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ABSTRACT

The Lagrange interpolation is one of the most used interpolation types to approx-

imate functions. Its interpolation error has been estimated under various norms and

is a widely explored topic in numerical analysis. Error estimation for the approxi-

mation of functions greatly affects the development of numerical solutions to partial

differential equations. For example, the maximum norm of the interpolation error

influences the discretization error of the finite element method (FEM) solution.

In this research, we consider the L∞-norm estimation for the linear Lagrange

interpolation over a triangle element K by using the H2-seminorm of the objective

function, that is, to obtain the explicit estimate of the constant satisfying

∥u− ΠLu∥∞,K ≤ CL(K)|u|2,K ,∀u ∈ H2(K).

Here, CL(K) is the interpolation error constant to be evaluated explicitly. Waldron

(1998) estimated the maximum norm of the Lagrange interpolation error in terms of

the maximum of the second derivative of the objective function, i.e., ∥u(2)∥∞,K . Since

the H2-seminorm of the function requires less function regularity than ∥u(2)∥∞,K

norm, the result of this research has more application.

For triangle element K of general shape, a formula to give an estimate of the

interpolation error constant CL(K) is obtained through theoretical analysis. The

theoretical estimation leads to a raw bound that works well for triangle of arbitrary

shapes. Particularly, our analysis tells that the value of CL(K) can be very large

and tend to ∞ if the triangle element tends to degenerate to a 1D segment.

An algorithm for the optimal estimation for CL(K) is also proposed, which ex-
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tends the technique of eigenvalue estimation by Liu [17]. The objective problem is

converted to a quadratic minimization problem with maximum norm constraint. To

overcome the difficulty caused by the maximum norm in the constraint condition, a

novel method is proposed by utilizing the orthogonality property of the interpola-

tion associated to the Fujino-Morley FEM space and the convex-hull property of the

Bernstein representation of functions in the FEM space. Specifically, for a unit right

isosceles triangle K, it has been shown by rigorous computation that

0.40432 ≤ CL(K) ≤ 0.41596.

Also, the maximum norm error estimation of the Lagrange interpolation has been

used to estimate the local maximum error of the FEM solution to the Poisson bound-

ary value problem. That is, given the subdomain Ω′ ⊆ Ω, an estimator ξ is desired

which satisfies

∥u− uh∥∞,Ω′ ≤ ξ (u : exact solution, uh : FEM solution).

To compute the above estimator, Fujita’s method of pointwise estimation of the

boundary value solution is employed, as well as the interpolation error estimation

for the Lagrange interpolation.

The code is shared at https://ganjin.online/shirley/InterpolationErrorEstimate.

Main results of this dissertation can be found in [13].

Keywords: Lagrange interpolation, Fujino–Morley FEM space, Bernstein poly-

nomials, finite element method, boundary value problem, maximum norm error es-

timation
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Chapter 1

Introduction to Lagrange

interpolation error estimation

In this study, we consider the error estimation for the linear Lagrange interpolation

over triangle elements and provide explicit values for the error constant in the error

estimation under the L∞-norm.

In this chapter, the existing literature for various error estimation of the Lagrange

interpolation function is introduced.

1.1 Notation for function spaces

Let us introduce the notation for the function spaces used throughout this research.

In most cases, the domain Ω of functions is selected as a triangle element K. The

standard notation is used for Sobolev function spacesW k,p(Ω). The associated norms

1



and seminorms are denoted by ∥ · ∥k,p,Ω and | · |k,p,Ω, respectively (see, e.g., Chapter

1 of [2] and Chapter 1 of [8], [3], [7]). Particularly, for special k and p, we use

abbreviated notations as Hk(Ω) = W k,2(Ω), | · |k,Ω = | · |k,2,Ω, and Lp(Ω) = W 0,p(Ω).

The set of polynomials over K of up to degree k is denoted by Pk(K). The second

order derivative is given by D2u := (uxx, uxy, uyx, uyy) for u ∈ H2(Ω).

1.2 Various interpolation error estimation

The Lagrange interpolation, being one of the most fundamental type of interpolation,

has vast studies dedicated to studying its error and efficiency.

1.2.1 One-dimensional Lagrange interpolation

Given I = (0, 1), the Lagrange interpolation function ΠLu of u ∈ H2(I) is a linear

function satisfying

(u− ΠLu)(0) = (u− ΠLu)(1) = 0.

The following results are well known as optimal estimates if u is regular enough, in

the sense that the right-hand sides of the inequalities are well defined:

∥∥u− ΠLu
∥∥
0,I

≤ 1

π2
|u|2,I ,

∣∣u− ΠLu
∣∣
1,I

≤ 1

π
|u|2,I ,

∥∥u− ΠLu
∥∥
∞,I

≤ 1

8

∥∥u(2)∥∥∞,I

where u(2) denotes the second derivative of u.

In particular, for the Lagrange interpolation error u−ΠLu defined on I = (0, 1),

by Wirtinger’s inequality [10] (Lemma A.0.3),
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∥u− ΠLu∥0,I ≤
1

π
|u− ΠLu|1,I . (1.1)

Proposition 1.2.1. For u ∈ H2(I), |u− ΠLu|1,I ≤
1

π
|u|2,I .

Proposition 1.2.2. For u ∈ H2(I), ∥u− ΠLu∥0,I ≤
1

π2
|u|2,I .

Proof. From Wirtinger’s inequality (1.1) and Proposition 1.2.1, the conclusion fol-

lows.

Proposition 1.2.3. For u ∈ H2(I), ∥u− ΠLu∥∞,I ≤
1

8
∥u(2)∥∞,I .

Proof. Let w = u − ΠLu. Then w(0) = w(1) = 0. By Extreme Value Theorem, w

takes on a maximum value at say x0 ∈ (0, 1). Taking the Taylor expansion of w(x)

at x0, we have

w(x) = w(x0)+w
′(x0)(x−x0)+

1

2
w′′(ξ)(x−x0)2 = w(x0)+

1

2
w′′(ξ)(x−x0)2 , (1.2)

since w′(x0) = 0. Suppose that x0 ∈ (0, 1/2). Letting x = 0 in (1.2), since w(x) = 0,

|w(x0)| =
1

2

(
1

2

)2

|w′′(ξ)| ≤ 1

8
max
ξ∈(0,1)

|w′′(ξ)| .

Similarly, if x0 ∈ (1/2, 1), by taking x = 1, |w(x0)| ≤
1

8
maxξ∈(0,1) |w′′(ξ)| .

Therefore,

∥u− ΠLu∥∞,I ≤
1

8
∥u(2)∥∞,I .
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The estimation presented above are optimal in the sense that there exist functions

for which the equalities hold.

• Let u(x) := sin(πx) on the interval (0, 1). Then, ΠLu(x) = 0. In this case,

∥∥u− ΠLu
∥∥
0,I

=

(∫ 1

0

| sin(πx)|2dx
)1/2

=

√
2

2

while

|u|2,I =
(∫ 1

0

|u′′(x)|2dx
)1/2

=

(∫ 1

0

|π2 sin(πx)|2dx
)1/2

=
π2
√
2

2

Thus, ∥∥u− ΠLu
∥∥
0,I

=
1

π2
|u|2,I

Also, ∣∣u− ΠLu
∣∣
1,I

=

(∫ 1

0

|π cos(πx)|2dx
)1/2

=
π
√
2

2

and hence, ∣∣u− ΠLu
∣∣
1,I

=
1

π
|u|2,I .

• Let u(x) := x2 on the interval (0, 1). Then, ΠLu(x) = x. In this case,

∥∥u− ΠLu
∥∥
∞,I

= ∥x2 − x∥∞,I =
1

4
,

since the function |x2 − x| attains its maximum at x = 0.5 with value 0.25.

On the other hand,

∥u(2)∥∞,I = ∥u′′∥∞,I = 2.
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Therefore, ∥∥u− ΠLu
∥∥
∞,I

=
1

8

∥∥u(2)∥∥∞,I
.

1.2.2 Two-dimensional Lagrange interpolation

Over a triangle K with vertices pi (i = 1, 2, 3), the Lagrange interpolation function

ΠLu of u ∈ H2(K) is the linear function such that (see Figure 1.1)

(u− ΠLu)(pi) = 0, ∀i = 1, 2, 3.

Figure 1.1: A linear Lagrange interpolation function ΠLu defined on a triangle K
([13]).

For the L2-norm and H1-seminorm error estimation of ΠL, one needs to estimate

the interpolation error constants C0 and C1 satisfying the inequalities:

∥∥u− ΠLu
∥∥
0,K

≤ C0(K) |u|2,K ,
∣∣u− ΠLu

∣∣
1,K

≤ C1(K) |u|2,K .
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Let h be the medium edge length ofK, θ the maximum angle, and αh (0 < α ≤ 1)

the smallest edge length. Kikuchi and Liu [14, 18] obtained the bound of C0 and C1

as follows:

C0(K) ≤ h

π

√
1 + |cos θ|, C1(K) ≤ 0.493h

1 + α2 +
√
1 + 2α2 cos 2θ + α4√

2
(
1 + α2 −

√
1 + 2α2 cos 2θ + α4

) .

Another estimation for C1 was obtained by Kobayashi [15] for a triangle K with

edge lengths A,B,C and area S and is given by

C1(K) :=

√
A2B2C2

16S2
− A2 +B2 + C2

30
− S2

5

(
1

A2
+

1

B2
+

1

C2

)
.

The optimal estimation of constants C0(K) and C1(K) for a concrete K is ob-

tained by solving corresponding eigenvalue problems with rigorous lower eigenvalue

bounds; see results of [20, 23].

