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and TNNI3.3–5 Several previous studies elucidated that 
these mutants could alter myofilament calcium sensitivity 
and dissociation.6–8 However, disease-causing gene vari-
ants were only found in 25–50% of RCM patients, despite 
vigorous gene analyses.3,9 Moreover, different mutations in 
these genes can contribute to similar phenotype; however, 
the same mutations in these genes may also cause different 
phenotypes of cardiomyopathy.4,9,10 The relationship 
between genotype and phenotype is thought to be limited 
in cardiomyopathy, and not all etiologies of cardiomyopathy 
could be explained by gene mutations in cardiomyocytes. 
Cardiomyocytes are not the only cell type constituting the 

R estrictive cardiomyopathy (RCM) is characterized 
by impaired diastolic function with preserved ven-
tricular systolic function and wall thickness. Con-

gestion due to increased ventricular end diastolic pressure 
causes clinical symptoms; however, no medical therapy has 
been established to treat diastolic dysfunction. The prog-
nosis of young children with RCM is terribly poor, and 
heart transplantation is the only method for treatment.1,2 
The pathogenesis of cardiomyopathy varies, and to date, 
numerous causes of RCM have been investigated. The 
histology of the myocardium in RCM patients is usually 
non-specific, with mild myocyte hypertrophy and disarray, 
as well as slight interstitial fibrosis. Recently, multiple stud-
ies, including those using whole exome sequencing, have 
identified several causative genes, such as MYH7, TNNT2, 
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Background:  Restrictive cardiomyopathy (RCM) is characterized by impaired ventricular relaxation. Although several mutations 
were reported in some patients, no mutations were identified in cardiomyocyte expressing genes of other patients, indicating that 
pathological mechanisms underlying RCM could not be determined by cardiomyocytes only. Cardiac fibroblasts (CFs) are a major 
cell population in the heart; however, the pathological roles of CFs in cardiomyopathy are not fully understood.

Methods and Results:  This study established 4 primary culture lines of CFs from RCM patients and analyzed their cellular physiology, 
the effects on the contraction and relaxation ability of healthy cardiomyocytes under co-culture with CFs, and RNA sequencing. Three 
of four patients had TNNI3 mutations. There were no significant alterations in cell proliferation, apoptosis, migration, activation, and 
attachment. However, when CFs from RCM patients were co-cultured with healthy cardiomyocytes, the relaxation velocity of cardio-
myocytes was significantly impaired both under direct and indirect co-culture conditions. RNA sequencing revealed that gene expres-
sion profiles of CFs in RCM were clearly distinct from healthy CFs. The differential expression gene analysis identified that several 
extracellular matrix components and cytokine expressions were dysregulated in CFs from RCM patients.

Conclusions:  The comprehensive gene expression patterns were altered in RCM-derived CFs, which deteriorated the relaxation 
ability of cardiomyocytes. The specific changes in extracellular matrix composition and cytokine secretion from CFs might affect 
pathological behavior of cardiomyocytes in RCM.
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Fibrosis Ratio
The fibrosis ratio of each patient’s specimen was calculated 
by using ImageJ software (https://imagej.nih.gov/ij/) with 
Masson trichrome staining of the heart tissue sections. 
Five different locations were measured and the data were 
shown as mean ± standard error (Figure 1).

Cell Culture
CFs were harvested from the heart tissues, which were 
obtained during heart transplantation or ventricular assist 
device implantation. The left ventricular tissues were 
minced, seeded onto cell culture dishes, and incubated in 
Dulbecco’s modified Eagle’s medium (DMEM) with 10% 
fetal bovine serum (FBS) and 1% penicillin/streptomycin 
(P/S). The majority of adherent cells were considered as 
CFs, assessed by morphological observation and immuno-
cytochemistry of von Willbrand Factor (vWF) and smooth 
muscle myosin heavy chain (SM-MHC) (Supplementary  
Figure 1). Cell culture was achieved in a humidified incuba-
tor with media exchange every 2–3 days. Three samples of 
healthy CFs were purchased from PromoCell (13-year-old 

human heart. In fact, cardiac fibroblasts (CFs) are the 
most abundant cells in the heart, accounting for 60% of 
cells in a normal heart. To date, various previous studies 
have demonstrated that CFs could affect cardiomyocyte 
behavior in response to chemical, electrical, and mechanical 
stimuli, suggesting that CFs play pivotal roles in maintaining 
cardiac function under healthy conditions and diseased 
statuses.11–13 These reports and experiments have been con-
ducted using animal models mimicking myocardial infarction 
and hypertensive cardiac diseases. However, the patho-
genic roles of CFs in idiopathic cardiomyopathy, especially 
in RCM, remain unclear. In this study, we investigated the 
physiological and transcriptional features of human CFs 
obtained from pure RCM pediatric patients. Additionally, 
we co-cultured patient-derived CFs with normal cardio-
myocytes to evaluate the interaction between them.

