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ABSTRACT 

 
Spectral resolved interferometer (SRI) has a broadband light source and a spectrum 

analyzer (SPA). The interference signal produced by the SPA is roughly expressed by 

cos(2L), where  is wavenumber and L is an optical path difference (OPD) between 

an object surface and an reference surface. When L is large, a high-resolution SPA is 

needed. A SPA with a wavelength resolution higher than about 0.05 nm is required to 

measure a large thickness more than a few millimeters. In this thesis a new method is 

proposed to measure a large thickness of glass plate by using a SPA with a low-

resolution of 0.5 nm and a piezo electric transducer (PZT) stage with a positioning 

accuracy of 10 nm. The position of a reference surface in the SRI of Michelson type is 

adjusted by the PZT stage to generate a small OPD. Thus, the interference signal can 

be detected with the low-resolution SPA. There are two ways to extract the OPD L from 

the detected interference signal. One way is that L is obtained from a position of 

maximum amplitude in Fourier transform of the interference signal. The other way is 

that L is obtained from the spectral phase 2L which is extracted through Fourier 

transform and frequency filtering. When the object is a glass plate, OPD L is a function 

of wavenumber  due to the phase refractive index n() of a glass plate. This 

phenomenon is called “dispersion effect”. OPD L cannot be exactly obtained from a 

position of the maximum amplitude because of a strong dispersion effect when 

thickness T of a glass plate is large. On the other hand, OPD L can be exactly obtained 

from the spectral phase because L is directly related with the spectral phase and the 

dispersion effect produces only nonlinear component in the spectral phase. Hence, in 

this thesis spectral phase is utilized to measure thickness T and refractive index 

n().There is another dispersion effect caused by a beam splitter cube whose two sides 

do not have the same length. In order to eliminate this dispersion effect and measure 

thickness T, different optical configurations of the SRI are formed by using another 

fixed reference surface in the object arm or a compensation glass (CG) plate in the 

reference arm. Different spectral phases are detected with different positions of the 

reference surface in the different optical configurations. Thickness T can be measured 

from many detected spectral phases. Measurement of phase refractive index of a glass 

plate can be achieved by using the SRI and the measurement method in the thickness 

measurement. The following three different measurements are described in this thesis. 

(1) Large thickness measurement of glass plate whose refractive index is not known. 

Amplitude distribution in Fourier transform of an interference signal produced by a rear 

surface of glass plate has a large spread width due to the dispersion effect of the glass 

plate. The position of the reference surface is adjusted so that the interference signal 

having a small OPD can be detected with the low-resolution SPA. Another reference 

surface is fixed in the object arm. Four different optical configurations are used with 

four different positions of the reference surface. From the four different spectral phases 

a spectral phase without containing the refractive index of glass plate is derived. The 

thickness of the glass plate can be measured from the slope of this spectral phase 
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distribution. In experiments, it was confirmed that the detected position of maximum 

amplitude in Fourier transform of the interference signal agreed with the theoretical one. 

A small measurement error of 50 nm was achieved in measuring 1 mm thickness of a 

glass plate. 

(2) More larger thickness measurement of glass plate using a compensation glass whose 

refractive index is known. 

In order to reduce the large spread width in the amplitude distribution caused by the 

dispersion effect of a larger thickness, a compensation glass (CG) plate is employed. 

Thickness larger than one millimeter can be measured by using the CG. A spectral 

phase is detected from the interference signal generated from the front surface of a glass 

plate and a reference surface. After putting the CG into the reference arm, another 

spectral phase is detected from an interference signal generated from the rear surface 

of the glass plate and the reference surface. A detected spectral phase is obtained from 

these two spectral phases. By comparing the nonlinear component of the detected 

spectral phase with a theoretical one, the difference in thickness between the glass plate 

and the CG can be obtained. Thickness of the glass plate can be measured from this 

thickness difference and a linear component of the detected spectral phase. In 

experiments, measurement errors were less than 800 nm and 2 μm for 1 mm and 5 mm-

thickness glass plates, respectively. 

(3) Phase refractive index measurement of glass plate together with thickness 

measurement. 

Phase refractive index is an important property of optical material. The SRI and the 

measurement method in the thickness measurement are applied for measurement of 

phase refractive index. Object was a quartz glass plate with 20 m thickness. By 

combining the three spectral phases detected in two different configurations, thickness 

of the quartz glass was measured with an error less than 6 nm. The refractive index is 

obtained from one of the three spectral phases. It is required to determine 2 phase 

ambiguity existing in the spectral phase distribution for the refractive index 

measurement. This determination is carried out by fitting the spectral phase distribution 

with fitting functions based on Cauchy dispersion formula. Phase refractive index 

distribution of the quartz glass plate could be measured with an error less than 0.0005 

from the measured thickness, the determined 2 phase ambiguity, and the spectral 

phase distribution. 
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CHAPTER 1 

 
INTRODURCTION 

 

1.1. Interferometers  
 
1.1.1. Single wavelength interferometer 

Interferometry is an established technique which has been applied for many 

kinds of optical measurements. Michelson type interferometer [C1.1] is a 

well-known one, and it is utilized widely to generate interference signals. 

Basic principle of interferometer with a single wavelength light source is 

explained with a Michelson type interferometer shown in Fig. 1.1. A single 

wavelength of the light source is O. A beam from light source is divided by 

a beam splitter (BS). One beam is reflected by an object surface, and another 

beam is reflected by a reference surface. These two beams are combined again 

by the BS. The interference signal between these two beams is detected with 

a detector. The position of object surface is ZO, and the position of reference 

surface is ZR. Optical path difference (OPD) between these two beams is equal 

to L=2(ZO-ZR). The interference signal is expressed as 

S=cos[(2π/O)L]=cos[(2π/O)2(ZO-ZR)] by ignoring constant terms. When the 

position of object surface changes from ZO to ZO+h as shown in Fig. 1.1, the 

interference signal becomes S(h)=cos[(2π/O)2(ZO+h-ZR)]. Measurement of 

 

 

Fig. 1.1. Configuration of Michelson interferometer. 

 

the displacement h is made by observing the signal S(h). Figure 1.2 shows 

S(h)=cos[(4π/O)h)] along h, where it is assumed that S(0)=1 at h=0. After a 

displacement h, S(0)=1 changes to S(h)=A. Then the displacement h is 

regarded as h1 or h2. And h=h1<O/4 and h=h2>O/4 cannot be distinguished 

by the change in the S(h). Hence there is uncertainness in this measurement 
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and the measurable range is O/4. This uncertainness is generally called phase 

ambiguity. Therefore, white light source is used to overcome the phase 

ambiguity produced by single wavelength light source. 

 

 

Fig. 1.2. Interference signals generated by single wavelength λO. 

 

1.1.2. White-light scanning interferometer 

In order to solve the measurable range of λO/4 described in section 1.1.1, 

white-light scanning interferometer (WLSI) [C1.2] is used. Configuration of 

WLSI is shown in Fig. 1.3. White light source has a broad spectrum that 

continuously distributes along wavelength axis. A BS divides a beam from a 

white light source for object and reference arms. The beams reflected from 

the two arms are combined again to generate the interference signal S(ZR). 

The position ZR of reference surface is scanned with a PZT stage. A successive 

signal of S(ZR) along the scanning position is detected with a detector. It is 

 

             

             Fig. 1.3. White-light scanning interferometer. 

 

regarded that the broad spectrum of white light source consists of multiple 

wavelengths of i and each wavelength produces an interference signal of 

Si(ZR)=cos[(2π/i)L]=cos[(2π/i)2(ZO-ZR)] as described in Sec. 1.1.1. Figure 

1.4 shows schematically how a white-light scanning interference signal S(ZR) 

is generated from the interference signals Si(ZR) produced by a single 

wavelength i. The interference signal S(ZR) is generated by summing all of 

Si(ZR) together. The summation of waveforms of Si(ZR) results in 

S(h) 

λO/4 

0 
h 

 
h1 h2 

-1 

1 

A 
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constructive and destructive effects on the magnitude of S(ZR) along ZR. Since 

all of the waveforms of Si(ZR) have a peak value of 1 at ZR=ZO, a large peak 

of S(ZR) appears at ZR=ZO or L=0. This peak is larger than all of other peaks 

where constructive effect occurs in the summation. The position of the peak 

provides a measurement value of ZO. Thus, a large value ZO of object position 

 

 

       Fig. 1.4. Distributions of whit-light scanning interferometer. 

 

can be measured, and the measurable range of WLSI is extended compared 

with single wavelength interferometer. Here exact scanning position is 

important for the measurement of object position because ZO is decided by 

the value of ZR which provides a maximum value in S(ZR). The measurement 

accuracy depends on an unstable scanning speed of the PZT stage movement. 

Hence, another interferometer using a white light source without the scanning 

of reference position is required. This interferometer is spectrally resolved 

interferometer described in the next section. 

 

1.1.3. Spectrally resolved interferometer (SRI) 

Figure 1.5 shows a schematic configuration of SRI with a white light source. 

A beam from light source is divided by a BS. The beams reflected from object 

and reference are combined again by the BS, and interference signal is 

detected with a spectrum analyzer (SPA) [C1.3]. Generally, SPA consists of a 

diffraction grating, a collimating lens (CL), and a line CCD. The white light 

contains multiple wavelengths of λ1,..,λi,.., and the beams of the wavelengths 

are separated by the diffraction grating. An interference intensity distribution 

along λ1,..,λi,.. is detected with the line CCD, and the output of the CCD is an 

ZR 

λ1 

ZR 

ZR 

λ2 

λ3 

S(ZR)= ∑Sλi(ZR) 

 
L=0 

ZO 

Sλi(ZR) 

ZR=ZO 
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ZR 

ZR ... 



4 
 

spectrally resolved interference signal. The interference signal is given by 

S(λ)=I(λ)+I(λ)cos[4π(ZO-ZR)/λ], where I(λ) is the spectrum intensity of light 

source. The OPD of L=2(ZO-ZR) containing in S(λ) is the value to be measured. 

One method to extract L from  

 

 

    Fig. 1.5. Configuration of spectrally resolved interferometer (SRI). 

 

 

           Fig. 1.6. Spectrally resolved interference signal S(σ). 

 

S(λ) is to use Fourier transform of S(λ). For performing Fourier transform, the 

detected interference signal S() is converted to an interference signal 

S(σ)=I(σ)+I(σ)cos(2πLσ), where σ=1/ is wavenumber. Figure 1.6 shows a 

spectrally resolved interference signal S(σ). Fourier transform is performed 

between two domains of σ and d=2L. The amplitude distribution |F(d)| of  

 

                 

               Fig. 1.7. Amplitude distribution of F(d). 

Wavenumber  

  
S

(
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Fourier transform of S(σ) is shown in Fig. 1.7. The distribution has three peaks 

at d=-L, 0, L. The position of one peak provides a measurement value of 

L=2(ZO-ZR). 

   Another method to extract L from S(λ) is to extract the phase term of 2πLσ 

containing in S(σ). The frequency component of F(d) at d=L is selected by a 

rectangular window as shown in Fig. 1.7. Inverse Fourier transform is 

performed on this windowed distribution. The phase distribution calculated 

through Fourier transform is wrapped in the region of 2. The wrapped phase 

distribution of 2πLσ is unwrapped to obtain a continuous phase distribution 

of φ(σ)=2πLσ+2πp, where p is an integer and an ambiguous value. The 

distribution of φ(σ) is called spectral phase. Thus a measurement value of L 

can be obtained from the slope of spectral phase as L={d[φ(σ)]/dσ}/2π. When 

random phase noise is contained in φ(σ), the measurement value provided by 

the slope of φ(σ) is not sensitive to random phase noise. Therefore, this 

measurement value is more exact than that provided by |F(d)|. The spectral 

phase is utilized in this thesis for measurements of thickness and refractive 

index. 

 

1.2. Motivation  
 
1.2.1. Thickness measurement by SRI  

 

 

           Fig. 1.8. Importance of thickness measurement. 

 

Glass plates are important components in optical devices such as an etalon 

shown in Fig. 1.8. An input light with a broad spectrum is converted into a 

narrow spectrum light by multiple reflections. This narrow spectrum is 

determined by the thickness T and the refractive index n() of glass plate. 

