acid. The precision, recall, and F1-score were 0.910, 0.889, and 0.891, respectively. 
The ROC curves were drawn to evaluate the performance of the classifier (Fig. 3c), and the AUC was 0.990.
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In summary, the best accuracy was obtained when all augmentation parameters except “randomcrop” were 
applied, the number of images to be generated was 60,000, and learning was performed without distinguishing 
subcategories. The trial with the highest accuracy value among the 10 test image sets was 0.918, exceeding the 
highest accuracy value of 0.877 when the subcategories were treated separately.

Comparison with Xception model.  We trained Xception model on the same dataset as the model that 
obtained the highest accuracy in the previous section and then classified the test set images. The accuracy, preci-
sion, recall, and F1-score were 0.844, 0.820, 0.813, and 0.808, respectively. The ROC curves were drawn (Fig. 4), 
and the AUC was 0.978.

Figure 1.   Accuracies and losses. (a) Accuracies by processing only one feature. (b) Accuracies by excluding one 
feature and processing the others. (c) Losses by processing only one feature. (d) Losses by excluding one feature 
and processing the others. Error bars indicate standard error of mean.

Table 3.   Results for the pattern that excludes “randomcrop” and uses the other features.

Validation accuracy Validation loss Accuracy Loss

Average 0.826 1.851 0.852 1.322

Standard error 0.018 0.174 0.007 0.100

Max 0.914 2.681 0.877 1.765

Min 0.743 0.998 0.820 0.850
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Correction using real‑world appearance ratios.  Using the ratio of the percentage of crystals appearing 
in 1653 urine samples from Ouagadougou, the capital of Burkina Faso, as reported by Jean et al.28 and weighting 
the accuracy percentage for each crystal in the pattern with the highest accuracy value (0.918), the following 
numerics are calculated in Table 5. The total weighted number of correct answers was 1462.258, and the ratio of 
the number of occurrences to the total number of samples was 0.885.

Discussion
In this study, we attempted to build a model for classifying urinary sediment crystals by deep learning using 
collected images. All possible processes were performed in the augmentation of images, and better results were 
obtained when the number of images obtained by augmentation was large. However, better accuracy was obtained 
when random cropping was excluded from the augmentation processes. We speculate that this is because, unlike 
the other processes, random cropping could destroy the principle of one crystal per image. Regarding the number 
of images obtained by augmentation, within the scope of this study, the greater the number of images, the higher 
the accuracy value. However, because of graphics card memory shortage, it was difficult to further increase the 
number of images for training.

It was reported that the improvement in the accuracy with augmentation was 1.54%15. Although various 
conditions may be involved, in this study, increasing the number of images generated by augmentation some-
times reduced accuracy by a few percent to 10%. Therefore, it can be said that augmentation does not necessarily 
increase the percentage of correct answers; if one uses augmentation in research, it is necessary to consider the 
type of augmentation to be used.

Different subcategories of crystals have different apparent shapes, even if the crystals are composed of the 
same components. The same labels were given to crystals with different appearances, and yet the model could 
still identify the crystals without problems. Even if the images consisted of simple structures and looked differ-
ent, the underlying features were extracted and learned. The model we obtained had a high F1 score and a high 
AUC, which was considered a better model.

Compared to later deep learning networks such as Xception, VGG-16 has a simple, classical architecture 
consisting only of basic elements such as convolutional layers, pooling layers, and dense layers. We considered 
that the results obtained by VGG-16 were superior to those of Xception, since detailed manipulations such as 
those in this study directry affect the teacher image.

Weighting based on the urinary sediment samples of Jean et al.28, the accuracy value was lower than that 
before weighting; this was probably due to the lower percentage of cystine, which had a high accuracy, and the 

Figure 2.   Result of 10 trials. (a) Correct answer rates. The arrow indicates the highest accuracy pattern 
(shown by b). Trials are listed from left to right in descending order of accuracy. (b) Relationships between the 
categories of correct answers and the categories predicted by the model for the highest accuracy pattern. Created 
with seaborn 0.11.225. ammo_mag_phos magnesium ammonium phosphate, cal_carbo calcium carbonate, cal_
oxalate calcium oxalate, cal_phosphate calcium phosphate, uric_ammo ammonium urate.

Table 4.   Results of not distinguishing subcategories.

Validation accuracy Validation loss Accuracy Loss

Average 0.869 1.277 0.866 1.132

Standard error 0.016 0.125 0.009 0.108

Max 0.923 1.858 0.918 1.705

Min 0.800 0.696 0.828 0.705
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higher percentage of ammonium urate, which had a low accuracy. Within the scope of our research, we were 
unable to find any other studies that reported the percentage of urinary sediment crystals in the eight categories 
discussed in this study. Therefore, it is debatable whether the population used here is appropriate, and in the 
future, it would be useful to examine crystals with high appearance ratios in the real world and try to improve 
the model for those crystals.