Waldron [24] provides the following sharp inequality for the L∞-norm error esti-

mation in terms of the L∞-norm of second derivative of the objective function:

∥∥u− ΠLu
∥∥
∞,K

≤ 1

2
(R2 − d2)

∥∥u(2)∥∥∞,K
, (1.3)

where R is the radius of the circumscribed circle of K, d is the distance of the center

c of the circumscribed circle from K, and
∥∥u(2)∥∥∞,K

is defined by

∥∥u(2)∥∥∞,K
:= sup

x∈K
sup

u,v∈R2

∥u∥=∥v∥=1

|DuDvu(x)| = sup
x∈K

sup
ξ∈R2

∥ξ∥=1

∣∣D2
ξu(x)

∣∣ .

6



In particular, if the center c of the circumscribed circle is in K, then

∥∥u− ΠLu
∥∥
∞,K

≤ 1

2
R2

∥∥u(2)∥∥∞,K
.

D’Azevedo and Simpson [9] provided results for the L∞-norm of the interpolation

error for quadratic polynomials f . In [22], Shewchuk discussed extensively the L∞-

norm for both f−ΠLf and ∇(f−ΠLf) for both triangular and tetrahedral elements.

On the other hand, the relation between the geometric aspect ratio of the triangle

element to the interpolation error was examined by Cao [4].

1.3 Maximum norm error estimation

In this research, we consider the L∞-norm error estimation for the Lagrange interpo-

lation over triangle element K by using the H2-seminorm of the objective function.

Specifically, this study aims to evaluate explicitly the interpolation error constant

CL(K) satisfying the inequality

∥∥u− ΠLu
∥∥
∞,K

≤ CL(K) |u|2,K , ∀u ∈ H2(K). (1.4)

Note that since W 2,∞(K) ⊆ H2(K), the inequality (1.4) is more general than Wal-

dron’s result (1.3).

Given a triangle K, denote each vertex by pi (i = 1, 2, 3) and the largest edge

length by hK ; see Figure 1.2. We follow the notation introduced by Liu and Kikuchi

[18] to configure a general triangle with geometric parameters. Let h, α and θ be

7



positive constants such that

h > 0, 0 < α ≤ 1,
(π
3
≤
)
cos−1

(α
2

)
≤ θ < π.

Define a triangle Kα,θ,h with three vertices p1(0, 0), p2(h, 0) and p3(αh cos θ, αh sin θ).

Note that h ≤ hK . In case of h = 1, the notation Kα,θ,1 is abbreviated as Kα,θ.

Figure 1.2: Configuration of triangle Kα,θ,h ([13]).

With the above configuration of the triangle Kα,θ,h, the optimal constant CL(K)

in (1.4) can be defined as follows:

CL(α, θ, h) := sup
u∈H2(Kα,θ,h)

∥∥u− ΠLu
∥∥
∞,Kα,θ,h

|u|2,Kα,θ,h

. (1.5)

By scaling of the triangle element, it is easy to confirm that CL(α, θ, h) = hCL(α, θ, 1).

The main results presented in this dissertation can be found in [13].
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Chapter 2

Explicit estimation of the

interpolation constant

In this chapter, the raw estimation of the desired constant is obtained through the-

oretical analysis.

2.1 Trace theorem

First, let us quote a lemma about the trace theorem, which gives estimation for the

integral over edge of a triangle element. For convenience, the proof is shown in a

concise way; refer to e.g. [1, 5, 25] for more detailed discussion.

Lemma 2.1.1 (Trace theorem). Let e be one of the edges of triangle K; see Figure

9



Figure 2.1: A triangle K with base e and height HK ([13]).

2.1. Given w ∈ H1(K), we have the following estimation:

∥w∥20,e ≤
|e|
|K|

{
∥w∥20,K + hK ∥w∥0,K |w|1,K

}
.

Proof. For any w ∈ H1(K), the Green theorem leads to

∫
K

((x, y)− p3) · ∇(w2)dK =

∫
∂K

((x, y)− p3) · −→n w2ds−
∫
K

2w2dK.

Here, −→n is the unit outer normal direction on the boundary of K. Note that

((x, y)− p3) · −→n =

 0 on p1p3, p2p3 ,

HK on e ,

where HK is the height of the triangle with base as e. Thus,
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HK

∫
e

w2ds =

∫
K

2w2dK +

∫
K

((x, y)− p3) · ∇(w2)dK

≤
∫
K

2w2dK + 2hK

∫
K

w |∇w| dK

≤ 2 ∥w∥20,K + 2hK ∥w∥0,K ∥∇w∥0,K .

The conclusion follows since 2|K| = |e|HK , where K denotes the area of K.

Using the trace theorem, the next lemma shows the pointwise estimation of the

interpolation error.

Lemma 2.1.2. Given u ∈ H2(K), for any point x0 ∈ K, we have

∣∣(u− ΠLu)(x0)
∣∣ ≤ √

2 |p1x0|√
HK̃

(
hK

∣∣u− ΠLu
∣∣
1,K

|u|2,K +
∣∣u− ΠLu

∣∣2
1,K

) 1
2
,

where hK is the longest edge length of K, and HK̃ is the height of the subtriangle

K̃ = p1x0p3 with respect to the base ẽ = p1x0 (see Figure 2.2).

Figure 2.2: A subtriangle K̃ in a triangle K ([13]).

Proof. Let g = u−ΠLu and t be the direction along edge p1x0. In Lemma 2.1.1, by

11



taking w :=
∂g

∂t
, we have

∥∥∥∥∂g∂t
∥∥∥∥2

0,ẽ

≤ |ẽ|
|K̃|

(
∥w∥20,K̃ + hK̃ ∥w∥0,K̃ |w|1,K̃

)
≤ |ẽ|

|K̃|

(
|g|21,K̃ + hK̃ |g|1,K̃ |g|2,K̃

)
.

Taking the Taylor expansion of g on the segment ẽ and noting that g(p1) = 0,

|g(x0)| =

∣∣∣∣∫
p1x0

∂g

∂t
dt+ g(p1)

∣∣∣∣ ≤ √
|p1x0| ·

∥∥∥∥∂g∂t
∥∥∥∥
0,ẽ

≤ |p1x0|√
|K̃|

(
hK |g|1,K̃ |g|2,K̃ + |g|21,K̃

) 1
2

≤
√

2 |p1x0|√
HK̃

(
hK |g|1,K |g|2,K + |g|21,K

) 1
2
.

The conclusion follows.

Liu and Kikuchi [18] considered the estimation of the constant C1(α, θ) for dif-

ferent types of triangles K = Kα,θ such that

∣∣u− ΠLu
∣∣
1,K

≤ C1(α, θ)h |u|2,K , ∀u ∈ H2(K), (2.1)

where h is the medium length of K. The constant C1(α, θ) is used to give a bound

for CL(K) as shown in the lemma below.

Lemma 2.1.3. Given u ∈ H2(K), for any point x0 ∈ K, we have

∣∣(u− ΠLu)(x0)
∣∣ ≤ √

2 |p1x0|√
HK̃

(
C1(α, θ)hhK + C2

1(α, θ)h
2
) 1

2 |u|2,K . (2.2)

Proof. The inequality follows from applying (2.1) to Lemma 2.1.2.
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2.2 The case for a unit right isosceles triangle

Let us consider the special case for a right isosceles triangle. In the next section,

this specific bound will be used to estimate the interpolation constant for triangles

of arbitrary shape.

Proposition 2.2.1. For the unit right isosceles triangle K = K1,π
2
,h,

∥∥u− ΠLu
∥∥
∞,K

≤ 1.3712h |u|2,K . (2.3)

Figure 2.3: A right isosceles triangle K1,π
2
,h ([13]).

Proof. Suppose a point x0 subdivides K into K1, K2, K3; see Figure 2.3. Let us

consider the estimation of the term |p1x0| /HK2 , which is required in Lemma 2.1.3.

Let p1p4 be the height of K with base as p2p3. Due to the symmetry of K, it is

enough to only consider the case that x0 ∈ K is below the line p1p4. Let p be the

intersection of the extended line of p1x0 and edge p2p3. Note that |p1x0| ≤ |p1p|. For

13



p := (x, y) on p2p4, |p1p| =
√
x2 + y2. The height of K2 with base p1x0 is given by

HK2 =
hx√
x2 + y2

.

Then, since y = h− x,

|p1p|
HK2

=
2x2 − 2hx+ h2

hx
.

The above quantity takes its maximum value at p =
(
h
2
, h
2

)
and p = (h, 0),

and its maximum value is 1. Thus, for any p on p2p4, |p1p| /HK2 ≤ 1. From [18],

C1

(
1, π

2

)
≤ 0.49293. Since hK =

√
2h, by inequality (2.2),

∣∣(u− ΠLu)(x0)
∣∣ ≤ √

2
[
(0.49293)

√
2 + 0.492932

] 1
2
h |u|2,K ≤ 1.3712h |u|2,K .

2.3 Dependence of the constant on the shape of

K

Here, we consider the variation of the interpolation constant when a reference trian-

gle, i.e., the right isosceles triangle, is transformed to a general triangle.

Theorem 2.3.1. For a general element Kα,θ, the following estimation for constant

CL(α, θ) holds:

CL(α, θ) ≤ v+(α, θ)

2
√
α sin θ

CL
(
1,
π

2

)
, (2.4)

14



where v+(α, θ) = 1 + α2 +
√
1 + 2α2 cos 2θ + α4.