Thus, thickness measurement of T is required. This measurement can be 

achieved with SRI and WLSI. Although the measurement region of SRI is 

limited to one point or one line, SRIs have been widely used for thickness 

measurement [C1.4-C1.5] because the configuration of SRI is very simple 

compared to that of WLSI. 

wavelength λ 
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Input light 

Output light 
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reflection 
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Refractive 
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1.2.1.1. Variable position of reference surface and low-resolution SPA  

A SRI shown in Fig. 1.9 is used for thickness measurement. An input beam 

is divided by a BS for the object and reference arms. Object is a glass plate 

with thickness T and refractive index n(σ). A reference surface is fixed on a 

PZT stage. When the position of reference surface is ZR, an interference signal 

between the two beams from the front surface of object and the reference 

surface is expressed as SF(σ)=I(σ)+I(σ)cos(2πLFσ), where LF=2(ZO-ZR). An 

interference signal between the two beams from the rear surface of object and 

the reference surface is expressed as SR(σ)=I(σ)+I(σ)cos(2πLRσ), where 

LR=2(ZO+n(σ)T-ZR)=LF+2n(σ)T. 

 

 

       Fig. 1.9. Interference signals produced from a glass plate. 

 

Figure 1.10 shows these two interference signals. Period of the waveform 

of the signal SF(σ) is large due to LF=10 μm. On the other hand, the signal 

SR(σ) has a small period due to a large value of LR and its waveform is not 

shown clearly. When T=1 mm and the value of n(σ) is regarded as a constant 

value of 1.515, the large value of LR becomes 3040 μm. A high resolution 

SPA is required to detect this SR(σ). High resolution SPA is expensive and the 

size is large. Thus, in this thesis a measurement method is proposed to  

 

 

                (a)                          (b) 

  Figure 1.10. Distributions of (a) SF(σ) and (b) SR(σ). (a) Small OPD of 

  LF=10 μm, and (b) large OPD of LR=3040μm at n(σ)=1.515. 

Refractive 
index n() T 

Glass plate 

σ (m-1) 

S
F
 

Small OPD 

1.2 1.6 2.0 

S
R
 

σ (μm-1) 

Large OPD 

1.2 1.6 2.0 



7 
 

detect SR(σ) with a low resolution SPA. In this method the position ZR of 

reference surface is changed with a PZT stage so that a small LR is produced. 

When the position ZR is changed by 1495 m, a small value of LR is obtained 

as LR=50 m at n(σ)=1.515. Figure 1.11 shows the distribution of SR(σ) at the 

small LR. This SR(σ) can be detected with a SPA of about 0.5 nm resolution. 

Therefore, the variable reference position enables to detect the interference 

signal with a low resolution SPA even when thickness T of an object is large. 

 

         

        Fig. 1.11. Distribution of SR(σ) where LR=50 m at n(σ)=1.515. 

 

1.2.1.2. Spectral phase  

Since the refractive index of n(σ) increases with increase of σ, the OPD of 

LR= LF+2n(σ)T is not a constant value although LF is a constant value. Figure 

1.12 shows the amplitude distribution |FF(d)| and |FR(d)| of Fourier transform 

of the interference signals SF(σ) of Fig. 1.10 (a) and SR(σ) of Fig. 1.11. The 

distribution of |FR(d)| has a wide spread because of the non-constant value of 

LR. This phenomena is called dispersion effect. 

The constant value of LF can be obtained by the peak position of |FF(d)| 

because SF(σ) has no dispersion effect. The spread width of |FR(d)| is large 

and the peak position of |FR(d)| is not pronounced due to the dispersion effect 

of n(σ)T. Moreover the peak position does not have a clear relation with the 

non-constant value LR. On the other hand, the phase term containing in SR(σ) 

is extracted through Fourier transform to obtain the distribution of LF. The 

extracted spectral phase is expressed as φR(σ)=4(ZO+n(σ)T-ZR)σ. Although 

the distribution of φR(σ) is not a linear line due to n(σ)T, a least square linear 

line of φR(σ) provides a value of T which is more exact than that obtained 

from the peak position of |FR(d)|. Since the spectral phase is directly related 

with OPD, it will provide useful information such as thickness T and 

refractive index n(σ) about object. Therefore, in this thesis the spectral phase 

is utilized for thickness and refractive index measurements. 

 

S
R
 

σ (μm)-1 
1.2 1.6 2.0 



8 
 

     

              Fig. 1.12. Amplitude of |FF(d)| and |FR(d)|. 

 

1.2.1.3. Elimination of dispersion effect by BS  

It was made clear in experiments that the BS do not have the same length in 

the two sides of the cube [C1.6], and this length difference is denoted as lε. 

Dispersion effect generated by the BS is expressed as nB(σ)lε, where nB(σ) is 

the refractive index of BS. In this case, spectral phase φF(σ) of the interference 

signal SF(σ) contains the term of nB(σ)lε. Spectral phase φR(σ) of SR(σ) contains 

the terms of nB(σ)lε and n(σ)T. Distributions of φF(σ) and φR(σ) are shown in 

Fig. 1.13. Since both φF(σ) and φR(σ) contain the term of nB(σ)l, the 

dispersion effect generated by BS is eliminated in φS(σ)=φR(σ)-φF(σ) as shown 

in Fig. 1.13. Therefore, dispersion effect due to the BS can be eliminated by 

subtraction between two different spectral phases. 

 

  

          Fig. 1.13. Elimination of dispersion effect generated by BS. 

 

1.2.1.4. Different optical configurations  

Since the spectral phase φS(σ) is expressed as φS(σ)=4n(σ)Tσ, it is required 

that n(σ) is eliminated from φS(σ) for the thickness measurement. This 
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elimination is achieved by constructing two optical configurations shown in 

Fig. 1.14. Another reference surface is put behind the object, and interference 

signal SR1(σ) is generated by the two beams reflected from the two reference 

surfaces in the configuration of (a). Interference signal SR2(σ) is generated by 

the two beams without the object in the configuration of (b).The spectral 

phases obtained from the SR1(σ) and SR2(σ) are expressed as φR1(σ) and φR2(σ). 

Term of [n(σ)-1]T exists in spectral phase φSR(σ)=φR1(σ)-φR2(σ). Hence the 

term of n(σ)T is eliminated by φS(σ)-φSR(σ). Thickness T is measured from the 

spectral phase φS(σ)-φSR(σ)=T. Therefore, different optical configurations are 

constructed to get a value of T from the different spectral phases. In this case 

the values of n(σ) are not required for the thickness measurement. Large 

thickness T less than 2 mm can be measured by the methods described above 

where variable reference position, low-resolution SPA, and different spectral 

phases in different optical configurations are used. 

 

 

             (a)                             (b) 

Fig. 1.14. Optical configurations to generate interference signals (a) SR1(σ) 

and (b) SR2(σ). 

 

1.2.1.5. Measurement of more large thickness  

In order to measure more large T value, a compensation glass (CG) is used to 

reduce the dispersion effect due to the object. Refractive index of the CG is 

known and is the same as that of the object. Thickness of the CG is TC which 

is almost equal to T. Spectral phase φ(σ) containing terms of n(σ)(T-TC) and 

T is obtained from different spectral phases detected in different optical 

configurations, and the distribution of φ(σ) consists of nonlinear and linear 

components [C1.7] as shown in Fig. 1.15. Nonlinear component of φ(σ) is 

produced by the term of n(σ)(T-TC), and it is utilized to estimate a value of T-

TC through comparing the two distributions of the detected nonlinear 

component and the theoretical nonlinear component using the known 

refractive index n(σ). The value of T is obtained from the detected φ(σ) by 

using the estimated value of T-TC. Thus, large thickness T more than 2 mm 

can be measured by this method using the CG and the nonlinear component 

of spectral phase. 
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Fig. 1.15. Nonlinear and linear components of spectral phase φ(σ). 

 

1.2.2. Refractive index measurement  

Important property of optical material is phase refractive index n(σ). Figure 

1.16 shows an example about effect of n(σ), where a beam from a light source 

has a broad spectrum I(σ). When this beam passes through a glass plate with 

thickness T, the optical path length is increased by n(σ)T. Since the optical 

path length at each wavenumber is not identical to each other, the input beam 

with a sharp pulse along time axis is changed to a distorted beam by the effect 

of refractive index n(σ). Therefore the measurement of refractive index is 

important. 

 

 

Fig. 1.16. Effect of refractive index n(σ) on sharp pulse beam. 

   

   Spectrally resolved interferometers (SRIs) are more useful than white 

light scanning interferometers for measurement of phase refractive index n(σ) 

because the interference signal of SRI is detected in the wavenumber domain. 

Figure 1.17 shows a schematic configuration of SRI for measuring refractive 

index, where object is a glass plate. An input beam comes from a white light 

source. Interference signal S(σ)=I(σ)cos[4πn(σ)Tσ] is generated by the two 
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beams reflected from the front surface and rear surface of the glass plate, 

where π rad contained in the beam reflected from the front surface of glass 

plate is ignored for the sake of simplicity. Spectral phase (σ)=4πn(σ)Tσ is 

obtained from S(σ) as described in Sec.1.1.3. This (σ) is a theoretical 

distribution, and it is denoted as φT(σ)=4πn(σ)Tσ. When the measurement of 

T is made with the method described in Sec.1.2.1, the refractive index of 

n(σ)=φT(σ)/4πTσ can be obtained by using a measured value of T. 

 

 

Fig. 1.17. Schematic configuration of SRI. 

 

However, a spectral phase calculated from the detected interference signal 

through performing Fourier transform and inverse Fourier transform is 

wrapped in the region from -π to π. Since this calculated phase is unwrapped 

to get an unwrapped phase φM(σ), phase ambiguity 2π exists in φM(σ). Thus, 

it is required to determine 2π phase ambiguity existing in the unwrapped 

phase φM(σ) to get the n(σ). 

   Conventional methods to determine 2π phase ambiguity have been 

reported, but a new method is needed as described below. One conventional 

method is to measure a phase refractive index at one wavenumber with 

another instrument [C1.8]. Another instrument makes a measurement setup 

complicated. Another conventional method is to use group refractive index 

nG(σ) which is calculated by differentiating the unwrapped phase φM(σ) [C1.9]. 

By the differentiation a constant value 2πp of phase ambiguity disappears in 

nG(σ), where p is an integer. In order to obtain n(σ) from a group index 

detected from a spectral phase, n(σ) is expressed by an equation having some 

coefficients and an equation of nG(σ) is derived with the relation of 

nG(σ)=n(σ)+σ[dn(σ)/σ]. A detected group index is fitted with the equation of 

the group index to determine the coefficients in the equation of n(σ). Since 

the measured refractive index is expressed by the equation with the 

determined coefficients, it is not exactly equal to an actual phase refractive 

index. Therefore, a new method is required to get an actual refractive index 

from the unwrapped phase φM(σ) detected with a SRI. 
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   Phase distributions are shown schematically by using straight lines in Fig. 

1.18. The theoretical phase of φT(σ)=4πn(σ)Tσ is represented by blue line. The 

phase calculated from the interference signal is represented from σS by dark 

line. This calculated phase is unwrapped from σS as represented by red line. 

Since the unwrapped phase contains phase ambiguity of 2πp, it can be 

expressed mathematically by φM(σ)=4πn(σ)Tσ-2πp in the region from σ=0. 

Actually the calculated phase and φM(σ) are not detected in the region from 

σ=0 to σ=σS, which is represented by the dotted lines. The red dotted line has 

a value of -2p at σ=0 because of φM(σ)=4πn(σ)Tσ-2πp. In Fig. 1.18, p is equal 

to 2. The unwrapped phase φM(σ) is fitted with a fitting function f(σ) which is 

expressed as, for example, f(σ)=4πT(b0+b2σ
2)σ-2πpf. The green line in Fig. 

1.18 is the distribution of f(σ) with the fitted values of b0 and b2, and it is 

generally different from the distribution of φM(σ). The value of pf is obtained 

from f(0)=-2πpf. If the fitted distribution of f(σ) is the same as that of φM(σ), 

the result of pf=p is obtained. But generally the fitted f(σ) is different from 

φM(σ) as shown in Fig. 1.18. When the absolute value of pf-p is smaller than 

0.5, the value of p can be obtained by rounding off the value of pf. Therefore, 

an actual refractive index of n(σ)=[φM(σ)+2p]/4πTσ is achieved from the 

detected spectral phase distribution after determining the phase ambiguity 

2πp. Refractive index measurement by this method is described in chapter 4. 

 

 

Fig. 1.18. Schematic representations of φT(σ), calculated phase, φM(σ), and 

f(σ). 