Methods
Ethical Statement
We obtained written informed consent from the parents of 
the minors included in this study. This research project (no. 
15211 and no. 442) was approved by the Osaka University 

Figure 1.    Clinical echocardiographic and histologi-
cal data of the patients. Echocardiographic findings 
of each patient demonstrated massively dilated right 
and left atria with restrictive ventricular dysfunction. 
The Masson’s trichrome stain utilized on cardiac tis-
sue from all patients evidenced only mild interstitial 
fibrosis (blue stain). The fibrosis ratio was evaluated 
by using 5 different locations of the sections and was 
not significantly different among the patients. Scale 
bar: 200 μm.

https://imagej.nih.gov/ij/
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diomyocytes purification, non-adherent cells were col-
lected 1 h after incubation using the pre-plating technique.17

Co-Culture of Human CFs and Rat Cardiomyocytes
For direct 2D co-cultures, CFs were seeded at 3×104 cells 
per well in 96-well plates coated with 1% gelatin 24 h before 
the start of co-culture. After confirming confluence of CFs, 
rat myocytes were added at 6×104 cells per well.

For indirect co-cultures, we used a 0.4-µm Transwell®-
96well plate (Corning). CFs (1.5×104) were seeded onto an 
insert plate 24 h before the initiation of co-culture in order 
to obtain confluence. Rat cardiomyocytes were seeded at 
6×104 cells per well into a 96-well plate coated with 1% 
gelatin and co-cultured with CFs in the upper chamber.14 
After 48 h of co-culture, we analyzed the function of rat 
cardiomyocytes by detecting cell motility and mRNA 
expressions. Four independent co-culture assays were con-
ducted for each analysis.

Quantitative Real-Time Polymerase Chain Reaction (qPCR)
After 48 h of incubation, cells from co-cultures were har-
vested and the total RNA was extracted using the RNA 
column kit (Nucleospin). Reverse transcription was per-
formed using ReverTra Ace (TOYOBO), followed by 
qPCR with the Light-Cycler 480 using the THUDERBIRD 
SYBR qPCR Mix kit (TOYOBO). The following primer 
pairs, which were specifically designed for rat mRNA, were 
used for qPCR.18–20 Each sample was analyzed in technical 
triplicates using the following protocol: 10 min at 95°C, 
followed by 40 cycles of 15 s at 95°C, and then 1 min at 
60°C. Each PCR analysis was completed by a melt curve 
cycle of 15 s at 95°C, 60 s at 60°C, and 15 s at 95°C. Data 
were analyzed using the standard curve method. At the end 
of each PCR run, the relative amount of Nppa, Nppb, 
Myh7, and Cx43 mRNA, in comparison to the house-
keeping gene, Gapdh, was evaluated as previously 
described.19,21 The forward and reverse primers for Atp2a2 
were 5’-ATTGACATCCATCAAGTCTACAACTCTG-3’ 
and 5’-ATCTCAGTATTGACTCCAGTCGCC-3’, respec-
tively. Those for Pln were 5’-AACTAAACAGTCTG 
CATTGTGACGA-3’ and 5’-GCCGAGCGAGTAAGG 
TATTGGA-3’, respectively. Cycle threshold was calcu-
lated, under the default settings, by real-time sequence 
detection software (Applied Biosystems).

Motion Analysis of Cardiomyocytes
To evaluate the contractile and relaxation function of car-
diomyocytes, we used the SI8000 Cell Motion Imaging 
System® (SONY). This system enables the quantitative 
analysis of the motion vector of beating cardiomyocytes by 
capturing high-quality videos. Cell movement is converted 
into a motion vector and the motion velocity within each 
region of interest (ROI) is calculated based on the sum of 
the vector magnitudes. The maximum contraction and 
relaxation velocity are considered to correspond to the 
contractile and diastolic function of the cardiomyocytes. 
ROIs were set to surround the cardiomyocyte nuclei, and 
we analyzed contraction velocity, relaxation velocity, and 
beating rate.22,23 In indirect co-cultures, 10–20 cells were 
counted in each patient in 1 experiment. All data were 
obtained from isolated cardiomyocytes only (excluding 
clusters of cardiomyocytes). In direct co-cultures, all cells 
whose motion could be detected were analyzed; cardio-
myocytes are usually isolated from other cardiomyocytes 
but were buried under layers of CFs. And 30–50 cells were 

(y.o.) male, 25 y.o. female, and 30 y.o. female; all Caucasian), 
and were cultured using the same procedure described 
above. Cells between passage number 4 and 7 were used 
for all experiments.