Proof. Let us consider the affine transformation between x = (x1, x2) ∈ Kα,θ and

ξ = (ξ1, ξ2) ∈ K1,π
2
:

ξ1 = x1 −
x2

tan θ
, ξ2 =

x2
α sin θ

, or x1 = ξ1 + αξ2 cos θ, x2 = αξ2 sin θ.

Given ṽ(ξ) over K1,π
2
, define v(x) over Kα,θ by v(x1, x2) = ṽ(ξ1, ξ2). Thus,

∥v∥∞,Kα,θ
= ∥ṽ∥∞,K1, π2

.

The estimation for the variation of H2-seminorm in Theorem 1 of [18] tells that

|v|2,Kα,θ
≥ 2

√
α sin θ

v+(α, θ)
|ṽ|2,K1, π2

.

Thus, we draw the conclusion from the definition of constant CL(α, θ) in (1.5).

Lemma 2.3.2. For shape-regular triangles, CL(α, θ) is bounded. Here, by “shape-

regular triangles” it means that for certain positive quantity δ, the minimal inner

angle of each triangle, denoted by θmin, the inequality θmin ≥ δ holds.

Proof. Suppose that there exists δ > 0 such that the minimum inner angle of the

triangle, denoted by θmin, satisfies the inequality (θ >) θmin ≥ δ. Note that θ ≥ π

3
,

θ + θmin < π,

sin δ ≤ sin θmin ≤ sin θ and cos 2θ ≤ cos 2θmin ≤ cos 2δ.

15



Thus,

1 + α2 +
√
1 + 2α2 cos 2θ + α4

2
√
α sin θ

≤ 1 + α2 +
√
1 + 2α2 cos 2δ + α4

2
√
α sin δ

.

Since CL
(
1, π

2

)
has a finite value, we draw the conclusion from the estimation (2.4).

Remark 2.3.3. By using the raw bound of CL
(
1, π

2

)
≤ 1.3712h in (2.3), an explicit

but raw bound of CL(α, θ) is available. Later, with a sharp and rigorous estimation

of CL
(
1, π

2

)
based on numerical approach, the bound can be improved as

CL(α, θ, h) ≤ 0.41596h
v+(α, θ)

2
√
α sin θ

. (2.5)

Remark 2.3.4. Here are two remarks on the asymptotic behavior of the constant

when the triangle degenerates to a segment.

1. Suppose the maximum inner angle θ of Kα,θ is close to π; see Figure 2.4. Let

u(x, y) := x2 + y2. Then, ΠLu(x, y) = x+ ((α− cos θ)/ sin θ)y and

∥∥u− ΠLu
∥∥
∞,Kα,θ

= (2α cos θ − α2 − 1)/4, |u|2,Kα,θ
= 2

√
α sin θ.

Thus, we have a lower bound of CL(α, θ) as follows,

CL(α, θ) ≥ 2α cos θ − α2 − 1

8
√
α sin θ

.

In this case, CL(α, θ) diverges to ∞ as θ tends to π.

2. For triangle Kα,π
2
shown in Figure 2.5, let u(x, y) := |(x, y)− p4|2, where p4 is

16



Figure 2.4: A triangle Kα,θ with angle θ close to π ([13]).

the midpoint of the edge p2p3. Then, Π
Lu = (α2 + 1)/4 and

∥∥u− ΠLu
∥∥
∞,Kα, π2

= (α2 + 1)/4, |u|2,Kα, π2

= 2
√
α .

Thus, ∥∥u− ΠLu
∥∥
∞,Kα, π2

|u|2,Kα, π2

=
α2 + 1

8
√
α

(
≤ CL

(
α,
π

2

))
.

In case that α → 0, although the maximum inner angle is invariant, the inter-

polation error constant CL
(
α, π

2

)
tends to ∞ .

Figure 2.5: A right triangle Kα,π
2
with one leg length close to 0 ([13]).
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Chapter 3

Solution to optimization problems

involving maximum norm

In the previous chapter, the bounds for the interpolation constant obtained through

theoretical analysis are applicable to triangles of any shape. However, such bounds

only provide raw bounds for the objective constant. In this chapter, we propose a nu-

merical algorithm to obtain the optimal estimation of the constant CL(K) for various

triangles by solving optimization problems with constraint involving the maximum

norm.

18



3.1 Optimization problem with maximum norm

constraint

Let us formulate the optimization problem to determine the interpolation error con-

stant. The function spaces and finite element spaces along with their associated

norms and seminorms that will be used throughout the chapter are first introduced

below.

Let V L(K) := {u ∈ H2(K) | u(pi) = 0 (i = 1, 2, 3)}. Also, let T h be a triangula-

tion of K and define the space

V FM
h (K) :=

{
v

∣∣∣∣ v|Kh
∈ P2(Kh), ∀Kh ∈ T h; v(pi) = 0 (i = 1, 2, 3); v is conti-

nuous at the nodes;

∫
e

(
∂v

∂−→n

∣∣∣∣
Kh

− ∂v

∂−→n

∣∣∣∣
K′

h

)
ds = 0 for each e = Kh ∩Kh′

}
.

For uh, vh ∈ V FM
h (K), define the discretized H2-inner product and seminorm by

⟨uh, vh⟩h :=
∑

Kh∈T h

∫
Kh

D2uh|Kh
·D2vh|Kh

dKh, |uh|2,K :=
√
⟨uh, uh⟩h .

Let us define the two quantities over the triangle K:

λ(K) := inf
u∈V L(K)

|u|22,K
∥u∥2∞,K

, λh(K) := min
uh∈V FM

h (K)

|uh|22,K
∥uh∥2∞,K

. (3.1)

Remark 3.1.1. By the definition of the optimal value for CL(K),

CL(K) =
√
λ(K)

−1
.
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Hence, a lower bound for λ will be used to obtain an upper bound for the objective

interpolation error constant CL(K).

Fujino–Morley interpolation Given u ∈ H2(K), the Fujino–Morley interpola-

tion ΠFM
h u is a function satisfying

ΠFM
h u ∈ V FM

h (K); ΠFM
h u|Kh

∈ P2(Kh), ∀Kh ∈ T h,

and at the vertices pi and edges ei of K,

(u− ΠFM
h u)(pi) = 0,

∫
ei

∂

∂n
(u− ΠFM

h u)ds = 0 (i = 1, 2, 3) .

The Fujino–Morley interpolation has the property that (see, e.g., [20, 23])

⟨u− ΠFM
h u, vh⟩h = 0, ∀vh ∈ V FM

h (K). (3.2)

Let V (h) :=
{
u+ uh

∣∣ u ∈ V L(K), uh ∈ V FM
h (K)

}
. Note that the Fujino–Morley

interpolation is just the projection Ph : V (h) → V FM
h (K) with respect to the inner

product ⟨·, ·⟩h.

Let CFM
h be a quantity that makes the following inequality hold.

∥∥u− ΠFM
h u

∥∥
∞,K

≤ CFM
h

∣∣u− ΠFM
h u

∣∣
2,K

, ∀u ∈ V L(K) . (3.3)
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3.2 Lower bound for λ

The next theorem provides an explicit lower bound of λ, which was inspired by the

idea of [17] for the lower bounds of eigenvalue problems.

Theorem 3.2.1. With the quantity CFM
h , we have a lower found of λ(K) as follows.

λ(K) ≥ λh
1 + (CFM

h )2λh
. (3.4)

Proof. For any u ∈ V L(K), since ΠFM
h u ∈ V FM

h (K),
∣∣ΠFM

h u
∣∣
2,K

≥
√
λh

∥∥ΠFM
h u

∥∥
∞,K

.

Applying the inequality (3.3), we have

∥u∥∞,K =
∥∥ΠFM

h u+ u− ΠFM
h u

∥∥
∞,K

≤
∥∥ΠFM

h u
∥∥
∞,K

+
∥∥u− ΠFM

h u
∥∥
∞,K

≤

∣∣ΠFM
h u

∣∣
2,K√

λh
+ CFM

h

∣∣u− ΠFM
h u

∣∣
2,K

≤
√

1

λh
+ (CFM

h )2
√
|ΠFM

h u|22,K + |u− ΠFM
h u|22,K .

From the orthogonality in (3.2), we have

∣∣ΠFM
h u

∣∣2
2,K

+
∣∣u− ΠFM

h u
∣∣2
2,K

= |u|22,K .

Thus,

∥u∥∞,K ≤

√
1 + (CFM

h )2λh
λh

|u|2,K , ∀u ∈ V L(K) .

From the definition of λ in (3.1), we draw the conclusion.

Remark 3.2.2. To apply Theorem 3.2.1 for bounding λ, two subproblems emerge,
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namely (1) to find an estimation of CFM
h , and (2) to find the explicit value of λh.

The next two subsections discusses these problems separately.

3.2.1 Estimation of CFM
h

To have an explicit value of CFM
h , we first define the quantity CFM

res (Kh) for each

element Kh in the triangulation T h:

CFM
res (Kh) := sup

u∈H2(Kh)

∥∥u− ΠFM
h u

∥∥
∞,Kh

|u− ΠFM
h u|2,Kh

= sup
w∈W1

∥w∥∞,Kh

|w|2,Kh

.

Here, W1 :=
{
w ∈ H2(Kh)

∣∣∣ w(pi) = 0,
∫
ei

∂w
∂n
ds = 0 (i = 1, 2, 3)

}
. Noticing that

W1 ⊆ W2 for W2 := {w ∈ H2(Kh) | w(pi) = 0 (i = 1, 2, 3)}, from the definition of

CL in (1.5), we have

CFM
res (Kh) = sup

w∈W1

∥w∥∞,Kh

|w|2,Kh

≤ sup
w∈W2

∥w∥∞,Kh

|w|2,Kh

= CL(Kh).