 

1.3. Organization of the thesis 
 

Sec. 1.1 describes three different interferometers to explain why this thesis 

adopts a spectrally resolved interferometer, as shown in Fig. 1.19. Section 

1.1.1 describes single wavelength interferometer. The measurable range of 

this interferometer is limited. In order to eliminate this limitation, white light 

scanning interferometer (WLSI) is described in Sec. 1.1.2. However, WLSI 

requires exact scanning positions to achieve an exact measurement. As a  
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Fig. 1.19. “1.1. Interferometers”. 

 

better interferometer, spectrally resolved interferometer (SRI) is described in 

Sec. 1.1.3, where the interference signal S(σ) is detected along wavenumber 

σ with using a spectrum analyzer. Phase term contained in the S(σ) is extracted 

and it is called spectral phase. Thus spectral phase is utilized in this thesis for 

measurements. 

In Sec. 1.2 motivations for measurements of thickness and refractive 

index are explained. Thickness measurement is described in Sec. 1.2.1 which 

has five subsections. Subsections from Sec.1.2.1.1 to 1.2.1.4 lead to Chapter 

2, as shown in Fig. 1.20. These subsections are explained as below. 

Sec.1.2.1.1 :  In order to measure a large thickness T of glass plate, a 

high resolution SPA is required because the period of the S(σ) is small. Thus 

variable position of the reference surface is proposed where the reference 

position is adjusted so that a large period is generated in the S(σ). This SR(σ) 

can be detected with low resolution SPA.  

Sec.1.2.1.2 : Amplitude distribution |FR(d)| of Fourier transform of 

interference signal has a wide spread because of the dispersion effect of n(σ)T.  

Hence the peak position of amplitude distribution does not have a clear 

relation with the OPD. On the other hand, the dispersion effect of n(σ)T 

produces non-linear distribution for spectral phase. But since the spectral 

phase is directly related with OPD, the spectral phase can be used to extract 

useful information such as thickness T and refractive index n(σ) about object. 

Sec.1.2.1.3 : The different length in the two sides of the BS produces 

dispersion effect due to nB(σ)lε. Two different spectral phases calculated from 

interference signals generated through the BS contain the term of nB(σ)lε. The 

dispersion effect of nB(σ)lε is eliminated by the subtraction between the two 

calculated phases. 

Sec.1.2.1.4 : Spectral phases in different optical configurations contain 

the terms of n(σ)T and [n(σ)-1]T. In order to calculate T, it is required to 

eliminate the terms of n(σ)T. This elimination is achieved by performing 

subtractions in the spectral phases. In this case the values of n(σ) are not 

required for the thickness measurement. Therefore, in chapter 2 large thickness 

Chapter 1. Introduction 

1.1.1. Single wavelength interferometer 

1.1.2. White-light scanning interferometer 

(WLSI) 

1.1.3. Spectrally resolved interferometer 

(SRI) 

Limitation of measurable range 

Requirement of exact scanning 

needed 

1.1. Interferometers 

Spectral phase 
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 Fig. 1.20. “1.2.1. Thickness measurement by SRI” leading to Chapter 2. 

1.2. Motivation 

1.2.1. Thickness measurement by SRI 

Low resolution SPA 

Large thickness T of glass plate  Variable position of reference surface 

1.2.1.1. Variable position of reference surface and low-resolution SPA 

1.2.1.2. Spectral phase 

Generation of large periods in interference signal 

Amplitude distribution |FR(d)| of Fourier transform of interference signal 

Unclear relation between peak position of |FR(d)| and thickness T due 

to dispersion effect of n()T 

Utilization of spectral phase Useful information such as thickness T 

and refractive index n() about object 

 

1.2.1.3. Elimination of dispersion effect by BS 

1.2.1.4. Different optical configurations 

Chapter 2.  Large thickness measurement of glass plate whose 

refractive index is not known 

Different length of lε in the two sides of the BS 
Dispersion effect 

due to nB(σ)lε 

Subtraction between two different spectral phases Elimination of the 

dispersion effect 

Different spectral phases containing terms of n(σ)T and [n(σ)-1]T 

Different optical configurations Elimination of term n(σ)T by subtraction 

Thickness measurement 

Thickness measurement of glass plate of 1 mm with accuracy of 50 nm 

Completion of new SRI for thickness measurement 
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less than 2 mm can be measured by using variable reference position, low-

resolution SPA, and different spectral phases in different optical 

configurations. 

It is required to reduce the dispersion effect caused by n(σ)T for more 

larger thickness measurement. This reduction is achieved by using a 

compensation glass CG of thickness TC. Section 1.2.1.5 explains this 

measurement which leads to Chapter 3, as shown in Fig. 1.21. Spectral 

phase φ(σ) containing the terms of n(σ)(T-TC) and T is obtained from different 

spectral phases detected in different optical configurations. The detected 

nonlinear component of φ(σ) and the theoretical nonlinear component with 

known refractive index are compared to estimate the value of T-TC. Finally 

the value of T is obtained from φ(σ) by using the estimated value of T-TC. In 

chapter 3, thickness of glass plate of 5 mm can be measured with accuracy of 

2 μm. 

 

 

Fig. 1.21. “1.2.1.5. Measurement of more larger thickness” leading to Chapter 3. 

 

Measurement of refractive index n(σ) from a spectral phase is described 

in Sec. 1.2.2, as shown in Fig. 1.22. Section 1.2.2 leads to Chapter 4. Since 

the calculated spectral phase φM(σ) is unwrapped from σS, φM(σ) has phase 

ambiguity 2πp compared to the theoretical spectral phase φT(σ). This phase 

ambiguity is estimated by fitting φM(σ) with a fitting function f(σ), where a 

1.2.1.5. Measurement of more larger thickness  

Compensation glass (CG) with thickness TC 

Object with more larger thickness 

T 

Reduced dispersion effect 

Spectral phases in different optical configurations Term of n()(T-TC) 

Nonlinear component of spectral phase 

Nonlinear component of theoretical spectral phase 

Estimated value of T-TC 

Measured value of T 

Chapter 3.  More larger thickness measurement of glass plate 

using a compensation glass whose refractive index is known 

Thickness measurement of glass plate of 5 mm with accuracy of 2 μm 
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measured value of thickness T is used in f(σ). If the absolute value of 

difference between p and the fitted value of pf=f(0) is less than 0.5, p can be 

obtained by rounding off pf. Therefore, measurement of an actual refractive 

index of n(σ) is achieved from the detected spectral phase distribution after 

determining the phase ambiguity 2πp. 

 

 

Fig. 1.22. “1.2.2. Refractive index measurement” leading to Chapter 4. 

 

Finally, in Chapter 5 the conclusions are summarized to explain that the 

measurements of large thickness and refractive index are achieved with the 

unique SRI and the spectral phases. Large thickness of a glass plate less than 

2 mm can be measured by using variable reference position as described in 

chapter 2. In chapter 3, the dispersion effect due to a large thickness T more 

than 2 mm is reduced by using a CG. The value of T is obtained through using 

the nonlinear component of spectral phase. Refractive index measurement is 

achieved in chapter 4, where n(σ) is obtained from the detected spectral phase 

distribution after determining the phase ambiguity 2πp. 

  

Measured thickness T 
 

1.2.2. Refractive index measurement 

Calculated unwrapped spectral phase φM() 

Absolute value of pf -p<0.5 

Phase ambiguity 2πp 

Theoretical phase φT() 

pf =p after rounding off pf 

Fitting φM() with function 

 f()=2T(b0+b2
3)-pf  

Measurement of 

n() from φM() 

Unwrapped from S 

Chapter 4.  Phase refractive index measurement of 

glass plate together with thickness measurement 

Measurement of n() of 20 μm-thickness glass plate with accuracy of 0.0005  
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CHAPTER 2 

 
LARGE THICKNESS MEASUREMENT OF GLASS 

PLATE WHOSE REFRACTIVE INDEX IS NOT 
KNOWN 

 

2.1. Introduction 
 

Interferometer have been widely used for thickness measurement with rapid 

progress of precision manufacturing industry. Interferometer have been 

widely used for thickness measurement with rapid progress of precision 

manufacturing industry. Measurements of thin-film thickness with spectrally 

resolved interferometers (SRIs) have been reported in many papers [C2.1-

C2.7]. In SRIs many wavelengths contained in the light source are separated 

with a diffraction grating to get an interference signal distributed along 

wavelength. Since the interference signal is detected with a line sensor in a 

spectral analyzer, the maximum measurable thickness is limited by the 

resolution of the spectral analyzer. When a spectral analyzer with a high 

resolution of 0.06 nm was used, the thickness of a few millimeters was 

measured with measurement error of about a few hundred nanometers with 

the light source whose central wavelength and bandwidth were about 1300 

nm and 40 nm, respectively [C2.1, C2.2]. Recently a portable and inexpensive 

spectral analyzer is widely employed to construct a SRI easily, but the 

resolution of the spectral analyzer is not so high. Hence a technique for 

extending the maximum measurable thickness in a SRI with a low resolution 

spectral analyzer must be proposed by analyzing the amplitude distribution 

of Fourier transform of the interference signal. Moreover, in many papers 

[C2.1-C2.4, C2.6, C2.7] optical path differences contained in an interference 

signal are extracted from peak positions in the amplitude distribution of 

Fourier transform of the interference signal. However the peak position does 

not exactly correspond to an optical path difference which contains a path in 

a dispersion medium. On the other hand a slope of spectral phase distribution 

of an interference signal along wavenumber provides a more exact optical 

path difference than the peak position. And a large bandwidth of a light source 

is better to get a small measurement error in calculating the slope of spectral 

phase distribution. In order to measure exactly a large thickness of glass plate 

with a SRI using a spectral analyzer with a low resolution of 0.5 nm and a 

supercontinuum light source with a large bandwidth of about 300 nm, a new 

measurement method with the SRI is proposed where the measurement range 

is extended by moving a reference surface with a piezoelectric transducer 

(PZT) stage. First, Fourier transform of an interference signal produced by a 

rear surface of glass plate is analyzed in details to make it clear how to extend 
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the measurement range. This Fourier transformed signal has a large spread 

width in the amplitude distribution caused by dispersion effect of the glass 

plate. The central position of the spread width is called signal position. It is 

made clear that the amplitude distribution is not symmetric about the signal 

position. The signal position is adjusted by the position of the reference 

surface so that the interference signal can be detected with the low resolution 

spectral analyzer. The measurable maximum thickness is derived by 

considering the resolution of the spectral analyzer and the dispersion effect of 

the glass plate. Next, the measurement method is presented where four 

different optical configurations are used together with four different signal 

positions. Through this four-step measurement the thickness of the glass plate 

can be obtained from a slope of a spectral phase distribution which does not 

contain the refractive index of glass plate. Finally, in experiments the 

positions of the glass plate and an additional reference surface are calculated 

roughly from the signal positions, and a dispersion effect of the beam splitter 

are made clear from a spread width. And then it is confirmed that the detected 

values of the signal positions agree with the theoretical values. A small 

measurement error of 50 nm is achieved in measuring 1 mm thickness of a 

glass plate. 

 

2.2. Principle 
 
2.2.1. Interference signal with a variable signal position 

 

 

 

Fig. 2.1. Schematic configuration of SRI for measuring thickness of a glass 

plate. 

 

Schematic configuration of a SRI is shown in Fig. 2.1. An interference signal 

generated by a rear surface of an object (OB) is analyzed to make it clear how 

a variable signal position is working well in a SRI with a low resolution 

spectral analyzer. The variable signal position is provided by changing a 

position Z of a reference surface (RS) with a piezoelectric transducer (PZT) 

stage. A beam from supercontinuum light source is divided by a beam splitter 
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(BS) for the object and reference arms, and the two beams from the two arms 

are combined again by the BS to generate an interference signal. Spectral 

intensity I(σ) of the supercontinuum light source is shown in Fig. 2.2, where 

σ is wavenumber and the spectral range is about from 500 to 800 nm with a 

central wavelength of 650 nm. The OB is a glass plate of BK7 with thickness 

T and refractive index n(σ). The interference signal is detected by a spectral 

analyzer whose resolution Δλ is 0.5 nm. When the position of front surface of 

the OB is ZF and the position of the RS is Z, the interference signal S(σ) is 

expressed as 

( ) ( ) ( ) ( )cos{4 [ ] }FS I I Z n T Z     = + + − ,        (2.1) 

where the phase  arisen in the reflection by the rear surface of the OB is 

ignored for the sake of simplicity. An interference signal S() detected with a 

constant interval of Δλ=0.5 nm is converted to S(σ) with a constant interval 

of ΔσA by an interpolation formula. Interval Δσ corresponding to two 

wavelengths of  and +Δλ is given by 

               ( ) ( ) 2= 1/ 1/ /      − +      .             (2.2) 

By using the weighted average wavelength A of the spectral intensity as  in 

Eq. (2.2), the constant interval of ΔσA=Δλ/A
2 is decided for the interpolation. 