Proliferation Assay
Cells were seeded at 5×103 cells per well into 96-well plates 
and incubated in DMEM/10% FBS overnight. Thereafter, 
10 µmol/L EdU was added and incubated for 24 h accord-
ing to the manufacturer’s instructions.14 The EdU-positive 
nuclei were analyzed by the In Cell Analyzer 6000 using 
Click-iT® EdU Imaging Kits. Independent three experi-
ments were conducted for the assay.

Apoptosis and Myofibroblast Assay
Cells were seeded at 5×103 cells per well into 96-well plates 
and incubated in DMEM/10% FBS for 24 h, and then 
incubated for another 48 h under the following 4 condi-
tions: (1) DMEM with FBS in a normoxic environment; 
(2) serum-deficient DMEM in a normoxic environment; 
(3) DMEM with FBS in a hypoxic environment (1% O2); 
and (4) serum-deficient DMEM in a hypoxic environment 
(1% O2). Samples were reacted overnight at 4°C with cleaved 
caspase-3 and α-SMA antibodies (1 : 500; purchased from 
Cell Signaling: catalog no. 9661, and Invitrogen: catalog 
no.14-9760-82). After incubating with secondary antibodies, 
Alexa594 and Alexa488 (1 : 500; Invitrogen), at room tem-
perature for 30 min, nuclei were dyed with Hoechst33342 
(1 : 1,000; Dojindo). The percentage of cleaved caspase-
3-positive cells and cytoplasmic α-SMA-positive cells were 
analyzed using the In Cell Analyzer 6000. Independent 
three experiments were conducted for each assay.

Migration Assay
Cells were seeded at 3×104 cells per well into 96-well plates 
24 h prior to assay. After confirming confluence, cell mono-
layers were scratched using a 10 µL pipette tip and a verti-
cal wound was created. Phase contrast microscopic images 
were saved and the distance from one side of the wound to 
the other was measured. The ratio of shortening from start 
to 12-h post-scratching was analyzed using ImageJ soft-
ware.15 Independent three experiments were conducted for 
the assay.

Attachment Assay
Cells were seeded at 5×103 cells per well into 96-well plates; 
thereafter, the medium was removed and cells were gently 
washed with phosphate-buffered saline (PBS) 4 h after 
seeding. Nuclei were stained with Hoechst33342 and the 
number of attached cells were counted using the In Cell 
Analyzer (sum of cells of 20 fields per well). Independent 
three experiments were conducted for the assay.

Primary Culture of Rat Cardiomyocytes
Two-day-old Sprague-Dawley rats were used in experi-
ments after approval was obtained from the Institutional 
Review Board of Osaka University. Cardiomyocytes were 
obtained using a previously described procedure with 
modifications.16 Briefly, the ventricular tissues were iso-
lated and minced, thereafter the tissue fragments were 
processed with collagenase and trypsin for 2 min in a 37°C 
water bath and filtered. The above process was repeated 
7–8 times after which the cells obtained were seeded on cell 
culture plates in DMEM supplemented with 10% FBS and 
1% P/S. In order to remove cardiac non-myocytes for car-
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reads were removed using trimmomatic-0.36. Read align-
ment was performed using standard parameterized BWA 
v0.7.17 for human genome assembly hg19 (GRCh37). 
SNVs or short in/dels were called according to GATK best 
practice (GATK4.0.3). Called variants are filtered using 
GATK Variant Filtration, and variants that meet conditions 
of “QD <2.0, FS >60.0, MQ <40.0, MQRankSum <−12.5, 
ReadPosRankSum <−8.0, SQR >4.0” are analyzed.

Then, annotation information was added to the obtained 
variant list using Annovar. The narrowing down analysis 
from the mutation list was performed using the original 
script by Python3.6. The type of the variant and its posi-
tion on the gene were determined from the annotation of 
UCSC Known Genes, RefSeq genes and Ensemble genes.