Then, the following CFM
h with an upper bound makes certain (3.3) holds:

CFM
h := max

Kh∈T h
CFM

res (Kh)

(
≤ max

Kh∈T h
CL(Kh)

)
. (3.5)

Remark 3.2.3. Let T h be a uniform triangulation of a right isosceles triangle; see a

sample mesh in Figure 3.1. We choose an explicit upper bound of CFM
h as CFM

h ≤

1.3712h, since for each Kh ∈ T h, CFM
res ≤ CL(Kh) ≤ 1.3712h, where h is the leg

length of each right triangle element.
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Figure 3.1: A uniform triangulation of a right isosceles triangle ([13])

3.2.2 Estimation of λh

In this part, we present a method to estimate λh, which is required in Theorem 3.2.1

for bounding λ. Let M := Dim(V FM
h ). The estimation of λh is equivalent to finding

the solution to the optimization problem

λh = min xTAx, subject to

∥∥∥∥∥
M∑
i=1

xiϕi

∥∥∥∥∥
∞,K

≥ 1 , (3.6)

where

{ϕi}i=1,...,M Fujino–Morley basis functions

x ∈ RM coefficient vector for uh

A matrix (aij)M×M , where aij = ⟨ϕi, ϕj⟩h

Generally, finding the maximum of a function is not an easy task. Since the
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constraint condition of the above minimization problem requires the L∞-norm of the

function, finding its solution is also not simple.

Here, we introduce the technique to apply Bernstein polynomials and their convex-

hull property to solve the problem. Strictly speaking, a new optimization problem

(3.7) utilizing the Bernstein polynomials will be formulated to provide a lower bound

for the solution of (3.6); refer to, e.g., [6, 11] for detailed discussion.

Convex-hull property of Bernstein polynomials Given a triangleK, let (u, v, w)

be barycentric coordinates for a point x in K. A Bernstein polynomial p of degree

n over a triangle K is defined by

p :=
∑

i+j+k=n

di,j,kJ
(n)
i,j,k, J

(n)
i,j,k(x) :=

n!

i!j!k!
uivjwk .

Here, J
(n)
i,j,k(x) are the Bernstein basis polynomials; the coefficients di,j,k are the control

points of p. Noticing that

J
(n)
i,j,k ≥ 0,

∑
i+j+k=n

J
(n)
i,j,k = 1,

we can easily obtain the following convex-hull property of Bernstein polynomials:

∥p∥∞,K ≤ max |di,j,k| .

Given uh ∈ V FM
h (K), for each Kh ∈ T h, uh|Kh

∈ P2(Kh) can be represented

by the Bernstein basis polynomials of degree two. Let B be the N × M matrix

that transforms the Fujino–Morley coefficients x to the Bernstein coefficients dB.
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Note that uh is regarded as a piecewise Bernstein polynomial so that its Bernstein

coefficient vector dB has the dimension N = 6 × #{elements}. The dimension

of dB can be further reduced considering the continuity of uh at the vertices of

the triangulation. However, it is difficult to utilize the constraints of uh cross the

edges to reduce the dimension N . From the convex-hull property of the Bernstein

polynomials, the following inequality holds:

1 ≤

∥∥∥∥∥
M∑
i=1

xiϕi

∥∥∥∥∥
∞,K

≤ ∥Bx∥∞ .

Based on this inequality, a new optimization is formulated by relaxing the constraint

condition of (3.6):

λh,B = min xTAx, subject to ∥Bx∥∞ ≥ 1 . (3.7)

The solution to problem (3.7) provides a lower bound for (3.6), i.e., λh ≥ λh,B.

Below, we propose an algorithm to solve the problem (3.7). Since A is positive

definite, let us consider the Cholesky decomposition of A: A = RTR, where R is

an M ×M upper triangular matrix. Then, by letting y := Rx and B̂ := BR−1,

problem (3.7) becomes

λh,B = min yTy, subject to
∥∥∥B̂y

∥∥∥
∞

≥ 1 . (3.8)

The following lemma shows the solution for problem (3.8).

Lemma 3.2.4. 1 Let bTi (i = 1, . . . , N) be the ith row of B̂ and bTmax be a row of B̂

1Appreciation to Tamaki TANAKA and Syuuji YAMADA from Faculty of Science, Niigata
University for their idea of solving this problem in an efficient way.
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satisfying ∥bmax∥2 = maxi=1,...,N ∥bi∥2. Then, the optimal value of problem (3.8) is

given by

λh,B =
1

∥bmax∥22
.

Proof. Let S :=
{
y
∣∣∣ ∥∥∥B̂y

∥∥∥
∞

≥ 1
}

and ȳ := ∥bmax∥−2
2 bmax. Then, we have ȳ ∈ S

because ∥∥∥B̂ȳ
∥∥∥
∞

= max
i=1,...,N

∣∣bTi ȳ∣∣ ≥ ∣∣bTmaxȳ
∣∣ = 1.

Hence,

min
y∈S

yTy ≤ ȳT ȳ =
1

∥bmax∥22
. (3.9)

For any y ∈ S, from the Cauchy–Schwarz inequality,

1 ≤ max
i=1,...,N

∣∣biTy∣∣ ≤ max
i=1,...,N

∥bi∥2 ∥y∥2 = ∥bmax∥2 ∥y∥2 .

Thus,
1

∥bmax∥22
≤ min

y∈S
yTy. (3.10)

From (3.9) and (3.10), we draw the conclusion.

Note that the diagonal elements of BA−1BT = B̂B̂T correspond to ∥bi∥22 (i =

1, . . . , N). Therefore, we can solve problem (3.7) without performing the Cholesky

decomposition of A, as shown by the following lemma.

Lemma 3.2.5. Let D := BA−1BT . The optimal value of (3.7) is given by

λh,B =
1

max(diag(D))
,

where diag(D) is the diagonal elements of D.
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Theorem 3.2.1 gives a lower bound for λ. Since CL(K) =
√
λ(K)

−1
, this lower

bound is used to obtain an upper bound for CL(K). Below, let us summarize the

procedure to obtain a lower bound for λ.

Algorithm for calculating lower bound of λ(K)

a. Set up the FEM space V FM
h (K) = span{ϕi}Mi=1 over a triangulation of the

triangle domain K.

b. Assemble the global matrix A = (aij)M×M (aij = ⟨ϕi, ϕj⟩h) and the transfor-

mation matrix B from Fujino–Morley coefficients to Bernstein coefficients.

c. Apply Lemma 2.1.3 to obtain a raw bound for CFM
h .

d. Apply Lemma 3.2.4 or Lemma 3.2.5 to calculate λh,B(≤ λh).

e. The lower bound for λ is obtained through Theorem 3.2.1 by using λh,B and

the upper bound of CFM
h .

Using uniform triangulation of a domain K, a direct estimation of the lower

bound for λ without using CFM
h is available.

Corollary 3.2.6. For a uniform triangulation of K = Kα,θ,h with N subdivisions

for each side, the following holds:

λ(K) ≥ λh(1− (1/N)2). (3.11)

Proof. Since (CL(K))2 = 1/λ(K) and each Kh ∈ T h is similar to K, we have,

λ(K) ≥ λh
1 + (CFM

h )2λh
≥ λh

1 + (CL(Kh))2λh
=

λh
1 + (1/N)2λh/λ(K)

.
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The conclusion is achieved by sorting the inequality.

Remark 3.2.7. Theoretically, for a refined uniform triangulation, the lower bound

(3.4) using CFM
h is sharper (i.e., larger) than (3.11). This fact can be confirmed by

utilizing the following relation:

λh
1 + (CFM

h )2λh
≥ λh(1− (1/N)2) ⇐⇒ 1 ≥ (N2 − 1)(CFM

h )2λh . (3.12)

For a small value of h = 1/N , we have

(N2 − 1)(CFM
h )2 ≈ (NCFM

h )2 = (CFM
res (Kh))

2, λh ≈ λ = (CL(Kh))
−2.

Thus, the second inequality of (3.12) holds due to CFM
res (Kh) < CL(Kh). However, in

practical computation, the raw estimate of CFM
res (Kh) will cause a worse bound of λ

than (3.11).

Using Corollary 3.2.6, the following steps are modified from the algorithm to

obtain a lower bound for λ, without using the quantity of CFM
h :

Revision of algorithm for calculating lower bound of λ(K)

c*. Apply Lemma 3.2.4 or Lemma 3.2.5 to calculate λh,B(≤ λh).

d*. Solve the lower bound for λ using Corollary 3.2.6 along with λh,B.

Remark 3.2.8. To compare the efficiencies of the two formulas (3.4) and (3.11), we

apply them to estimate λ for a unit right isosceles K1,π
2
. By using uniform triangula-

tion of size h = 1/64, the estimate (3.4) gives λ ≥ 5.7659 and (3.11) gives a sharper
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bound as λ ≥ 5.7798. Hence, a sharper upper bound is obtained using (3.11) and

we have the following estimation:

∥∥u− ΠLu
∥∥
∞,K1,π/2,h

≤ 0.41596h |u|2,K1,π/2,h
. (3.13)

Recall that the theoretical result from (2.3) will yield a raw bound as CL
(
1, π

2
, h

)
≤

1.3712h.

For a triangle Kα,θ with two fixed vertices p1(0, 0), p2(1, 0), let us vary the vertex

p3(x, y) and calculate the approximate value of CL(α, θ) for each position of p3. In

this case CL can be regarded as a function with respect to the coordinate (x, y) of p3,

which is denoted by CL(x, y). The contour lines of CL(x, y) are shown in Figure 3.2,

where the abscissa and the ordinate denote x- and y- coordinates of p3, respectively.