A least square line of a0+a1σ is defined for the distribution of n(σ)σ, and it is 

considered that n(σ)Tσ=a1Tσ+(n(σ)-a1)σT in Eq. (2.1). Then Fourier 

transform of S(σ) or Fourier transformed signal which is a function of distance 

d is given by 

( )( ) ( )1 1( ) ( ) 2 {(1/ 2)exp 4 { } }I I FF d F d F d Z a T Z j n a T   = + − + −  −    

( )( ) ( )1 12 {(1/ 2)exp { } }I FF d Z a T Z j n a T  + + + −  − −   ,      (2.3) 

where  and  mean Fourier transform and convolution, respectively, and 

FI(d)= {I(σ)}. From Eq. (2.3) a variable signal position is given by 

( )1=2S Fd Z a T Z+ − .                  (2.4) 

The variable signal position is equal to the difference between the optical path 

of ZF+a1T in the object arm and that of Z in the reference arm. Equation (2.3) 

is rewritten as 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )I I S T I S T I S SF d F d F d d F d F d d F d F d F d F d = + −  + +  − = + + − , 

                                                         (2.5) 

Where FT(d)={(1/2)exp[j4{n(σ)-a1}Tσ]} and * mean complex conjugate. 

Figure 2.3 shows the amplitude distribution of F(d) obtained by simulations, 

where T=997.4 μm, ZF-Z=-1587 μm, and ΔσA=0.5×10-3/0.62=1.3×10-3 μm-1. 

Although the maximum detectable distance dmax in F(d) is 1/(2ΔσA)=385 μm, 

the maximum distance for FS(d) is limited to dL=dmax/2=193 μm to distinguish 

the components of FS(d) from noise components at larger distances. The 
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amplitude distribution of F(d) in region of d0 is used for the measurement. 

In the simulations the Sellmeier equation of BK7 glass is used as the refractive 

index n(σ), and a1=1.540 is obtained from calculating a least square line in 

the region from σS=1.2 μm-1 to σE=2.1 μm-1. In Fig. 2.3, dS=-102 μm from Eq. 

(2.4), and the spread width WI of FI(d) and WS of FS*(-d) are 12 μm and 68 

μm, respectively. Simulation results at different values of thickness T m 

make it clear that the WS=12+0.056T m holds with error less than 0.4 μm in 

the region of T from 500 m to 2200 m. From Eq. (2.5) and the simulation 

results shown in Fig. 2.3 it is concluded that the spread width WS is caused by 

both WI and dispersion effect of n(σ), and also that the position of dS is the 

center of width WS. 

 

 

Fig. 2.2. Spectral intensity I(σ) of supercontinuum light source used in 

experiments. 

 

 

   Fig 2.3. Amplitude distributions of F(d) when dS is a minus value. 

 

An interference signal S(σ) detected in experiments is shown in Fig. 2.4, 

and its amplitude distribution F(d) is shown in Fig. 2.5, where the conditions 

of T, ZF-Z, and ΔσA are the same as those in Fig. 2.3. The spread width WI and 

WS are 12 μm and about 67 μm, respectively, and dS=-102 μm. The values of 

WI, WS, and dS are almost equal to those in Fig. 2.3, but many signal 

components exist in the width of WN=62 μm. It is seemed that the signal 

components in the region of WN were caused by mechanical vibrations of the 
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interferometer and electronics noise of the spectral analyzer. Components of 

FS
*(-d) exist in the region of distance larger than WI/2+WN=68 μm. Since the 

dS locates at the center of width WS, the position Z of RS is determined so that 

dS=2(ZF+a1T-Z) is larger than WI/2+WN+WS/2=68+(12+0.056T)/2 μm. The 

relation of WI/2+WN+WS=dL decides the maximum measureable thickness Tm. 

The solution of 68+(12+0.056T)=193 μm leads to Tm=2018 μm. 

 

 

               Fig. 2.4. Detected interference signal S(σ). 

 

 

 

            Fig. 2.5. Amplitude distribution of F(d) at dS<0. 

 

2.2.2. Principle of thickness measurement 

Figure 2.6 shows the configuration of a SRI with a low resolution spectral 

analyzer. An OB and a fixed reference surface 2 (RS2) are contained in the 

object arm, and the reference arm contains a reference surface 1 (RS1) fixed 

on a PZT stage. The RS1 is moved by the PZT stage to a specified position to 

produce an interference signal which can be detected with the low resolution 

spectral analyzer. Four-step measurement is carried out to make thickness 

measurement as shown in Fig. 2.7. In step 1, the RS1 is moved to a position 

of Z1 and the optical path difference (OPD) is equal to ZF-nB(σ)lε-Z1, where 

ZF is the position of the front surface of OB, lε is the difference between the 

two paths of the object and reference beams propagating in the BS, and nB(σ) 
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is the refractive index of BS. This lε is caused by the different lengths of the 

two sides in the BS. The interference signal except the first term of I(σ) in Eq. 

(2.1) is expressed as 

( ) ( ) ( )1 1cos{4 [ ] }F BS I Z n l Z    = − − .            (2.6) 

 

 

Fig. 2.6. Schematic configuration of spectral resolved interferometer using 

variable difference frequency. 

 

 

              (a)                           (b) 

 

 

              (c)                           (d) 

          Fig. 2.7. Configuration of four-step measurements. 

 

Signal processing is carried out in the same way as described in Sec. 2.2.1. 

And all of the notations defined in Sec. 2.2.1 have suffix of i that means step 
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i hereafter. A rectangular window having the width slightly larger than the 

spread width WS1 of F1S
*(-d) is used to select F1S

*(-d) from F1(d) at dS10. 

Inverse Fourier transform is performed on this windowed distribution to get 

the following distribution: 

           ( ) ( ) ( )1 1exp{ j4 [ ] }F F BS I Z n l Z    = − − − .           (2.7) 

The unwrapped phase of S1F(σ) is extracted as 

( ) ( )1 14 [ ]F BZ n l Z    = − − − .               (2.8) 

In step 2, the RS1 is moved by the PZT stage to a new position of Z2 for 

reducing the OPD between the two beams reflected from the rear surface of 

OB and the RS1, and the interference signal is expressed as 

       ( ) ( ) ( ) ( )2 2cos{4 [ ] }F BS I Z n T n l Z      = + − − − ,     (2.9) 

where π arises due to the beam reflected by the rear surface of OB. By the 

same signal processing as in step 1, the unwrapped phase is given by 

            ( ) ( ) ( )2 24 [ ]F BZ n T n l Z      = − + − − + ,           (2.10) 

By combining φ1(σ) and φ2(σ) to eliminate nB(σ)lε, a measurement value of D1 

is obtained as 

           ( ) ( ) ( ) ( )( )1 2 1 2 14D Z Z n T        = − = − − + .         (2.11) 

In step 3, the RS1 is moved to a position of Z3 for reducing the OPD between 

the two beams reflected from the RS1 and the RS2. The unwrapped phase of 

interference signal S3(σ) is given by 

   ( ) ( )( ) ( )3 2 34 [ 1 ]R BZ n T n l Z     = − + − − − .        (2.12) 

In step 4, the OB is removed from the object arm and the RS1 is moved to a 

position of Z4 for compensating the OPD change arisen by the removal of OB. 

The unwrapped phase of interference signal S4(σ) is given by 

                 ( ) ( )4 2 44 [ ]R BZ n l Z    = − − − .            (2.13) 

By eliminating ZR2-nB(σ)lε with Eqs. (2.12) and (2.13), a measurement value 

of D2(σ) is expressed as 

             ( ) ( ) ( ) ( )( )2 4 3 4 34 [ 1 ]D Z Z n T       = − = − + − .        (2.14) 

A measurement value of D3(σ) is obtained from D1(σ) and D2(σ) as follows: 

( ) ( ) ( )  3 1 2 1 2 3 4=4D D D Z Z Z Z T     = − − − + − + − .       (2.15) 

Finally, by denoting the slope of a least square line in the distribution of D3(σ) 

as slope[D3(σ)], the thickness of T can be obtained as 

( ) ( )3 1 2 3 4[ ] / 4T slope D Z Z Z Z = − − + − .          (2.16) 
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2.3. Experimental results 
 

The SRI was constructed as shown in Fig. 2.6 for single point thickness 

measurement of a glass plate. The RS1 and the RS2 were one reflecting 

surface of a glass plate with wedged angle. The RS1 was fixed on a PZT stage 

with 0.5 nm resolution and 10 nm repeatability of positioning. Both the BS 

and the OB were BK7 glass and the thickness of OB was about 1mm. The 

interference signal was detected with a spectral analyzer with 0.5 nm 

resolution. Since the interfering optical fields were fed into the spectral 

analyzer by an optical fiber with a 250 μm core diameter, the spatial resolution 

of the SRI was 250 μm. The signal processing carried out in step 1 to step 4 

was the method described in Secs. 2.2.1 and 2.2.2 whose contents correspond 

to step 2. The reference position Zi in step i was determined so that variable 

signal position dSi is larger than WI/2+WNi+WSi/2.  

 In step 1, the PZT stage was moved and stopped at position Z1=0.000 μm 

as an origin for other reference positions. The interference signal S1(σ) 

detected in the region from σS =1.2 μm-1 to σE =2.1 μm-1 is shown in Fig. 2.8 

(a). Figure 2.8 (b) shows the amplitude distribution of F1(d) in the region of 

d>0. WS1 and WN1 were about 13 μm and 19 μm, respectively. Since this WS1 

was caused by nB(σ)lε as shown by Eq. (2.6), lε was calculated to be about 20 

μm from the relation of WS1=13=12+0.056lε m with error of about 1 μm. 

Since the amplitude of F1(d) was larger than that of F2(d) shown in Fig. 2.5, 

WN1 was smaller than WN2=62 μm. The signal position was -dS1=62 μm which 

was larger than WI/2+WN1+WS1/2=6+19+(13/2)=32 μm. From dS1=2(ZF-a1lε-

Z1)=2(ZF-1.54×20-0)=-62 μm, ZF=0 was obtained. A rectangle window 

existing from d=54 μm to d=69 μm was used to select the component of FS1*(-

d), and the unwrapped phase φ1(σ) was obtained after getting inverse Fourier 

transform of the windowed F1(d). The σ region in the φ1(σ) was from 1.4 μm-

1 to 1.95 μm-1 in a large intensity region of I(σ) to reduce noise effects in the 

φ1(σ). 

 

 

(a) 

 



25 
 

 

(b) 

Fig. 2.8. (a) Detected interference signal S1(σ) and (b) amplitude distribution 

of its Fourier transform F1(d). 

 

In step 2, the PZT stage was moved and stopped at a position Z2=1587.0 

μm, which compensated the increase of the optical path by a1T. Detected 

signal S2(σ) and the amplitude distribution of Fourier transform F2(d) of S2(σ) 

are the same as Figs. 2.4 and 2.5, respectively. Windowed F2(d) was made by 

a rectangle window from 66 μm to 157 μm to select the component of FS2
*(-

d) from F2(d), and inverse Fourier transform was performed on the windowed 

F2(d) to get the unwrapped phase φ2(σ). The dS2 was -102 μm, which agreed 

with the theoretical value of dS2=2(ZF-a1lε+a1T-Z2)=2(-31+1.54×1017.4-

1587)=-102 μm, where a measured value of T=1017.4 μm was used. 

In step 3 and step 4, the amplitude distributions of F3(d) and F4(d) were 

detected as shown in Fig. 2.9 (a) and (b), respectively. In step 3, the RS2 was 

used in the object arm and the PZT stage was moved to position Z3=11935.0 

μm. In Fig. 2.9 (a) the values of WI/2+WN3, WS3, and dS3 were about 60 μm, 

65 μm, and -98 μm, respectively. From dS3=2(ZR2-a1lε+(a1-1)T-Z3)=2(ZR2-

31+549-11935)=-98 μm, ZR2=11368 μm was obtained. In step 4, the PZT 

stage was moved back to position Z4=11366.0 μm because the OB was  

 

 

   (a) 
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   (b) 

Fig. 2.9. Amplitude distribution of Fourier transform of the interference signal 

detected in (a) step 3 and (b) step 4. 

 

              Table. 2.1. Values in measurement of case 1. 