Figure 3.   Result of 10 trials. (a) Correct answer rates. The arrow indicates the highest accuracy pattern [shown 
by (b) and (c)]. Trials are listed from left to right in descending order of accuracy. (b) Relationships between 
the categories of correct answers and the categories predicted by the model for the highest accuracy pattern. (c) 
ROC curve by the model for the highest accuracy pattern. Created with seaborn 0.11.225 and matplotlib 3.3.226. 
ammo_mag_phos magnesium ammonium phosphate, cal_carbo calcium carbonate, cal_oxalate calcium oxalate, 
cal_phosphate calcium phosphate, uric_ammo ammonium urate.

Figure 4.   ROC curve by the Xception model. Created with matplotlib 3.3.226.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21178  | https://doi.org/10.1038/s41598-022-25385-x

www.nature.com/scientificreports/

Conclusions
In this study, a model was constructed by collecting images from textbooks and exam questions of national 
examinations in Japan. Although the number of images obtained was small in absolute terms for building a deep 
learning model, we obtained an accuracy of approximately 90% by testing various parameters, even with such a 
small number of images. In the augmentation of images, we obtained reliable results when all possible processes 
except “randomcrop” were performed and when the number of images obtained by augmentation was sufficiently 
large. The images used for training were images from textbooks which were used for initial training of begin-
ner students, and the number of images used was sufficient to enable human learning. The fact that this level of 
accuracy was achieved even with such few images indicates the potential of artificial intelligence in the future. 
For future studies constructing deep learning models from real-world image data, in order to construct a better 
model, the parameters can be determined with reference to the parameter optimization performed in this study.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information files.

Received: 22 August 2022; Accepted: 29 November 2022

References
	 1.	 Japanese Association of Medical Technologists; Editorial Committee of the Special Issue: Urinary sediment. Urinary sediment 

examination. Jpn. J. Med. Technol. 66, 51–85 (2017).
	 2.	 De Rosa, R., Grosso, S., Lorenzi, G., Bruschetta, G. & Camporese, A. Evaluation of the new Sysmex UF-5000 fluorescence flow 

cytometry analyser for ruling out bacterial urinary tract infection and for prediction of Gram negative bacteria in urine cultures. 
Clin. Chim. Acta 484, 171–178 (2018).

	 3.	 Tantisaranon, P., Dumkengkhachornwong, K., Aiadsakun, P. & Hnoonual, A. A comparison of automated urine analyzers cobas 
6500, UN 3000–111b and iRICELL 3000 with manual microscopic urinalysis. Pract. Lab. Med. 24, e00203 (2021).

	 4.	 Almadhoun, M. D. & El-Halees, A. Automated recognition of urinary microscopic solid particles. J. Med. Eng. Technol. 38, 104–110 
(2014).

	 5.	 Pan, J., Jiang, C. & Zhu, T. Classification of urine sediment based on convolution neural network. AIP Conf. Proc. 1955, 040176. 
https://​doi.​org/​10.​1063/1.​50338​40 (2018).

	 6.	 Velasco, J. S., Cabatuan, M. K. & Dadios, E. P. Urine sediment classification using deep learning. Lect. Notes. Adv. Res. Electr. 
Electron. Eng. Technol. 6, 180–185 (2019).

	 7.	 Liang, Y., Kang, R., Lian, C. & Mao, Y. An end-to-end system for automatic urinary particle recognition with convolutional neural 
network. J. Med. Syst. 42, 165 (2018).

	 8.	 Zhang, X., Chen, G., Saruta, K. & Terata, Y. Detection and classification of RBCs and WBCs in urine analysis with deep network. 
In ACHI 2018: The Eleventh International Conference on Advances in Computer-Human Interactions. 194–198 (Rome, Italy, 2018).

	 9.	 Ji, Q., Li, X., Qu, Z. & Dai, C. Research on urine sediment images recognition based on deep learning. IEEE Access 7, 166711–166720 
(2019).

	10.	 Japanese Association of Medical Technologists. Editorial committee of the special issue: Urinary sediment. Atlas of urinary sedi-
ment: VI  salts/crystals: Salts, normal crystals, abnormal crystals, drug crystals. Jpn. J. Med. Technol. 66, 147–154 (2017).