3.3 Lower bound for the interpolation constant

To confirm the precision of the obtained estimation for the Lagrange interpolation

constant, the lower bounds of the constants are calculated. Let uh be the function

obtained by numerical computation solving the minimization problem. To obtain

the lower bound, an appropriate polynomial f over K of higher degree d is selected

by solving the minimization problem below:

min
f∈Pd(K)

n∑
i=1

|f(pi)− uh(pi)|2 (n : #{nodes of triangulation})
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Figure 3.2: Contour lines of CL(α, θ) w.r.t. vertex p3(x, y) ([13]).

where pi denote the nodes of the triangulation of K. From the definition of λ(K)

in (3.1) and the relation CL(K) = 1/
√
λ(K), we have a lower bound of CL(K) as

follows:

CL(K) ≥
∥f∥∞,K

|f |2,K
.

Remark 3.3.1. For the unit right isosceles triangle K1,π
2
, the upper bound for the con-

stant is obtained by solving the optimization problem through FEM with mesh size

1/64. Meanwhile, the lower bound of the constant is obtained by using a polynomial

of degree 9. The two-side bounds reads:

0.40432 ≤ CL
(
1,
π

2

)
≤ 0.41596.
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3.4 Numerical results

Since CL(K) = λ−1/2, the proposed algorithm discussed in section 3.3 gives a method

of estimating the objective interpolation error constant CL(K).

3.4.1 Computed interpolation constants for various triangles

Numerical computations are performed to obtain the interpolation error constants

for triangles of various shapes.

First, let us confirm the shape of the function uh that solves the minimization

problem for λh,B when K is the unit isosceles right triangle. The contour lines of

uh are displayed in Figure 3.3. The numerical computation tells that the maximum

value of uh happens on the midpoint of the hypotenuse ofK. Note that the maximum

value of uh is around 0.95 while the maximum of its Bernstein coefficients is above

1.

Comparing the lower bounds of λ obtained through Theorem 3.2.1 and Corollary

3.2.6 for various triangles, Table 3.1 suggest that the values obtained using Corollary

3.2.6 gives a sharper estimate of λ.

Table 3.2 summarizes the results for the lower and upper bounds of the constant

for different types of triangle K1,θ with the mesh size as h = 1/32 and h = 1/64.

The upper bounds (denoted by CL
ub) are obtained through Corollary 3.2.6, while the

lower bounds (denoted by CL
lb) are obtained by using high-degree polynomials with

degree denoted by d.
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Figure 3.3: The contour lines of the minimizer uh of (3.7) for K1,π
2
([13]).

Figure 3.4 demonstrates the convergency of the upper and lower bounds of the

interpolation error constant as the mesh is refined. It implies that the convergency

order of upper bounds depends on the shape of the triangles. The computing code is

shared at https://ganjin.online/shirley/InterpolationErrorEstimate. The code can

be executed online under the environment provided by Ganjin online computing

platform [16].

3.5 Rigorous result using interval arithmetic

Numerical computation with floating point-numbers involves round-off errors. To

have rigorous results, we applied the interval arithmetic in assembling the matrices

and evaluating the upper bound CL
ub in Table 3.2. It is observed from the numerical

computation results that the accumulation of round-off error in the computation is
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Table 3.1: The lower bounds for λ through Theorem 3.2.1 and Corollary 3.2.6 ([13]).
θ h = 1/32 h = 1/64

λh,B Thm. 3.1 Cor. 3.1 λh,B Thm. 3.1 Cor. 3.1

π/6 9.8339 8.7356 9.8245 9.8925 9.5892 9.8901

π/4 13.517 12.263 13.505 13.574 13.234 13.570

π/3 15.412 14.357 15.397 15.457 15.177 15.454

π/2 5.5988 5.5418 5.5933 5.7812 5.7660 5.7799

2π/3 2.3954 2.3683 2.3930 2.5511 2.5433 2.5504

3π/4 1.5550 1.5369 1.5534 1.6768 1.6715 1.6764

5π/6 0.93778 0.92669 0.93687 1.0212 1.0179 1.0210

Table 3.2: The lower and upper bounds of CL(1, θ) for triangles of different shapes
([13]).

θ h = 1/32 h = 1/64

d CL
lb λh,B CL

ub d CL
lb λh,B CL

ub

π/6 9 0.31511 9.8339 0.31904 9 0.31423 9.8925 0.31799

π/4 8 0.26777 13.517 0.27212 8 0.26753 13.574 0.27146

π/3 10 0.25182 15.412 0.25485 10 0.25209 15.457 0.25439

π/2 9 0.40432 5.5988 0.42283 9 0.40419 5.7812 0.41596

2π/3 8 0.59964 2.3954 0.64644 8 0.60079 2.5511 0.62618

3π/4 10 0.72146 1.5550 0.80233 10 0.72420 1.6768 0.77235

5π/6 8 0.92197 0.93778 1.03314 8 0.92830 1.0212 0.98968

not so large. For example, for the mesh size being h = 1/64, the matrix B has the

dimension as 24576 × 8382 and the rigorous estimation of CL
ub in case of isosceles

right triangle is given as

CL
ub

(
1,
π

2

)
∈ [0.4159516728, 0.4159516793].
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Figure 3.4: The convergency behaviour of the upper and lower bounds of CL(1, θ)

for θ =
π

3
and

π

2
([13]).
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Chapter 4

Application to partial differential

equations

The error estimation extensively discussed in the first three chapters can be used

to estimate the finite element solution to certain boundary value problems. In this

chapter, such application is discussed.

The Poisson boundary value problem Let Ω be a convex polyhedral domain

in R2, with boundary ∂Ω, and consider the second-order boundary value problem for

the Poisson equation with Dirichlet boundary conditions:−∆u = f in Ω

u = 0 on ∂Ω ,

(4.1)
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where f ∈ L2(Ω) is a given function, assumed to be sufficiently smooth. Under the

current setting, the solution u belongs to H2(Ω). Also, the relation ∥∆u∥0,Ω = |u|2,Ω
is available.

4.1 Local maximum norm error estimation

Let Ω′ be a subdomain of Ω (see Figure 4.1). We aim to propose an a posteriori local

error estimation for the linear conforming FEM solution uh under the maximum error

norm. That is,

∥u− uh∥∞,Ω′ ≤ ξ.

Here, the explicit value of ξ will be obtained using two techniques:

1. Maximum norm error estimation for the Lagrange interpolation; and

2. Fujita’s method for pointwise estimation of the solution for boundary value

problems [12].

The local error estimation is considered through the inequality:

∥u− uh∥∞,Ω′ ≤ ∥u− ΠLu∥∞,Ω′ + ∥ΠLu− uh∥∞,Ω′ . (4.2)

Here, ΠLu is the Lagrange interpolation of u over Ω′. Let us discuss the estimation

of each terms in detail.
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Figure 4.1: The domain Ω with the subdomain of interest Ω′

Estimation of ∥u− ΠLu∥∞,Ω′

Let TΩ′ be a triangulation of Ω′. Over the triangulation of Ω′, define

Ch := max
Ki

CL(Ki) . (4.3)

Using the results of the optimal estimation for the interpolation error constant

for each triangle Ki, we have

∥u− ΠLu∥∞,Ω′ ≤ max
Ki

CL(Ki)|u|2,Ki
≤ Ch|u|2,Ω (4.4)

= Ch∥∆u∥0,Ω = Ch∥f∥0,Ω .

Estimation of ∥ΠLu− uh∥∞,Ω′

This error term requires a method of pointwise estimation by Fujita [12]. Let

pj(j = 1, 2, 3) be the vertices of a triangle element K. For each j = 1, 2, 3, denote by

u(pj) and u(pj) the lower bound and upper bound of the pointwise estimate obtained
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through Fujita’s method in Theorem D.0.1.

Note that ΠLu− uh is a linear function over element K. Then,

∥ΠLu− uh∥0,∞,K = max
j=1,2,3

|(ΠLu− uh)(pj)| (4.5)

≤ max
j=1,2,3

max {|(u− uh)(pj)|, |(u− uh)(pj)|} .

Thus, for the error term ∥ΠLu−uh∥0,∞,Ω′ , we apply the above inequality (4.5) to

obtain

∥ΠLu− uh∥0,∞,Ω′ = maxKi
∥ΠLu− uh∥0,∞,Ki

(4.6)

≤ maxKi
maxj=1,2,3max

{
|(u− uh)(p

(i)
j )|, |(u− uh)(p

(i)
j )|

}
,

where p
(i)
j (j = 1, 2, 3) denote the vertices of triangle Ki.

Theorem 4.1.1. For the linear conforming FEM solution uh, the local error esti-

mation is given by

∥u−uh∥0,∞,Ω′ ≤ max
Ki

max
j=1,2,3

max
{
|(u− uh)(p

i
j))|, |(u− uh)(p

i
j)|

}
+ Ch∥f∥0,Ω . (4.7)

Proof. From the inequalities (4.4) and (4.6), the conclusion follows.

4.2 Numerical results and discussion

In this section, we apply the result in Theorem 4.1.1 to a specific boundary value

problem.
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Consider the boundary value problem (4.1) for Ω = (0, 1)2 and f be taken as

f(x, y) := 2π2 sin(πx) sin(πy). The linear conforming FEM solution uh is obtained

through uniform mesh with mesh size hΩ = 1/80.