Step Zi(m) dSi(m) WSi(m) Obtained values 

1 0.0 -62 13 
lε=20 μm from WS1 

ZF=0 μm from dS1 

2 1587.0 -102 67 dS2= theoretical value 

3 11935.0 -98 65 ZR2=11368 μm from dS3 

4 11366.0 -56 13 dS4 theoretical value 

 

 

 

          Fig. 2.10. D3(σ) calculated from φ1(σ) to φ4(σ) in case 1. 

 

removed from the object arm. The values of WI/2+WN4 and WS4 were about 

25 μm and 13 μm, respectively. The dS4 was -56 μm, which almost agreed 

with dS4=2(ZR2-a1lε-Z4)=2(11368-31-11366)=-58 μm. These results described 

above are shown at Table 2.1 as values in measurement of case 1, and the 

amplitude distributions of Fi(d) (i=1 to 4) have been provided in Figs. 2.8 (b), 
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2.5, 2.9 (a), and 2.9 (b), respectively. Distribution of D3(σ) obtained from φ1(σ) 

to φ4(σ) is shown in Fig. 2.10. The distribution of D3(σ) was a straight line with 

small fluctuations generated by noise components in φ1(σ) to φ4(σ). It is 

estimated that the main source of these noise components were produced by 

the mechanical vibrations of the interferometer and electronics noise of the 

spectral analyzer. In order to reduce noise effects, the least square method was 

used to calculate the slope of D3(σ) in the region of from 1.4 μm-1 to 1.95 μm-

1 corresponding to a large intensity region of I(σ). The values of 

slope[D3(σ)]/4π are given by Table 2.2, where the measurement was repeated 

three times as case 1 to case 3. It is estimated that the differences in the values 

of slope[D3(σ)]/4π were caused by a position change of ZR2 due to removing 

the OB between step 3 and step 4 and the 10 nm positioning repeatability of 

the PZT stage. In addition, the value of Z1-Z2+Z3-Z4 was regarded to be a 

constant value of -1018.000 μm in Eq. (2.16). The three measured values of 

T were a little different by less than 55 nm as shown in Table 2.2. 

 

               Table. 2.2. Measured values in case 1 to 3. 

(m) Case1 Case2 Case3 

Z1-Z2+Z3- Z4 -1018.000 -1018.000 -1018.000 

Slope{D3(σ)}/4π -0.603 -0.618 -0.563 

T 1017.397 1017.382 1017.437 

 

2.3. Conclusion 
 

The interference signal having the signal position was analyzed for measuring 

a large thickness of glass plate with the SRI using the spectral analyzer with 

a low resolution of 0.5 nm and the supercontinuum light source with a large 

bandwidth of about 300 nm. It was confirmed that the amplitude distribution 

of the signal component produced by the glass plate is not symmetric about 

the signal position which is the center of the spread width of the signal 

component. A measurable maximum thickness was derived by considering 

the resolution of the spectral analyzer and the signal component produced by 

the glass plate. In the four-step measurement the four spectral phase 

distributions of the interference signals were calculated through selecting the 

required signal components and doing inverse Fourier transform, and the 

thickness of glass plate could be obtained from the slope of the spectral phase 

distribution which does not contain the refractive index of glass plate. Also 

the positions of the reference surface 2 and the front surface of the glass plate 

and a dispersion effect of beam splitter were obtained from the signal 

components. And it was confirmed that the detected values of the signal 

positions agreed with the theoretical ones. A small measurement error of 50 

nm was achieved in the measurement of 1 mm thickness of the glass plate. 
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CHAPTER 3 

 
MORE LARGER THICKNESS MEASUREMENT 

USING A COMPENSATION GLASS WHOSE 
REFRACTIVE INDEX IS KNOWN 

 

3.1. Introduction  
 

A method to measure a glass plate whose thickness less than about 2 mm is 

described in chapter 2 [C3.5]. Thickness measurement of samples with 

spectrally resolved interferometer (SRI) has been reported in many papers 

[C3.1-C3.3, C3.5, C3.6]. Generally, optical path difference (OPD) in SRI is 

detected from a peak position in the amplitude distribution of Fourier 

transform of the interference signal for thickness measurement [C3.1-C3.2]. 

In order to detect OPD more exactly spectral phase of the interference signal 

is utilized in thickness measurement [C3.3-C3.5]. The maximum measureable 

thickness in chapter 2 is determined by the spread width of the amplitude 

distribution in Fourier transform of the interference signal. In order to reduce 

this spread width generated by dispersion effect due to the term of n(σ)T, a 

compensation glass (CG) is required for more larger thickness measurement. 

In this chapter, a SRI using a CG and two positions of the RS is proposed 

to measure thickness larger than two millimeters. The two positions of RS are 

needed to detect two interference signals from front and rear surface of an OB 

of glass plate. First the interference signal generated from the front surface 

and the RS is detected. Next a CG is put into the reference arm to eliminate 

dispersion effect of the OB, and an interference signal generated from the rear 

surface and the RS is detected by changing the position of the RS with a PZT 

stage to make a short OPD. The positions of the RS are obtained from a 

controller of the PZT stage. Spectral phases of the interference signals are 

calculated through Fourier transform, and nonlinear components of spectral 

phase is utilized to obtain a difference in thickness between the OB and the 

CG. Thickness of the OB is obtained by calculating linear component of 

spectral phase which contains a linear component generated by the difference 

in thickness between the OB and the CG. Measurement errors less than 800 

nm and 2 μm are achieved for 1 mm and 5 mm-thickness glass plates, 

respectively. 

 



29 
 

3.2. Principle 
 

Figure 3.1 shows a SRI where a beam from a light source is divided by a BS 

for an object arm and a reference arm. The object arm contains the OB. The 

reference arm contains a compensation glass (CG), reference surface (RS), 

and a piezoelectric transducer (PZT) stage. The two beams reflected from the 

OB and the RS are combined by the BS and detected by a spectral analyzer 

as an interference signal. Thickness of the OB can be measured by two steps 

as shown in Figs. 3.1 (a) and (b). In step 1, the CG is not in the reference arm 

and the position of the front surface of OB is ZF. An interference signal 

generated by the front surface of OB and the RS is detected by moving the 

RS to a position Z1. In step 2, the CG is put into the reference arm to eliminate 

 

 

(a) step 1 

 

 

(b) step 2 

Fig. 3.1. Spectral resolved interferometer whose configurations are (a) and (b) 

in step 1 and step 2, respectively. 

 

dispersion effect caused by the OB. Thicknesses of the OB and the CG are T 

and TC, respectively. The position of the rear surface of OB is ZR. The RS is 

moved to a position Z2 from the position Z1 to detect an interference signal 

generated by the rear surface of OB and the RS. The lengths of the two sides 

in the BS with refractive index nB(σ) are different by ℓ, and an optical path 

difference (OPD) of 2nB(σ)ℓ exists between the two beams reflected from the 
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object and reference arms, respectively. The refractive index of the OB and 

the CG is n(σ). 

In step 1, the optical path difference (OPD) generated by the front surface 

of OB and the RS is equal to 2[Z1-ZF+nB(σ)ℓ]. The spectrally resolved 

interference signal is expressed as  

( ) ( ) ( ) ( )1cos{4 [ ] }F F F BS C I I Z Z n l     = + − +  ,       (3.1) 

where I(σ) is the spectral intensity of light source and σ is wavenumber and 

CF is a constant value. In Fourier transform of SF(σ) the first term CFI(σ) 

produces low frequency components, and the second term produces high 

frequency components. By performing inverse Fourier transform for the 

positive and high frequency components in Fourier transform of SF(σ), the 

phase distribution F(σ) is obtained as 

( ) ( ) ( )14 [ ]F F BZ Z n l    = − + .             (3.2) 

In step 2, the CG is put into the reference arm, and the RS moves to the 

position Z2. In this step, the OPD is equal to 2[Z2-ZR+n(σ)ℓ+[n(σ)-1]TS], 

where TS=T-TC. The spectrally resolved interference signal is expressed as 

( ) ( ) ( ) ( ) ( )( )2cos{4 [ 1 ] }RR R B SS C I I n nZ l TZ       = + + − −− . (3.3) 

In the same way as F(σ), the phase distribution R(σ) of SR(σ) is obtained as 

( ) ( ) ( )( )24 [ 1 ]R SR BnZ Z l n T     = + − −− .         (3.4) 

The following phase distribution is calculated from Eqs. (3.2) and (3.4): 

( ) ( ) ( ) ( )( )1 24 [ 1 ]F R F R SZ Z Z Z n T        = − = − − + + − .   (3.5) 

The phase distribution (σ) contains a linear component and a nonlinear 

component. Denoting these components by linear{f} and nonlinear{f}in a 

phase distribution f, the following equation holds: 

( ) ( )  ( ) linear nonlinear     = + .          (3.6) 

Linear component of (σ) expressed by a1σ+a0 can be obtained by calculating 

a least square line in (σ). Nonlinear component of (σ) is equal to 

nonlinear{n(σ)TSσ}, and it is extracted by subtracting the linear component of 

(σ) from (σ). Theoretical values of nonlinear{n(σ)TSσ} are calculated by 

using a refractive index formula of n(σ). By finding a value of TS that makes 

the following difference a minimum value, a measurement value of TS is 

obtained: 

( ) ( )  ( ) 
2

4S SD T nonlinear n T nonlinear


     = −  .     (3.7) 

When linear{f}=a1σ+a0 is calculated , it is defined that slope{f}=a1. Since the 

linear component of (σ) is equal to 4[(Z1-ZF-Z2+ZR-

TS)σ+linear{4n(σ)TSσ}] in Eq. (3.5), slope{(σ)/4}=Z1-ZF-Z2+ZR-

TS+slope{n(σ)TSσ}. Therefore, the measurement value of T is given by 
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( )  ( ) 2 1/ 4 ZR F S ST Z Z slope Z T slope n T    = − = + − + −  .    (3.8) 

The positions Z1 and Z2 of the RS are the values which are given to the PZT 

stage, and the value of TS is obtained from Eq. (3.7) by using the nonlinear 

components of (σ). 

 

3.2. Experiments 
 

The interferometer shown in Fig. 3.1 was constructed. The spectrum range of 

supercontinuum light source was about 500 nm to 800 nm. The RS was a 

glass plate with a wedge angle to regard it as one reflecting surface. The OB, 

CG, RS, and BS were BK7 glass. Positioning resolution and repeatability of 

the PZT stage were 0.5 nm and 10 nm, respectively. The PZT stage controller 

output the position of PZT stage. The resolution of the spectrum analyzer was 

0.5 nm. Spline interpolation was performed on the interference signal 

detected with the spectrum analyzer for changing wavelength to wavenumber 

whose sampling interval was 0.001 μm-1. Nominal value of the thickness of 

OB was 1 mm. In step 1, the PZT stage was moved to the position of Z1=-

1455.00 μm. Figure 3.2 (a) shows the interference signal SF(σ) detected in 

case 1 of the measurement, where the detected region was from 1.2 μm-1 to  

 

 

                               (a) 

 

 

                               (b) 
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Fig. 3.2. (a) Detected interference signal of SF(σ), and (b) the amplitude 

distribution of FF(d). 

 

2.1 μm-1. Zero values were assigned outside the detected range of this 

interference signal to get an interference signal with a range from σ=0 μm-1 

to σ=32.767 μm-1. This wide range leaded to a sampling interval of 

1/32.767=0.0305 μm in Fourier transform of the interference signal. Figure 

3.2 (b) shows the amplitude distribution of FF(d), where FF(d) is the Fourier 

transform of SF(σ). The low frequency components nearby the d=0 μm was 

generated by CFI(σ) in Eq. (3.1), and the high frequency components around 

d=67 μm were selected by using a rectangle window from 60 μm to 74 μm 

indicated by dot line. After inverse Fourier transform of the windowed FF(d), 

The unwrapped phase of F(σ) was obtained from inverse Fourier transform 

of the windowed FF(d). In step 2, the PZT stage was moved to the position of 

Z2=-430.00 μm, and the CG was put into the reference arm. Figure 3.3 (a) and 

(b) show the detected SR(σ), and the amplitude of Fourier transform of SR(σ), 

respectively. A windowed FR(d) was obtained by a rectangle window from 52 

μm to 66 μm indicated by dot line. The unwrapped phase of R(σ) was 

obtained by the same method as F(σ). Figure 3.4 (a) shows the distribution 

 

 

                            (a) 

 

 

                            (b) 
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Fig. 3.3. (a) Detected interference signal of SR(σ), and (b) the amplitude 

distribution of FR(σ). 