	11.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
	12.	 Park, H. et al. Aquagenic urticaria: A report of two cases. Ann. Dermatol. 23, S371. https://​doi.​org/​10.​5021/​ad.​2011.​23.​S3.​S371 

(2011).
	13.	 Hashem, H. et al. Hematopoietic stem cell transplantation rescues the hematological, immunological, and vascular phenotype in 

DADA2. Blood 130, 2682–2688. https://​doi.​org/​10.​1182/​blood-​2017-​07-​798660 (2017).
	14.	 Shorten, C. A survey on image data augmentation for deep learning. J. Big Data 6, 60. https://​doi.​org/​10.​1186/​s40537-​019-​0197-0 

(2019).
	15.	 Du, X. et al. Classification of plug seedling quality by improved convolutional neural network with an attention mechanism. Front. 

Plant Sci. 13, 967706. https://​doi.​org/​10.​3389/​fpls.​2022.​967706 (2022).
	16.	 Koga, S., Ikeda, A. & Dickson, D. W. Deep learning-based model for diagnosing Alzheimer’s disease and tauopathies. Neuropathol. 

Appl. Neurobiol. 48, e12759 (2022).
	17.	 Python Software Foundation, Python https://​www.​python.​org/ (2020).
	18.	 Bloice, M. D., Roth, P. M. & Holzinger, A. Biomedical image augmentation using Augmentor. Bioinformatics 35, 4522–4524 (2019).
	19.	 Chollet, F. et al. Keras. https://​keras.​io/ (2015).

Table 5.   Weighting the percentage of correct answers per crystal by occurrence ratio.

Category of crystal Correct answer rate Appearance ratio Correct answer rate × appearance ratio

Magnesium ammonium phosphate 0.667 73 48.667

Bilirubin 0.875 11 9.625

Calcium carbonate 0.920 139 127.880

Calcium oxalate 0.939 932 875.515

Calcium phosphate 1.000 139 139

Cystine 1.000 6 6

Uric acid 0.714 341 1243.571

Ammonium urate 1.000 12 12

Overall 0.918 1653 1462.258

https://doi.org/10.1063/1.5033840
https://doi.org/10.5021/ad.2011.23.S3.S371
https://doi.org/10.1182/blood-2017-07-798660
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.3389/fpls.2022.967706
https://www.python.org/
https://keras.io/


9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21178  | https://doi.org/10.1038/s41598-022-25385-x

www.nature.com/scientificreports/

	20.	 Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. http://​arxiv.​org/​abs/​1409.​
1556.

	21.	 Russakovsky, O. et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015).
	22.	 Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. http://​arxiv.​org/​abs/​1412.​6980.
	23.	 Opitz, J. & Burst, S. Macro F1 and macro F1. http://​arxiv.​org/​abs/​1911.​03347 (2021).
	24.	 Pedregosa, et al. Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
	25.	 Waskom, M. L. Seaborn: Statistical data visualization. J. Open Source Softw. 6, 3021. https://​doi.​org/​10.​21105/​joss.​03021 (2021).
	26.	 Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95. https://​doi.​org/​10.​1109/​MCSE.​2007.​55 (2007).
	27.	 Chollet, F. Xception: Deep learning with depthwise separable convolutions. In 2017 IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), 1800–1807 (2017). https://​doi.​org/​10.​1109/​CVPR.​2017.​195.
	28.	 Sakandé, J., Djiguemde, R., Nikiéma, A., Kabré, E. & Sawadogo, M. Survey of urinary crystals identified in residents of Ouaga-

dougou, Burkina Faso: Implications for the diagnosis and management of renal dysfunctions. Biokemistri 24, 6 (2012).

Acknowledgements
We would like to thank Yugo Nakagawa for the preliminary experiments for this study.

Author contributions
T.N. and S.O. devised the idea for this study. T.N. and S.O. drafted the data-processing methodology. T.N. 
collected data and described the program. S.O. and O.O. contributed to the interpretation of the results. T.N. 
drafted the original manuscript. S.O. oversaw the conduct of the study. All authors have read and approved the 
final manuscript.

Funding
This study was partially supported by a Grant-in-Aid for Scientific Research(A) (18H04123).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​25385-x.

Correspondence and requests for materials should be addressed to S.O.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1911.03347
https://doi.org/10.21105/joss.03021
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1038/s41598-022-25385-x
https://doi.org/10.1038/s41598-022-25385-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Deep learning classification of urinary sediment crystals with optimal parameter tuning
	Methods
	Collected image data. 
	Image augmentation process. 
	Deep learning and evaluation. 
	Hierarchy of crystal categories. 
	Comparison with Xception model. 
	Correction using real-world appearance ratios. 

	Results
	Consideration of augmentation process. 
	Deep learning for hierarchical crystal categories. 
	Comparison with Xception model. 
	Correction using real-world appearance ratios. 

	Discussion
	Conclusions
	References
	Acknowledgements