Figure 4.2: Domain Ω with two subdomains Ω′
1 and Ω′

2

The local error estimation is considered for two subdomains Ω′
1 and Ω′

2 in Ω. Let

Ω′
1 be formed by the points

p1(0.4375, 0.4375), p2(0.45, 0.4375), p3(0.4375, 0.45), p4(0.45, 0.45),

and Ω′
2 be formed by the points

p1(0, 0.9875), p2(0.0125, 0.9875), p3(0, 1), p4(0.0125, 1).

Figure 4.2 shows the domain Ω with Ω′
1 and Ω′

2.

Let us first consider the estimation for Ω′
1, and apply the same process with Ω′

2.

Subdivide Ω′
1 into disjoint right isosceles triangles K1 and K2, where K1 is formed by
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Table 4.1: Approximate pointwise values and explicit bounds obtained using Fujita’s
method

p1 p2 p3 p4

upper bound (u(pi)) 0.9648 0.97143 0.97141 0.9782

approximate 0.9622 0.96896 0.96893 0.97585

lower bound (u(pi)) 0.9597 0.96648 0.966453 0.97348

p1, p2, and p3, while K2 is formed by p2, p3, and p4. For each i = 1, 2, the following

terms are estimated:

1. ∥u− ΠLu∥∞,Ki
: Note that |u|2,Ω = ∥f∥0,Ω ≈ 9.87. By symmetry, and using the

inequality (3.13) for right isosceles triangles,

∥u− ΠLu∥0,∞,Ki
≤ 0.41596h∥f∥0,2,Ω ≈ 0.05132. (4.8)

2. ∥ΠLu− uh∥0,∞,Ki
: Next, using Fujita’s method, we obtain both the approxi-

mate values and the explicit bounds for u at the vertices pi; see Table 4.1.

Then, by (4.6),

∥ΠLu− uh∥0,∞,Ω′
1
≤ 0.002955 . (4.9)

Therefore, applying Theorem 4.1.1 and (4.8) and (4.9), we have

(0.000485 ≈) ∥u− uh∥0,∞,Ω′
1
≤ 0.05427 .
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Similarly, applying the same method for Ω′
2, we have

(0.000385 ≈)∥u− uh∥0,∞,Ω′
2
≤ 0.05132 + 0.011172 ≈ 0.062492 .

Remark 4.2.1. It is important to keep in mind the following remarks regarding the

proposed local error estimator.

1. Note that, if D2u is equally distributed over Ω, the term |u|2,Ki
= O(h),

where h is the mesh size of the triangulation of Ω′. Thus, it is expected that

∥u − ΠLu∥∞,Ω′ = O(h2). However, since the distribution of D2u is not easy

to estimate, we utilize |u|2,Ki
≤ |u|2,Ω in (4.4), which causes a degenerated

convergence rate O(h).

2. To utilize Fujita’s method, it is important that ψ0 satisfies −div ψ0 = f . In

this example, take ψ0 = (π cos(πx) sin(πy), π sin(πx) cos(πy)) and indeed

−div ψ0 = π2 sin(πx) sin(πy) + π2 sin(πx) sin(πy) = f .

4.2.1 Order of convergence

We investigate the rate of convergence of the local FEM error estimation on Ω′
1

through different patterns. The difference between the patterns are illustrated below.

The term “original mesh” pertains to the uniform triangulation of Ω with mesh size

h with which the FEM solution uh is obtained.

(A) FEM solution uh obtained over original mesh and ΠLu over Ω′
1 subdivided into

two subtriangles K1 and K2,
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(B) FEM solution uh over the original mesh and ΠLu over once-refined subdivision

of Ω′ ,

(C) FEM solution uh over the original mesh and ΠLu over subdivision of Ω′ with

two times the square of the number of subtriangles as Ω.

(D) FEM solution uh′ over once refined mesh and ΠLu over the same subdivision

of Ω′ as pattern (A)

(E) FEM solution uh′ over once refined mesh and ΠLu over the same subdivision

of Ω′ as pattern (B)

(F) FEM solution uh′ over once refined mesh and the ΠLu over subdivision of Ω′

with two times the square of the number of subtriangles as Ω.

(G) FEM solution uh′ over twice refined mesh and ΠLu over the same subdivision

of Ω′ as pattern (A)

(H) FEM solution uh′ over twice refined mesh and ΠLu over the same subdivision

of Ω′ as pattern (B)

(I) FEM solution uh′ over over subdivision of Ω′ with two times the square of the

number of subtriangles as Ω.

Let hΩ(= 1/2) be the mesh size of the triangulation of Ω used to calculate the

FEM solution uh, while h
′
Ω′ = |x2 − x1| be the mesh size of the subdivision of Ω′ in

pattern A. The selection of mesh sizes for each pattern can be confirmed in Table

4.2.

Let ξF := ∥u − uh∥∞,Ω′
1
, ξL := ∥u − ΠLu∥∞,Ω′

1
and their estimates be denoted

by ξ̃F and ξ̃L, respectively. By Theorem 4.1.1, ξ̃F = ξ̃L + ξLF , where the error term
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Table 4.2: Configurations of meshes

mesh for uh mesh for ΠLu

A hΩ h′Ω′

B hΩ h′Ω′/2

C hΩ hΩ′h2Ω

D hΩ/2 h′Ω′

E hΩ/2 h′Ω′/2

F hΩ/2 hΩ′h2Ω/4

G hΩ/4 h′Ω′

H hΩ/4 h′Ω′/2

I hΩ/4 hΩ′h2Ω/16

ξLF := ∥ΠLu − uh∥∞,Ω′
1
can be evaluated directly since the involved function has

explicit form.

The obtained error terms and relative error for the patterns A-I are displayed in

Table 4.3. Table 4.4 on the other hand, shows the relative Lagrange interpolation

error for subsequent patterns, where r1 denotes the actual relative Lagrange inter-

polation error and r2 denotes the estimated relative Lagrange interpolation error.

From the numerical computation results, we confirm the following facts.

• The interpolation of u has the approximation error (ξL) with convergence rate

as O(h2) when the triangulation of Ω′ used for ΠLu is refined from (A) to (B).

• The estimation ξ̃L has a degenerated convergence rate as O(h). This is because

of the overestimation from the subdomain to the whole domain; see the detail

in Remark 4.2.1.
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Table 4.3: Error terms involved in the local error estimation

ξF ξ̃L ξLF ξ̃F
|ξ̃F−ξF |

ξF

A 0.24971 0.05132 0.25505 0.30637 0.2269

B 0.24971 0.02566 0.25505 0.28071 0.12414

C 0.24971 0.01283 0.25505 0.26788 0.07276

D 0.12872 0.05132 0.00632 0.18287 0.42068

E 0.12872 0.02566 0.13155 0.15721 0.22135

F 0.12872 0.00321 0.13155 0.13476 0.04693

G 0.04674 0.05132 0.04943 0.10075 1.15552

H 0.04674 0.02566 0.04959 0.07525 0.60997

I 0.04674 0.0008 0.04960 0.05040 0.07837

Table 4.4: Relative Lagrange interpolation error

ξL ξ̃L hΩ′ r1 r2

A 0.000367 0.05132 hΩ′ - -

B 0.000091 0.02566 hΩ′/2 4.033 2

C 0.000023 0.01283 hΩ′/4 3.96 2

D 0.00037 0.05132 hΩ′ - -

E 0.000093 0.02566 hΩ′/2 3.98 2

F 0.0000014 0.00321 hΩ′/16 66.43 7.99

G 0.00039 0.05132 hΩ′ - -

H 0.000093 0.02566 hΩ′/2 4.19 2

I 0.00000009 0.0008 hΩ′/64 1033.33 32.075
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Chapter 5

Conclusion

In this research, we provide explicit estimates for the L∞-norm error constant CL(K)

of the linear Lagrange interpolation function over triangular elements K. The for-

mula in Theorem 2.3.1 provides a bound of CL that holds for triangle of arbitrary

shapes. Theorem 3.2.1 in Chapter 3 proposes a numerical approach to obtain optimal

bounds for the constant CL over a concrete triangle. The optimization problem cor-

responding to CL is novelly solved by utilizing the convex-hull property of Bernstein

polynomials.

In addition, we present a method to estimate the local maximum norm of the

FEM error of the solution for the boundary value problem of the Poisson equation.

For the estimate, we utilized two values: (1) the maximum norm of the Lagrange

interpolation error, and (2) the estimate of the maximum difference between the FEM

solution and the Lagrange interpolation. To obtain the estimation for the maximum

Lagrange interpolation error, the algorithm discussed in Chapter 3 is done for each

subtriangle in the subdomain. To estimate the other term, we first use Fujita’s
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method to obtain approximate and range of the values of the solution u at the

vertices, and then calculate the differences of the FEM solution at the triangulation

nodes.

The following problems are left to be explored.

Relationship between local H2-seminorm and global H2-seminorm of a

function. In Chapter 4, the maximum norm of the Lagrange interpolation was

estimated in terms of ∥f∥0,Ω, where f is the function in the boundary value problem

of the Poisson equation. This has produced an overestimation in the estimation for

the FEM error. In the future, an improved estimate of C such that |u|2,Ω′ ≤ C|u|2,Ω
for Ω′ ⊂ Ω would benefit the hereby proposed estimate.

Finite element method with Fujita’s pointwise estimation. Lastly, the point-

wise estimation does not utilize the FEM solution uh itself and is tediously done at

each node of the triangulation. In the future, we aim to extend the method to incor-

porate pointwise estimation method by Fujita to the FEM solution uh and discuss

its convergence.
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Appendix A

Useful inequalities

The following inequalities are fundamental in functional analysis and is beneficial to

the study of error estimation.