 

 

                            (a)  

 

 

                               (b) 

Fig. 3.4. Distributions of (a) (σ), and (b) nonlinear{(σ)} (blue curve) and 

nonlinear{4πn(σ)TSσ} at TS=21.72 μm (red curve). 

 

of (σ)=F(σ)-R(σ) given by Eq. (3.5), and slope{(σ)/4π}=3.83 μm was 

calculated. The blue curve shown in Fig. 3.4 (b) is the nonlinear{(σ)} 

calculated by subtracting linear{(σ)}=4π3.83σ-64.76 rad from the (σ) 

shown in Fig. 3.4 (a). Figure 3.5 shows how D(TS) changed when TS changed 

with an interval of 0.02 μm, and it indicates that a minimum value of TS=21.72 

μm could be obtained with a resolution of 0.02 μm, where the refractive index 

n(σ) was Sellmeier equation of BK7. The red dotted curve shown in Fig. 3.4 

(b) is the distribution of theoretical nonlinear{4πn(σ)TSσ} at the estimated 

value of TS=21.72 μm. The slope{n(σ)TSσ}=33.46 μm was calculated with 

TS=21.72 μm. The values of Z2-Z1, slope{(σ)/4π}, TS, and slope{[n(σ)TSσ} 

measured in case 1 are shown in Table 3.1. Finally, a measured value of 

T=1017.09 μm was calculated with the Eq. (3.8). Values measured in case 2 

and 3 are also shown in Table 3.1. The difference of measured T in the three 

cases was less than about 0.8 μm. The thickness of OB was changed to 

nominal value 5 mm, and the nonlinear component of (σ) was extracted with 
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the same method described for the OB of 1-mm thickness. Figure 3.6 shows 

the detected nonlinear{(σ)} in case 1 with blue curve. A minimum value of 

TS=212.00 μm was obtained by calculating D(TS) as shown in Fig. 3.7. 

Measured values in three cases are shown in Table 3.2, and the difference of 

measured T in the three cases was less than about 2 μm. Maximum difference 

in the measured value of T changed from 0.8 μm to 2 μm by the increase from 

1 mm to 5 mm in thickness. The measured values shown in Table 3.1 and 3.2 

are divided into the two components of C1=slope{(σ)/4π}+Z2-Z1 and C2=TS-

slope{n(σ)TSσ} to examine the main source of measurement error. In Table 

3.1, the differences in C1 and C2 among the three cases are less than 0.02 μm 

and 0.73 μm, respectively. In Table 3.2, these differences are less than 0.14 

μm and 1.96 μm. Since the difference in C1 is much smaller than the 

differences in C2, the measurement error in T depends strongly on the error in 

TS estimated by nonlinear component of (σ) containing random noise in (σ). 

It is estimated that the measurement error in (σ) is caused by mechanical 

vibrations of the interferometer and disturbance in air.  

 

 

Fig. 3.5. Distribution of D(TS) versus TS. 

 

 

Fig. 3.6. Distributions of nonlinear{(σ)}(blue curve) and 

nonlinear{4πn(σ)TSσ} at TS=215.50 μm (red curve)  for object of 5mm-

thickness. 
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Table. 3.1. Measured values for object of 1mm-thickness. 

(m) Case 1 Case 2 Case 3 

Z2-Z1 1025.00 1025.00 1025.00 

slope{(σ)/4} 3.83 3.83 3.85 

TS 21.72 20.36 20.90 

slope{n(σ)TSσ} 33.46 31.37 32.20 

T 1017.09 1017.82 1017.55 

 

 

 

Fig. 3.7. Distribution of D(TS) versus TS for object of 5mm-thickness. 

 

Table. 3.2. Measured values for object of 5mm-thickness. 

(m) Case 1 Case 2 Case 3 

Z2-Z1 5402.00 5402.00 5402.00 

slope{(σ)/4} -4.76 -4.81 -4.90 

TS 212.00 214.56 210.94 

slope{n(σ)TSσ} 326.60 330.54 324.96 

T 5282.65 5281.21 5283.08 

 

3.3. Conclusion 
 

A SRI was constructed by using the spectral analyzer with a low resolution 

of 0.5 nm and compensation glass plates. The thickness of glass plates with 

1mm and 5mm-thickness could be measured by using the spectral phase 

detected from the two step measurement and using the known data n(σ) of 

refractive index. The nonlinear component of the detected spectral phase 

provided the thickness difference TS between the OB and the CG. The linear 
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component generated by [n(σ)-1]TS was excluded from the linear component 

of spectral phase to calculate the thickness. The experimental results verified 

that the measurement error was less than 0.8 μm and 2 μm for 1 mm and 5 

mm-thickness glass plates. This measurement error was mainly caused by the 

estimation error in TS. 
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CHAPTER 4 

 
PHASE REFRACTIVE INDEX MEASUREMENT OF 

GLASS PLATE TOGETHER WITH THICKNESS 
MEASUREMENT 

 

4.1. Introduction  

In chapters 2 and 3, thickness measurement of glass plates is achieved. 

Another important property of glass plate is phase refractive index. Phase 

refractive index of optical material has been measured by different techniques 

such as goniometry, ellipsometry, and reflectometry. Also interferometry is an 

important technique to measure phase refractive index and group refractive 

index. In order to measure phase or group refractive index with an 

interferometer, it is required to measure thickness T of an object. For these 

measurements a low-coherence interferometer combined with a confocal 

scanning microscope was used [C4.1-C4.3]. In the methods reported in Refs. 

C4.2 and C4.3, it is not easy to get a derivative of the scanning positions 

where the reflection peaks appear in the confocal scanning microscope with 

respect to wavenumber. Spectrally resolved interferometers (SRIs) are more 

useful for refractive index measurement because the interference signal of 

SRI is detected in wavenumber domain. It is also required to measure 

thickness T of an object and an optical path difference (OPD) with a SRI. 

However, without paying strong attentions to the measurements of thickness 

T and an OPD, phase refractive index n(σ) and group refractive index nG(σ) 

have been obtained [C4.4, C4.5, C4.7-C4.9], where σ is wavenumber. In order 

to measure T and OPDs, different optical configurations in a SRI were 

employed to get group refractive index nG(σC), where σC is a central 

wavenumber in a spectral distribution of light source [C4.10-C4.14]. A peak 

position in the amplitude distribution of Fourier transform of the interference 

signal is equal to an OPD in an optical configuration of SRI. Since the peak 

position is related to one wavenumber of σC, only one value of nG(σC) is 

measured. Spectral phase distribution of the interference signal is better than 

the amplitude distribution of Fourier transform of the interference signal 

because the spectral phase distribution is a function of σ. Unwrapped spectral 

phase distribution can be calculated exactly from the interference signal 

through Fourier transform [C4.15,C4.16]. 

It is required to determine 2π phase ambiguity existing in the unwrapped 

phase distribution for getting phase refractive index. The unwrapped phase 

distribution was fitted with a polynomial function f(σ) so that the phase 

ambiguity of 2πp was determined by using the relation of f(σM)=2πp, where 

p is an integer and the interference signal has a peak value at σ=σM 
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[C4.4,C4.5]. Here it is very important what kind of function is adopted as a 

fitting function and how the phase ambiguity is determined from the fitting. 

As a method without using spectral phase and a fitting function, two peak 

positions of a spectrally resolved interference signal generated by the two 

beams reflected from front and rear surfaces of an object were used to 

determine 2π phase ambiguity and the phase refractive index at one 

wavenumber [C4.6]. Another way to determine the phase ambiguity is that a 

phase refractive index at one wavenumber was measured with another 

instrument [C4.7]. In order to avoid the determination of the phase ambiguity, 

phase refractive index is obtained by converting measured group refractive 

index nG(σ) to phase refractive index n(σ) by the following procedure: n(σ) is 

expressed by Sellmeier equation having some coefficients, and an equation 

of group index is derived with the relation of nG(σ)=n(σ)+σ[dn(σ)/dσ]. A 

measured group index is fitted to the equation of group index to determine 

the coefficients in Sellmeier equation of n(σ). In this case the obtained phase 

refractive index is expressed by Sellmeier equation with the determined 

coefficients [C4.8,C4.9]. Group refractive index was measured directly from 

the interference signal without calculating the spectral phase distribution 

[C4.7,C4.8]. By differentiating the spectral phase distribution, group 

refractive index could be obtained eliminating the phase ambiguity [C4.9]. If 

an actual phase refractive index cannot be expressed exactly with the 

Sellmeier equation, the measurement method reported in Refs. C4.8 and C4.9 

does not provide the actual phase refractive index.  

The aim of this chapter is to measure both thickness T and phase refractive 

index n(σ) from the spectral phase distributions detected in different optical 

configurations. Phase ambiguity 2πp existing in the calculated spectral phase 

distribution is determined by fitting the spectral phase distribution with fitting 

functions based on Cauchy’s equation. The fitting function is very important 

to get an exact phase ambiguity. Because a simple equation of n(σ) is better 

for the fitting, Cauchy’s equation with two or three terms is adopted. The 

phase ambiguity 2πp is determined from the fitted value at σ=0 in the fitting 

function. This determination is more easy and exact than that in Refs. C4.4, 

C4.5, and C4.6. An actual refractive phase index n(σ) can be obtained from a 

detected spectral phase distribution, a measured thickness, and the determined 

phase ambiguity 2πp. In experiments a phase refractive index of quartz glass 

plate with 20 m thickness is measured from three spectral phase distributions 

detected in two different optical configurations. Since there is a high 

possibility that the phase ambiguity cannot be correctly determined when 

there is a large difference between a function of real refractive index and 

Cauchy’s equation, characteristics of the two different fitting functions are 

examined in experiments and discussion. 

 

4.2. Principle 
 



39 
 

4.2.1. Detected phase distributions and thickness measurement 

 

 

              Fig. 4.1. Schematic configuration of a SRI. 

 

 

 

                            (a) 

 

 

                             (b) 

Fig. 4.2. Configuration in (a) step1 and (b) step2 for two-step measurements. 

 

Figure 4.1 shows a schematic configuration of a SRI with a supercontinuum 

light source. In the reference arm a reference surface 1 (RS1) is fixed on a 

PZT stage. Reference surface 2 (RS2) and an OB exist in the object arm. A 

beam passing through a fiber is collimated with a lens, and the collimated 

beam is divided by a BS for the object and reference arms. The lengths of two 
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sides of the BS is different by a length lε and the refractive index of BS is 

nB(σ), where σ is wavenumber. Interference signal is detected with a spectrum 

analyzer. Refractive index measurement and thickness measurement are made 

through two measurement steps as shown in Fig. 4.2. In step 1 the OB exists 

in the object arm. The refractive index and the thickness of the OB are n(σ) 

and T, respectively. The positions of RS1 and RS2 are Z1 and Z2, respectively. 

Two different interference signals are detected at the same time. One 

interference signal S1(σ) is produced by the two beams reflected from the front 

and rear surfaces of the OB, and another one S2(σ) is produced by the two 

beams reflected from the RS1 and the RS2. The two interference signals are 

expressed as 

( ) ( ) ( )1 cos 4S I n T     = +   ,              (4.1) 

( ) ( ) ( ) ( )( ) 2 1 2cos 4 1BS I n l Z Z n T      = + − − −  ,      (4.2) 

where I(σ) is the spectral intensity of light source. The value of π in signal 

S1(σ) is generated due to the beam reflected by the front surface of OB. The 

interference signal detected at step 1 is the summation of S1(σ) and S2(σ). 