Theorem A.0.1. (Classical Poincaré inequality) Assume that 1 ≤ p ≤ ∞ and that

Ω is a bounded open subset of the n-dimensional Euclidean space Rn with a Lipschitz

boundary (i.e., Ω is an open, bounded Lipschitz domain). Then there exists a constant

C, depending only on Ω and p, such that for every function u in the Sobolev space

W 1,p(Ω),

∥u− uΩ∥p,Ω ≤ C∥∇u∥p,Ω

where

uΩ =
1

|Ω|

∫
Ω

u(y)dy

is the average value of u over Ω, with |Ω| denotes the Lebesgue measure of the domain

Ω.

Theorem A.0.2. (The Friedrichs Inequality) [21] Let G be a domain with a Lipschitz
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boundary. Then there exists constants c1, c2, dependent on the considered domain but

independent of the functions from M , such that

∫
G

u2(x)dx ≤ c1

N∑
k=1

∫
G

(
∂u

∂xk

)2

dx+ c2

∫
Γ

u2(S)dS

holds for every function u ∈M .

For the linear case (N = 1), the variations of the Friedrichs inequality are the

following:

∫ b

a

u2(x)dx ≤ c1

∫ b

a

(u′)2(x)dx+ c2u
2(a), (A.1)∫ b

a

u2(x)dx ≤ c1

∫ b

a

(u′)2(x)dx+ c2u
2(b), (A.2)∫ b

a

u2(x)dx ≤ c1

∫ b

a

(u′)2(x)dx+ c2[u
2(a) + u2(b)]. (A.3)

To show (A.2), consider

g(x) = cos
π(x− a)

4(b− a)

and v = u
g
or otherwise, u = gv. Then

(u′)2 = (gv)′2 = (gv′ + g′v)2 = g2v′2 + 2vv′gg′ + g′2v2 = g2v′2 + (v2gg′)′ − v2gg′′

holds, so that we have

(v2gg′)′ − v2gg′′ ≤ (u′)2 .

Then, by integrating over [a, b],

[v2gg′]ba −
∫ b

a

v2gg′′dx ≤
∫ b

a

u′2dx .
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By definition of g,

g′′ =
π2

16(b− a)2
g

so that

v2gg′′ =
π2

16(b− a)2
v2g2 =

π2

16(b− a)2
u2 .

Also, note that

[v2gg′]ba =

[
v2g2

g′

g

]b
a

=

[
u2
g′

g

]b
a

= − π

4(b− a)
u2(b)

since
g′

g
= − π

4(b− a)
tan

(
π(x− a)

(b− a)

)
and in particular

g′(a)

g(a)
= 0

g′(b)

g(b)
= − π

4(b− a)
.

Therefore,
π2

16(b− a)2

∫ b

a

u2dx ≤
∫ b

a

u′2dx+
π

4(b− a)
u2(b)

and ∫ b

a

u2dx ≤ 16(b− a)2

π2

∫ b

a

u′2dx+
4(b− a)

π
u2(b) .

Similarly, to show (A.1), we consider

g(x) = cos
π(x− b)

4(b− a)
.

To give an improved estimation for (A.3), let us consider

g(x) = sin

(
π(x− a′)

b′ − a′

)
49



for a′ = a + η, b′ = b − η, η ≥ 0. Similar to the above proof, let v = u
g
, or u = vg.

Then, since

g′′(x) =
−π2

(b′ − a′)2
g

we have

v2gg′′ =
−π2

(b′ − a′)2
v2g2 =

−π2

(b′ − a′)2
u2 .

Also,

[v2gg′]ba =

[
u2
g′

g

]b
a

=
π

b′ − a′

(
u2(b) cot

(
π(b− a′)

b′ − a′

)
− u2(a) cot

(
π(a− a′)

b′ − a′

))

g′

g
=

π

b′ − a′
cot

(
π(x− a′)

b′ − a′

)
Note that

g′

g
(a) =

π

b′ − a′
cot

(
π(a− a′)

b′ − a′

)
g′

g
(b) =

π

b′ − a′
cot

(
π(b− a′)

b′ − a′

)

Therefore,

∫ b

a

u2(x)dx ≤ (b− a+ 2η)2

π2

∫ b

a

u′2(x)dx+
b− a+ 2η

π
cot

πη

b− a+ 2η
[u2(a) + u2(b)].

In addition, if u satisfies the Dirichlet boundary conditions, that is, if u(a) =

u(b) = 0, then, the following Wirtinger’s inequality is obtained.

Theorem A.0.3. [10] For any bounded interval Q = [a, b] and any f ∈ C1(Q) with

f(a) = f(b) = 0, ∫
Q

|f |2dx ≤ (b− a)2

π2

∫
Q

|f ′|2dx .
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Appendix B

Transformation from Bernstein

coefficients to Fujino–Morley

coefficients

To use the convex-hull property of Bernstein polynomials in Chapter 3, it is necessary

to obtain the transformation matrix from Fujino–Morley coefficients to Bernstein

coefficients. This chapter shows the method in obtaining the matrix.

Let K be a reference triangle with vertices pj, j = 1, 2, 3. The Fujino-Morley

basis functions {ϕi}6i=1 on K are defined by

ϕi(pj) = δi,j, i, j = 1, 2, 3 and

∫
ei

∂ϕj

∂n
· eids = δi,6−j, j = 4, 5, 6, i = 1, 2, 3.

The Fujino-Morley function space is given by
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V FM
h (K) :=

{
uh

∣∣∣∣ uh|T ∈ P2(T ), ∀T ∈ T h; uh(pi) = 0, ∀i = 1, 2, 3; uh is conti-

nuous on each vertex of T h;

∫
e

∂uh
∂n

ds is continuous across each

interior edge e of T h

}
.

For a quadratic function defined on the triangular domain K, we have

f(x, y) = c1ϕ1 + c2ϕ2 + . . .+ c6ϕ6 =
6∑

i=1

ciϕi = (ϕ1, ϕ2, . . . , ϕn) ·


c1

c2
...

cn

 . (B.1)

On the other hand, for each point x := (x, y) ∈ K, the barycentric coordinates

or the area coordinates (u, v, w) of x satisfy

f(u, v, w) =
∑

i+j+k=2

dijk

(
2

ijk

)
uiviwk

= d200u
2 + d020v

2 + d002w
2 + 2d011vw + 2d101uw + 2d110uv,

where u, v and w are linear in K.

The Bernstein basis {ψj}6j=1 are given by ψ1 = u2, ψ2 = v2, ψ3 = w2, ψ4 =

2vw, ψ5 = 2uw, ψ6 = 2uv and we rename the constants as di for i = 1, 2, . . . , 6.
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Then, the matrix B exists such that
d1

d2
...

dn

 = B


c1

c2
...

c6

 , (B.2)

that is, B is the matrix that transforms the coefficients with respect to the Fujino-

Morley basis to the coefficients for the Bernstein basis, which also transforms the

Bernstein basis to Fujino-Morley basis.

Then, from (B.1) and (B.2)

f = (ϕ1, ϕ2, · · · , ϕ6) ·


c1

c2
...

c6

 = (ψ1, ψ2, · · · , ψ6) ·


d1

d2
...

d6

 = (ψ1, ψ2, · · · , ψ6)B ·


c1

c2
...

c6



Thus, (ϕ1, ϕ2, . . . , ϕ6) = (ψ1, ψ2, . . . , ψ6)B. We now define the functional Fi such

that Fi(ϕj) = δi,j for i, j = 1, 2, . . . , 6.

Now, let F = (F1, F2, . . . , F6) and define the operation ⊗ through

F ⊗ (ϕ1, ϕ2, . . . , ϕ6) =



F1(ϕ1) . . . F1(ϕ6)
. . .

... Fi(ϕj)
...

. . .

F6(ϕ1) . . . F6(ϕ6)


.
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Then, F ⊗ (ϕ1, ϕ2, . . . , ϕ6) = I6×6, and F ⊗ (ψ1, ψ2, . . . , ψ6)B = I6×6 which means

that

B−1 = F ⊗ (ψ1, ψ2, . . . , ψ6)

where B−1 is the transformation matrix from Fujino-Morley basis to the Bernstein

basis. Thus, the component of B−1 denoted by B−1
ij is given by

B−1
ij = Fi(ψj) .

Remark on Barycentric coordinates. For a triangle K with vertices p1, p2, p3,

each point x in K corresponds to the area coordinates u, v, w (see Figure B.1), where

u :=
|K1|
|K|

, v :=
|K2|
|K|

, w :=
|K3|
|K|

.

Figure B.1: The subdivision of K into three subtriangles K1, K2, K3
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The integral of the area coordinates in K is computed through the formula:

∫
K

ui(x)vj(x)wk(x)dx =
i!j!k!

(i+ j + k + 2)!
2|K| .

Using the above property, the components of B−1 are computed as follows.

1. for i = 1, 2, 3 and j = 1, 2, . . . , 6: Note that ψi(pj) = δij. Thus,

B−1
i,j = Fi(ψj) = ψj(pi) = δi,j.

2. for i = 4, 5, 6: Note that

B−1
i,i−3 = Fi(ψi−3) =

∫
ei−3

∂ψi−3

∂n
· ei−3dx = 0

since ψi−3 = 0 at ei−3.

3. for i− 3 ̸= j, i = 4, 5, 6, j = 1, 2, 3:

B−1
i,j = Fi(ψj) =

∫
ei−3

∂ψj

∂n
· ei−3dx =

−ei−3 · ej
2|K|

since ψj is linear on ei−3.