Fourier transforms of S1(σ) and S2(σ) are denoted by F1(f) and F2(f), 

respectively. The distance of Z1-Z2 is required to separate F1(f) and F2(f) in 

frequency domain f. Inverse Fourier transform of a windowed F1(f) in the 

region of positive frequencies is given by 

( ) ( ) ( )1 exp 4FS I j n T j     = +   .               (4.3) 

The phase distribution φT1(σ) of SF1(σ) is equal to 4πn(σ)Tσ+π which is called 

theoretical phase. The theoretical phase actually obtained from fast Fourier 

transform is wrapped within the region from –π to π. Figure 4.3 shows 

schematically the theoretical phase φT1(σ), the wrapped phase of φT1(σ), and 

unwrapped phase φM1(σ) by using blue, dark, and red linear lines, respectively 

The wrapped phase of φT1(σ) is represented by dark dotted lines in the region 

of σ from 0 to σp. The dark solid lines represent the wrapped phase of φT1(σ) 

from σ=σP. It is assumed that the detected phase φM1(σ) is the same as the 

wrapped theoretical phase φT1(σ) Actually the phase φM1(σ) is not detected in 

the region of σ from 0 to σp as indicated by black dotted lines. The phase φM1(σ) 

is unwrapped from σ=σS. The blue solid line has a value of π at σ=0 because 

of φT1(σ)=4πn(σ)Tσ+π. On the other hand, the wrapped theoretical phase φT1(σ) 

at σ=0 is regarded as -π as shown in Fig. 4.3. One period of wrapped φT1(σ) is 

defined as the phase change from -π to π. The difference between the first 

period of wrapped φT1(σ) and φT1(σ) is equal to 2π, and this difference is 

increased by σ increasing. In the region from σ=σP to σQ the unwrapped phase 

φM1(σ) has the phase ambiguity of 2πp1. Then a positive integer p1 is given by 

( ) 1 1INT / 2T Sp   = ,                  (4.4) 

where INT{y} means rounding y to the nearest integer. Thus the unwrapped 
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phase φM1(σ) is expressed as 

( ) ( ) ( )1 1 1 1-2 =4 2M T p n T p         = + − .          (4.5) 

Through the same processing as in S1(σ), SF2(σ) is obtained as 

( ) ( ) ( ) ( )( ) 2 1 2exp 4 1F BS I j n l Z Z n T      = + − − −  .     (4.6) 

 

 

Fig. 4.3. Schematic representations of theoretical phase φT1(σ), wrapped phase 

of φT1(σ), and phase φM1(σ) unwrapped from σS. Schematic interpretation of 

fitting function 2πf(σ). 

 

In the same way as φM1(σ), phase φM2(σ) unwrapped from σ=σS is given by 

( ) ( ) ( ) 222 1[ (4 ) ] 2  1BM n l Z Z n T p    + − −− −= .         (4.7) 

In step 2, the OB is removed from the object arm, and the following 

interference signal is produced by the beams reflected from the RS1 and the 

RS2: 

( ) ( ) ( ) 3 1 2cos 4 BS I n l Z Z    = + −   .             (4.8) 

Phase φM3(σ) unwrapped from σ=σS is given by 

( ) ( ) 23 31 24 [ ]M Bn l pZ Z    += −− .              (4.9) 

In order to eliminate the term of n(σ)T from φM1(σ) and the term of nB(σ)lε+Z2-

Z1 from φM2(σ), phase distribution φM4(σ) is obtained as 

      ( ) ( ) ( ) ( )4 1 2 3 44 2M M M M T p           = + − = + − .        (4.10) 

Finally a value of T can be obtained from the slope of 4πT in the phase 

distribution φM4(σ). 
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4.2.2. Refractive index measurement by determination of p1 

In order to determine the integer value of p1 in the unwrapped phase 

distributions of φM1(σ)/2π=2Tn(σ)σ+0.5-p1, its distribution is fitted in a region 

Rσ from σS to σE by a fitting function. In a fitting function, refractive index is 

regarded to be expressed by Cauchy’s equation 

( ) 2 4

0 2 4 ...n b b b  = + + + .               (4.11) 

Thus the fitting function is given by 

( ) 3 5

1 0 2 42 ( ) 0.5 2 ( ...)f Tn p T b b b q     = + − = + + + −  .       (4.12) 

Figure 4.3 shows schematically this fitting situation where f(0)=-q=0.5-p1 

under the condition of φM1(σ)/2π=f(σ). The 2f(σ) is represented by green line. 

It is expected that value of p1 is obtained from fitting φM1(σ)/2π with the fitting 

function of Eq. (4.12). When the experimental data of φM1(σ)/2π cannot be 

exactly expressed by the fitting equation, the value of q+0.5 obtained from 

the fitting is not equal to the integer value p1. In many cases the integer value 

of p1 can be decided by rounding the value of q+0.5. By using the measured 

T value and the decided p1 value the following refractive indexes n1(σ) is 

obtained from φM1(σ): 

                    ( )
( )1 1

1

2

4

M p
n

T

   


 

− +
= .                  (4.13) 

 

4.3. Simulations 
 
4.3.1. Unwrapped data of phase distribution 

Figure 4.4 shows the spectral intensity I(σ) of light source detected in 

experiments. In order to reduce effects of noises, the region of Rσ for the 

fitting was decided by selecting a region of large intensity I(σ) as shown in 

Fig. 4.4, where σS=1.4 μm-1 and σE=1.95 μm-1. Unwrapped phase data of 

φM1(σ)/2π=2Tn(σ)σ+0.5-p1 expressed with Eq. (4.5) was made by using the 

 

Fig. 4.4. Spectral intensity I(σ) of light source detected in experiments. 



43 
 

 

refractive index of Cauchy’s equation. Coefficients of Cauchy’s equation 

were obtained by fitting the refractive index nS(σ) of Sellmeier equation of 

quartz glass with nC1(σ)= b0+b2σ
2 and nC2(σ)= b0+b2σ

2+b4σ
4 in the region Rσ. 

The refractive index nS(σ) of quartz glass was given by 

( )
3

2

2
1

1
1

i

S

i i

B
n

C


=

= +
−

 , where B1=0.6962, B2=0.4079, B3=0.8975, C1=0.0047, 

C2=0.0135, C3=97.9340 [C4.17]. The fitted coefficients bi (i=0, 2, 4) and root-

mean-square of difference (RMSD) between nS(σ) and nC1(σ) or nC2(σ) are 

shown in Table 4.1. Since the refractive index nC2(σ) with the fitted 

coefficients has the smaller RMSD, nC2(σ) was used as n(σ) to make the 

interference signal data of S1(σ) given by Eq. (4.1) where a thickness of 

T=20.073 μm measured in experiments was used. Since the values of 

φT1(σS)/2π=2TnC2(σS)σS+0.5 was equal to 82.28 in Eq. (4.4), the value p1 was 

estimated to be 82. 

 

 Table. 4.1. Results of fitting nS(σ) with nC1(σ) and nC2(σ). 

 b0 b2 b4 RMSD 

nC1(σ) 1.448 0.0036  3.07×10-5 

nC2(σ) 1.447 0.0043 -0.0001 6.46×10-6 

 

4.3.2. Fitting function f(σ) 

Simulations were carried out to examine characteristics of the fitting method 

to determine a value of p1. The phase data of φM1(σ)/2π was calculated from 

the simulated signal of S1(σ) through Fourier transform. The following two 

fitting functions given by Eq. (4.12) were made by using the values of 

coefficients of nC1(σ) and nC2(σ) shown in Table 4.1: 

f1(σ)=2T(1.448+0.0036σ2)σ-q and f2(σ)=2T(1.447+0.0043σ2-0.0001σ4)σ-q 

corresponding to nC1(σ) and nC2(σ), respectively, where T=20.073 μm. Trust-

Region method in Matlab was used for the fitting calculations. Results of 

these fittings are shown in Table 4.2. Since the simulated data of φM1(σ)/2π 

was made by using the refractive index of nC2(σ)=1.447+0.0043σ2-0.0001σ4, 

the results of the fitting are better in the fitting function of f2(σ). When the 

data of φM1(σ)/2π=2T(1.447+0.0043σ2-0.0001σ4)σ-81.5 was used instead of 

the data calculated from the simulated signal of S1(σ), the results of b0=1.447, 

b2=0.0043, b4=-0.0001, and q+0.5=82.00 were obtained in the fitting with  

 

Table. 4.2. Simulation results with the two fitting functions. 

 b0 b2 b4 q+0.5  

f1(σ) 1.452 0.0032  82.17 

f2(σ) 1.448 0.0041 -0.0001 82.03 
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f2(σ). This indicates that there was computation error in the phase data of 

φM1(σ)/2π calculated from S1(σ). Both f1(σ) and f2(σ) are used in experiments 

to examine the characteristics of the fitting functions under the situation that 

the experimental data of φM1(σ)/2π is not exactly expressed by the fitting 

equations. 

 

4.4. Experiments 
 
4.4.1. Detection of phase distributions and thickness 
measurement 

The SRI shown in Fig. 4.1 was constructed to measure a thickness and a 

refractive index at one point of the object. A glass plate with wedged angle 

was used as one reflecting surface for RS1 and RS2. The BS1 was BK7 glass 

and the object was a quartz glass plate with 20 μm thickness. The spectral 

range of the supercontinuum light was about 500nm-800nm. The interference 

signals were detected by a spectrum analyzer with wavelength resolution of 

about 0.5 nm. Since the bit number of A/D converter in the spectrum analyzer 

was 16 bit, the resolution of spectral phase is estimated to be on the order of 

0.01 rad. The resolutions in thickness and refractive measurements depend on 

this phase resolution. For converting the detected interference signal to the 

signal in wavenumber domain, spline interpolation was carried out with a 

constant interval of 0.001μm-1. The interference signal detected in step 1 is 

shown in Fig. 4.5 (a). In order to distinguish the two interference signals S1(σ) 

and S2(σ) contained in Fig. 4.5 (a), the distance of Z1-Z2 was about 17 μm. 

Figure 4.5 (b) shows the amplitude distribution of Fourier transform of the 

interference signal. Windowed F1(f) of S1(σ) was made by using a rectangle 

window existing from f=52μm to f=66μm to obtain the function SF1(σ). 

Another rectangle window from f=66μm to f=80μm was used to obtain the 

function SF2(σ). The unwrapped φM1(σ) and φM2(σ) in the region of Rσ from σS 

to σE were obtained from SF1(σ) and SF2(σ), respectively, where σS=1.4 μm-1. 

In order to confirm small variations contained in the detected distribution of 

φM1(σ)/2π and the value of φM1(σS)/2π, the distribution of  [φM1(σ)/2π]-59(σ-

σS) is shown in Fig. 4.6 (a). In step 2, unwrapped phase φM3(σ) was obtained 

 



45 
 

 

                               (a) 

 

 

                               (b) 

Fig. 4.5. Distribution of (a) interference signal and (b) amplitude of Fourier 

transform of the interference signal. 

 

 

                                (a) 
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                                (b) 

Fig. 4.6. Detected distributions of (a) [φM1(σ)/2π]-59(σ-σS), (b) φM4(σ)-

4π×20(σ-σS) and least square line, where σS=1.4 μm-1. 

 

from the interference signal S3(σ) with the same signal processing. Finally the 

phase distribution of φM4(σ)=φM1(σ)-φM3(σ)+φM2(σ) given by Eq. (4.10) was 

obtained. Figure 4.6 (b) shows the distribution of φM4(σ)-4π×20(σ-σS) which 

contained small fluctuations. The slope of least square line in this distribution 

was 0.9111 radm as shown Fig. 4.6 (b), and the slope in the φM4(σ) was 

0.9111+4π×20 radm. Thus the measured thickness of the OB was equal to 

(0.9111/4π)+20=20.0725 μm. The measurement was repeated three times as 

Case 1, 2, and 3. The three measured values of T are shown in Table 4.3, 

where a maximum difference in the three cases was 6 nm. From these 

measured values, it is estimated that the measurement error in T was less than 

6 nm. 

 

Table. 4.3.  Measured values of T in three cases. 

(m) Case 1 Case 2 Case 3 

T 20.073 20.079 20.075 

 

4.4.2. Determination of p1 and refractive index measurement 

The detected distribution of φM1(σ)/2π was fitted with the fitting functions of 

f1(σ) and f2(σ). The values of φM1(σ)/2π changed from about 0 to 35 in the 

region of Rσ as shown in Fig. 4.6 (a). Difference between the distribution of 

φM1(σ)/2π and the fitted distribution of f1(σ) or f2(σ) is denoted by  f1(σ) or  

f2(σ), respectively. The results of the differences in the three cases are shown 

in Fig. 4.7. Since the distributions of  f1 and  f2 in each case were almost 

the same, the fitting in the region of Rσ was done well with the fitting 

functions of f1(σ) and f2(σ). The fitted values of b0, b2, and b4 are shown in 

Table 4.4. Figure 4.8 shows distributions of the fitted f1(σ) and f2(σ) around 

σ=0 with red curve and blue curve, respectively, in the three cases. It is 
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expected that the values of f1(0)=-q and f2(0) =-q are from -82 to -81 because 

the integer value of p1=82 is obtained by rounding the value of q+0.5. 

Although f1(0) provided a good value of –q in all three cases, f2(0) did not 

provide a good value of –q except Case 1. It was made clear that the fitting 

function f2(σ) produced an incorrect fitted value at σ=0 even when the 

difference  f2(σ) was not so large. Figure 4.9 shows the measured refractive 

index of n1(σ) given by Eq. (4.13) in Case 1, 2, and 3 together with 

nC2(σ)=1.447+0.0043σ2-0.0001σ4, where the solid curves and the doted curve 

are n1(σ) and nC2(σ), respectively. It is indicated that the measured refractive 

indices are different from the nC2(σ). Figure 4.10 shows the difference in n1(σ)  

 

 

                (a)                              (b) 

 

                 (c)                           (d) 

 

 

                 (e)                           (f) 

Fig. 4.7. Distributions of  f1=φM1/2π - f1 and  f2=φM1/2π – f2. (a)  f1 and (b) 

 f2 in Case 1, (c)  f1 and (d)  f2 in Case 2, (e)  f1 and (f)  f2 in Case 3. 
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                (a)                            (b) 

 

 

 

                              (c)  

Fig. 4.8. Distributions of fitted f1(σ) (red curve) and f2(σ) (blue curve) around 

σ=0 in (a) Case 1, (b) Case 2, and (c) Case 3. 

 

 

Table 4.4. Experimental results in three cases to obtain p1 with two fitting 

functions. 

 f1(σ) f2(σ)  

 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

b0 1.4478 1.4477 1.4432 1.4422 1.4203 1.4193 

b2 0.0029 0.0029 0.0034 0.0042 0.0094 0.0092 

b4    -0.0001 -0.0007 -0.0006 

q+0.5 81.87 81.88 81.68 81.67 80.91 80.83 

p1 82 82 82 82 81 81 

 

 
between the two cases. The blue curve is the difference between Case 2 and 

Case 1, and the green curve is the one between Case 3 and Case 1. It is made 

clearly that the refractive index can be measured with an error less than 

0.0005. The sources of the measurement error are estimated to be mechanical 
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vibrations of the interferometer, disturbance in air, and displacements of the 

two reference surfaces caused by removing the object in step 2.The measured 

refractive index n1(σ) was obtained from the detected distribution φM1(σ) and 

the fitted value p1. Another refractive index obtained with a similar way as 

reported in Refs. C4.8 and C4.9 is the fitted refractive index nC1(σ)= b0+b2σ
2 

with the fitted values of b0 and b2. Figure 4.11 shows the nC1(σ) in the three 

cases together with nC2(σ)=1.447+0.0043σ2-0.0001σ4. It is clear that the 

measured refractive index n1(σ) provides an actual refractive index which is 

more exact than the fitted refractive index nC1(σ). 

 

 

 

Fig. 4.9. Refractive indices n1(σ) in Case 1 (red curve), Case 2 (blue curve), 

and Case 3 (green curve). Dark dotted curve is refractive index 

nC2(σ)=1.447+0.0043σ2-0.0001σ4. 

 

 

 

Fig. 4.10. Difference in n1(σ) between Case 2 and Case 1 (blue curve), and 

difference between Case 3 and Case 1 (green curve). 
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Fig. 4.11. Refractive indexes nC1(σ) using the fitted values b0 and b2 of f1(σ) 

in Case 1 (red curve), Case 2 (blue curve), and Case 3 (green curve). Dark 

dotted curve is refractive index of nC2(σ)=1.447+0.0043σ2-0.0001σ4. 

 

4.5. Discussion 
 

In order to examine whether a refractive index deviating from the nC2(σ) can 

be measured with the fitting functions f1(σ) and f2(σ), the following refractive 

indexes were considered: (1) n(σ)=1.447+b1σ+0.0043σ2-0.0001σ4 and (2) 

n(σ)=1.447+0.006σ+0.0043σ2+b3σ
3-0.0001σ4. The value of b1 or b3 changed, 

and φM1(σS)/2π=2Tn(σS)σS+0.5 was calculated to obtain the value of p1 with 

Eq. (4.4) where T=20.073 μm and σS=1.4 μm-1. The unwrapped phase data of 

φM1(σ)/2π was made from the interference signal S1(σ) given by Eq. (4.1), and 

the data was fitted with f1(σ)=2T(b0+b2σ
2)σ-q and f2(σ)=2T(b0+b2σ

2+b4σ
4)σ-q. 

Table 4.5 shows the results obtained at the refractive index of (1) and f1(σ), 

where the fitted value of b0, b2, and q are shown. According to the change in 

the value of b1 of n(σ), the value of p1 changed. It is clear by comparing q+0.5 

to p1 that the exact value p1 can be obtained in the region of -0.018<b1<0.010. 

Table 4.6 shows the results obtained at the refractive index of (1) and f2(σ). In 

this case the exact value p1 can be obtained in the region of -0.024<b1<0.020.  

 

 

Table 4.5. Results at n(σ)=1.447+b1σ+0.0043σ2-0.0001σ4 and f1(σ). 

b1 -0.018 -0.016 -0.012 0 0.004 0.008 0.010 

φM1(σS)/2π 80.86 81.02 81.34 82.28 82.59 82.91 83.07 

p1 81 81 81 82 83 83 83 

b0 1.421 1.424 1.431 1.452 1.458 1.464 1.468 

b2 -0.0002 0.0002 0.0010 0.0032 0.0042 0.0049 0.0053 

q+0.5 80.47 80.55 80.70 82.17 83.29 83.44 83.51 
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Table 4.6. Results at n(σ)=1.447+b1σ+0.0043σ2-0.0001σ4 and f2(σ). 

b1 -0.024 -0.022 -0.018 0 0.014 0.018 0.020 

φM1(σS)/2π 80.39 80.55 80.86 82.28 83.38 83.70 83.85 

p1 80 81 81 82 83 84 84 

b0 1.417 1.419 1.424 1.448 1.466 1.471 1.474 

b2 
-

0.0028 

-

0.0022 

-

0.0011 
0.0041 0.0081 0.0093 0.0099 

b4 0.0001 0.0001 0.0001 
-

0.0001 

-

0.0002 

-

0.0003 

-

0.0003 

q+0.5 79.45 80.50 80.60 82.03 83.36 84.45 84.50 

 

 

 

       Fig. 4.12. Detected distributions of [φM1(σ)/2π]-59(σ-σS) in Case 3. 

 

 

Next the refractive index of (2) was considered, where the value of b1 was 

fixed at 0.006. The regions where the exact value p1 could be obtained with 

f1(σ) and f2(σ) were -0.0006<b3<0.003 and -0.007<b3<0.006, respectively. 

From these results it is made clear that the fitting function f2(σ) can produce 

an exact p1 value than f1(σ) because the values of b2 and b4 change well 

according to the change in b1 or b3 of n(σ). However, in the experiments the 

fitting function f2(σ) provided the exact p1 in only Case 1 among the three 

cases. It is estimated that f2(σ) does not work well when the spectral phase 

distribution has small fluctuations as shown in Fig. 4.12. Comparing the phase 

distribution in Case 3 shown in Fig. 4.12 with that in Case 1 shown in Fig. 

4.6 (a), the small fluctuations is stronger in Fig. 4.12. As a conclusion, it is 

better that the two fitting functions f1(σ) and f2(σ) are used for measuring 

refractive indexes which are expressed by functions different from Cauchy’s 

equation. 

 

4.6. Conclusion 
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A new method for measuring phase refractive index distribution of a glass 

plate has been proposed where the three spectral phase distributions detected 

in the two different optical configurations of a spectrally resolved 

interferometer were used to measure simultaneously both thickness and 

refractive index of a glass plate. The phase ambiguity 2πp1 existing in a 

detected unwrapped phase distribution was determined by fitting the phase 

distribution with two fitting functions based on Cauchy’s equation. Phase 

refractive index distribution of a quartz glass plate with 20 m thickness could 

be measured with an error less than 0.0005 from the unwrapped spectral phase 

distribution φM1(σ), the measured thickness T, and the determined phase 

ambiguity p1. It was made clear in the experiment and the discussion how the 

two fitting functions produced the value of p1. 
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CHAPTER 5 

 
CONCLUSIONS 

 
In Sec.1.1, single wavelength interferometer, white light scanning 

interferometer (WLSI), and spectrally resolved interferometer (SRI) were 

explained and compared. SRI was adopted as a better interferometer for 

measurements of thickness and refractive index. It was explained that spectral 

phase containing in the interference signal as a phase term is utilized for the 

measurements.  

   Section 1.2 described how measurements of thickness and refractive 

index are motivated by improving the measurements with using SRI.  

   First in Sec.1.2.1, it was explained how a SRI is improved to measure a 

large thickness of glass plate with a low resolution spectral analyzer (SPA) 

and also how the interference signals are processed to obtain the thickness. In 

the five subsections from Sec.1.2.1.1 to Sec.1.2.1.5, the following methods 

were presented: In Sec.1.2.1.1, it was explained that a high resolution SPA is 

required to detect an interference signal with a small period due to a large 

OPD produced by a large thickness of glass plate. In order to detect the 

interference signal with a low resolution SPA, the position of reference 

surface is changed by using a high accurate PZT stage to reduce the OPD of 

the interference signal. In Sec.1.2.1.2, properties of different two methods to 

obtain the thickness from the interference signal were compared. One method 

is to use the peak of amplitude distribution of Fourier transform of the 

interference signal. Another method is to extract the spectral phase from the 

interference signal. It was concluded that the spectral phase is better because 

it is directly related to OPD. In Sec.1.2.1.3, dispersion effect caused by a cubic 

beam splitter (BS) was explained. Since the term of nB(σ)lε generated by the 

dispersion effect is contained in each spectral phase, it can be eliminated by 

subtraction between two different spectral phases. In Sec.1.2.1.4, it was 

described that the term of n(σ)T containing in a spectral phase should be 

eliminated to obtain a measurement value of T. This elimination is done by 

subtracting two spectral phases detected in different optical configurations. In 

Sec.1.2.1.5, it was explained how to measure more larger thickness T which 

increases the dispersion effect. A compensation glass (CG) with thickness TC 

is used to reduce the dispersion effect. Spectral phase φ(σ) obtained from 

different spectral phases has a term of n(σ)(T-TC). A value of T-TC is estimated 

by using nonlinear component of φ(σ). A measurement value of T can be 

obtained from the spectral φ(σ) and the estimated value of (T-TC). 

Next in Sec. 1.2.2, it was explained how a real refractive index is obtained 

directly from the detected spectral phase. The 2π phase ambiguity existing in 

a detected and unwrapped spectral phase is determined by fitting the 

unwrapped phase with a fitting function. An actual refractive index is 
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obtained from a distribution of the detected spectral phase and the determined 

2π phase ambiguity. 

In Sec.1.3 organization of the thesis was explained by presenting figures 

which show flow of measurement and connections to Chapter 2, 3, and 4.     

In Chapter 2, it was made clear theoretically that the maximum 

measurable thickness Tm depends on the dispersion effect of glass plate. Tm 

was less than 2 mm when the resolution of SPA is 0.5 nm and the object is 

BK7 glass plate. A SRI was constructed with a SPA of 0.5 nm resolution and 

a PZT stage of 10 nm positioning accuracy. Experimental results showed that 

a small measurement error of 50 nm was achieved in the measurement of 1 

mm thickness of the glass plate.  

In Chapter 3, dispersion effect generated by an object of more larger 

thickness T was compensated by using a compensation glass (CG) plate of 

thickness TC. The known refractive index of the CG and the object was the 

same. In experiments, the estimated values of T-TC were 21 μm and 212 μm 

at objects of 1 mm and 5 mm-thickness, respectively. 1 mm and 5 mm-

thickness glass plates were measured with error less than 0.8 μm and 2 μm, 

respectively.  

In Chapter 4, it was explained how to obtain actual refractive index from 

the unwrapped spectral phase M1(σ). The phase ambiguity 2πp1 in M1(σ) was 

determined by fitting M1(σ) with a fitting function. Properties of the following 

two fitting functions based on Cauchy’s equation were examined: 

f1(σ)=2T(b0σ+b2σ
3)+0.5-p1 and f2(σ)=2T(b0σ+b2σ

3+b4σ
5)+0.5-p1. The simulation 

results showed that both f1(σ) and f2(σ) can provide a correct value of p1 after 

rounding off the fitted value of p1. On the other hand, experimental results 

made it clear that f1(σ) provides a correct value of p1=82 more frequently than 

f2(σ) because the smaller number of terms in f1(σ) makes the fitting function 

non-sensitive to noise containing in the M1(σ). The measured thickness of a 

quartz glass plate with 20 m thickness was 20.08 m with error less than 6 

nm. Finally a real phase refractive index distribution could be measured with 

an error less than 0.0005 from the detected spectral phase φM1(σ), the measure 

thickness T, and the fitted value of p1. 
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