4. for i = 4, 5, 6:

B−1
i,i = Fi(ψj) =

∫
ei−3

∂ψj

∂n
· ei−3dx =

−ei−3 · ei−3

2|K|
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5. for i ̸= j, i = 4, 5, 6, j = 4, 5, 6:

B−1
i,j = Fi(ψj) =

∫
ei−3

∂ψj

∂n
· ei−3dx =

ei−3 · ei−3

2|K|
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Appendix C

Algorithm for interpolation error

constant estimation

In subsection 3.2.2, the algorithm for optimal estimation of the Lagrange interpola-

tion error constant was discussed. Here, we present the program code to obtain the

constant CL
ub and λh in Table 3.2.

function [CL,lambdax] = myfunc(n, alpha, theta, h_med)

subdivision_N = 2^(n-1)+1;

num_nodes = (subdivision_N + 1)*subdivision_N/2;

num_edges = 3*(subdivision_N)*(subdivision_N-1)/2;

num_elem = (subdivision_N-1)^2;

h = h_med/(2^(n-1));

nodes = 1:num_nodes;

maxelem = num_nodes + num_edges;
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AREA = alpha*h_med^2*sin(theta)/2;

a_s = AREA/num_elem;

z1 = alpha.*cos(theta);

z2 = alpha.*sin(theta);

Trans = [1 z1; 0 z2];

%%% Defining the node coordinates %%%

node_coordinates_base = zeros(num_nodes,2);

node_index = 0;

for j = 1:subdivision_N

for i = 1:subdivision_N-j+1

node_index = node_index+1;

node_coordinates_base(node_index,:) = [h*(i-1),h*(j-1)];

end

end

node_coordinates = node_coordinates_base*Trans’;

i_start = 0;

N = subdivision_N-1;

edge_labels = num_nodes + 1: num_nodes + num_edges;

edges = [];

for j = 1:N

for i = 1:N-j+1

edge = [i, i+1] + i_start;

edges = [edges; edge];

end
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for i = 1:N-j+1

edge1 = [i, i+N-j+2] + i_start;

edge2 = [i+1, i+N-j+2] + i_start;

edges = [edges; edge1; edge2];

end

i_start = i_start + N-j+2;

end

%%% Definition of triangle elements %%%

node_start = 0;

edge_start = num_nodes;

elements_type1_raw = [];

elements_type2_raw = [];

for j = 1:N

for i = 1:N-j+1

edges = [2*i+N-j+1, 2*i+N-j, i] + edge_start;

nodes = [i, i+1, i+N-j+2] + node_start;

element = [nodes, edges];

elements_type1_raw = [elements_type1_raw; element];

end

for i = 1:N-j

edges = [2*i+N-j+1, 2*i+N-j+2, 3*(N-j+1)+i] + edge_start;

nodes = [i+3+N-j, i+N-j+2, i+1] + node_start;

element = [nodes, edges];

elements_type2_raw = [elements_type2_raw; element];

end
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node_start = node_start + N-j+2;

edge_start = edge_start + 3*(N-j+1);

end

elements = [elements_type1_raw; elements_type2_raw];

%% ASSEMBLY OF THE LOCAL MATRICES %%

E = h*[-1,1;0,-1;1,0];

E = E*Trans’;

C = zeros(3,3);

D = zeros(3,3);

for i = 1:3

for j=1:3

if i == j

C(i,j) = 0;

D(i,j) = dot(E(i,:),E(i,:))/(2*a_s);

else

C(i,j) = -(dot(E(i,:),E(j,:)))/(2*a_s);

D(i,j) = -dot(E(i,:),E(i,:))/(2*a_s);

end

end

end

%transformation from Fujino-Morley basis to Bernstein basis

Tr_FM2B = [eye(3), zeros(3,3); C D];

%transformation from Bernstein basis to Fujino Morley basis

Tr_B2FM = inv(Tr_FM2B);
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% the local matrix A %

A1 = zeros(3,3);

for i = 1:3

for j = 1:3

A1(i,j) = (1/(4*(a_s)^3))*dot(E(i,:),E(j,:))^2;

end

end

index = [1:3];

A2 = zeros(3,3);

A4 = zeros(3,3);

for i = 1:3

for j=1:3

if i == j

compl1 = setdiff(index,[i]);

A2(i,j) = (1/(2*(a_s)^3))*(dot(E(i,:),E(compl1(1),:))

*dot(E(i,:),E(compl1(2),:)));

A4(i,j) = (1/(2*(a_s)^3))*((dot(E(compl1(1),:),

E(compl1(1),:))*dot(E(compl1(2),),E(compl1(2),:)))

+(dot(E(compl1(1),:),E(compl1(2),:))

*dot(E(compl1(1),:),E(compl1(2),:))));

else

compl2 = setdiff(index,[i,j]);

A2(i,j) = (1/(2*(a_s)^3))*(dot(E(i,:),E(i,:))

*dot(E(i,:),E(compl2,:)));

A4(i,j) = (1/(2*(a_s)^3))*((dot(E(compl2,:),E(compl2,:))
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*dot(E(i,:),E(j,:)))+(dot(E(compl2,:),E(i,:))

*dot(E(compl2,:),E(j,:))));

end

end

end

A_bilinearB = [A1 , A2; A2’, A4];

% the matrix for the bilinear form of the Fujino Morley basis

% for element type 1 and type 2.

A_bilinearFM_type1 = Tr_B2FM’*A_bilinearB*Tr_B2FM;

A_bilinearFM_type2 = A_bilinearFM_type1;

% global matrix for the bilinear form defined by the

% $H^2$-seminorm of the Bernstein basis functions.

tempT = diag([1,1,1,-1,-1,-1]);

%% ASSEMBLY OF THE GLOBAL MATRICES %%

A_global = zeros(maxelem,maxelem);

for i = 1:num_elem

if elements(i,1) < elements(i,2)

A_global(elements(i,:),elements(i,:)) += A_bilinearFM_type1;

else

A_global(elements(i,:),elements(i,:)) +=

tempT*A_bilinearFM_type2*tempT;

end

end
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B_global = zeros(6*num_elem,maxelem);

Bvert1 = 1;

Bvert2 = 6*(subdivision_N-2)+2;

Bvert3 = 6*((subdivision_N/2) * (subdivision_N - 1)-1) + 3;

for i = 1:num_elem;

B_global((i-1)*6+1:6*i,elements(i,:)) = Tr_B2FM;

end

idx = 1:size(A_global,1);

idx([vertex1,vertex2,vertex3])=[];

idxB = 1:size(B_global,1);

idxB([Bvert1,Bvert2,Bvert3])=[];

A = A_global(idx,idx);

B = B_global(idxB,idx);

R = chol(A);

D = (B*inv(A))*B’;

[M Idx] = max(diag(D));

lambdax = 1/M;

CL = 1/sqrt(lambdax*(1-(1/2^(n-1))^2));

end
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Appendix D

Fujita’s method of pointwise

estimation

The method of pointwise estimation of the solution of boundary value problems

by Fujita [12] is first presented to bound the values of the Lagrange interpolation

function. This method is used in Chapter 4 to estimate the Lagrange interpolation

value at the nodes of the triangulation.

Theorem D.0.1. [12] Let u0 be a vector determined by the equation T ∗Tu0 = f .

For a given vector g belonging to the range of T ∗ we set ξ = (u0, g)H. Let u, u′, v, v′

be any vectors satisfying the conditions:

u, u′ ∈ D, v, v′ ∈ D∗ T ∗v = f, T ∗v′ = g.
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Then the following inequality holds.∣∣∣∣ξ − 1

2
(α + β)

∣∣∣∣ ≤ 1

2
ϵδ, (D.1)

where

α = (u, g)H+(f, u′)H−(Tu, Tu′)H′ , β = (v, v′)H′ , ϵ = ∥Tu−v∥H′ , δ = ∥Tu′−v′∥H′ .

To apply Theorem D.0.1 for the boundary value problem (4.1), let H = L2(Ω),

H′ = L2(Ω) × L2(Ω), and the operators T and T ∗ be defined as Tu := grad u,

T ∗v := −div v. For pointwise estimation, let g be the Dirac’s delta function singular

at a point p(xp, yp). Then, ξ = u0(p), i.e., the pointwise value of u0 at p, where u0 is

the solution for (4.1). In this case, using Theorem D.0.1, the approximate value of

u0(p)(= ξ) is (α + β)/2.

Set rc = min{xp, yp, 1− xp, 1− yp} and consider the following:

un =
n∑

i=1

aiφi, vm = ψ0 +
m∑
k=1

bkψk, u′n = φ′
0 +

n∑
i=1

a′iφ
′
i, v′m = ψ′

0 +
m∑
k=1

b′kψ
′
k
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where

ψ0 satisfies − div ψ0 = f,

ψ′
0 = grad

(
1

2π
log

1

r

)
= − 1

2π

r

r2
,

φ′
0 =


1

2π
log

1

r
− 1

2π
log

1

rc
(r ≤ rc)

0 (r ≥ rc)

,

φn = φ′
n = xn(x− 1)nyn(y − 1)n, (n = 1, 2, 3)

ψn = ψ′
n = grad (Re(z4n)), (z = x+ iy, n = 1, 2, 3).

Then, to improve the estimation indicated in Theorem D.0.1, minimize the values of

ϵ2 = ∥Tun − vm∥2H′ , δ2 = ∥Tu′n − v′m∥2H′ .

Remark D.0.2. Generally, it is difficult to find ψ0 satisfying the condition −div ψ0 =

f for an arbitrarily given f .
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