Candidate variants were present on the 257 gene associ-
ated with cardiomyopathy, and those with a minor allele 
frequency (MAF) <0.5% were extracted. Continuously, to 
assess the potential functional effects of variants, 4 bioin-
formatic algorithms were used: HGMD, Intervar, CADD, 

counted in each patient in 1 experiment. Four independent 
co-culture experiments were performed in each CF line 
from each patient.

Whole Exome Sequence Analysis
Genomic DNA was extracted from patients’ peripheral 
blood samples using a DNeasy® Plant Mini Kit. The DNA 
was quantified using NanoDrop 2000c (Thermo Fisher 
Scientific). Genomic DNA was fragmented enzymatically 
or by ultrasonic irradiation. Fragmented DNA was 
hybridized with a biotin-labeled probe specific to the target 
region using SureSelect Human All Exon V6 kits (Agilent). 
Hybridized samples were enriched with streptavidin beads 
and captured DNA was amplified by on-bead PCR. Pre-
pared genome libraries were sequenced as 100-bp paired-
end runs on HiSeq 3000 systems (Illumina). Image analysis, 
base calling and demultiplexing were performed using the 
Illumina bcl2fastq2 conversion software v2.20. FASTQ 
files were quality checked using FASTQC and low-quality 

Figure 2.    Cellular physiology assays of car-
diac fibroblasts (CFs) derived from restrictive 
cardiomyopathy (RCM) patients. Three inde-
pendent experiments were conducted for 
each patient for all experiments. The mean 
values and standard errors were calculated 
from 3 different lines of healthy CFs (HCF) 
and 4 different RCM patient-derived CFs. (A) 
A proliferation assay was performed to mea-
sure the number of EdU-positive cells. (B) A 
migration assay was performed by measur-
ing the wound dimensions after scratching 
cell-culture dishes. (C) The result of the cell 
attachment assay, which evidenced no sig-
nificant difference. (D) An apoptosis assay 
was performed to count the cleaved cas-
pase-3-positive cells under a combination of 
hypoxia and serum starvation conditions. (E) 
A myofibroblast activation assay was per-
formed to count the α-smooth muscle actin 
(SMA)-positive CFs under a combination of 
hypoxia and serum starvation conditions.

Table.  Clinical Characteristics of the Patients

RCM_1 RCM_2 RCM_3 RCM_4

Gender Male Male Male Female

Age at diagnosis (years) 5 2 6 8 months

Age at sampling (years) 10 3 11 2

Event at sampling HTx LVAD LVAD HTx

Medications at sampling Dobutamine Dobutamine Milrinone LVAD

Milrinone Milrinone Diuretics Dobutamine

Diuretics Diuretics ACE inhibitor Milrinone

Amiodarone β-blocker Amiodarone Diuretics

Warfarin Aspirin Aspirin Warfarin

BNP at sampling (pg/mL) 907.4 568.8 2,577.5 949.7

Gene mutation TNNI3 (K178E) TNNI3 (R170W) TNNI3 (R192H) Not detected

ACE, angiotensin-converting enzyme; BNP, brain natriuretic peptide; HTx, heart transplantation; LVAD, left ventricu-
lar assist device; RCM, restrictive cardiomyopathy.
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tistical analyses were performed using EZR software 
(http://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/ 
statmedEN.html).25 Statistical comparisons were performed 
by using a Student’s t-test or Mann-Whitney U-test. A P value 
<0.05 was considered to indicate statistical significance.

Results
Patient Profiles and Establishment of CFs
The clinical characteristics of all patients are summarized 
in the Table and Figure 1. All patients were diagnosed with 
idiopathic RCM between the ages of 8 months to 7 years. 
Secondary RCM including cardiac amyloidosis, sarcoid-
osis, congenital metabolic disorders, or pericarditis were 
ruled out by cardiac biopsy, echocardiography, electrocar-
diography, magnetic resonance imaging, serum amino acid 
analysis, etc.26 Heart tissues were harvested during VAD 
implantation or heart transplantation. The fibrosis ratio 
calculated by Masson trichrome stain was not significantly 
different among the patients. Purity of CFs was evaluated 
by immunocytochemistry (Supplementary Figure 1). Car-
diomyocytes were excluded during the passage because 
they failed to proliferate. The healthy CFs were commer-
cially obtained and cultured similarly to CFs from RCM 
patients. The purity was verified by CD90 staining.

Identification of Gene Mutations Associated With RCM by 
Whole Exome Sequencing
To investigate whether these RCM patients possess known 

Protein variation effect analyzer (Provean). Missense vari-
ants were considered “potentially pathogenic” if classified 
simultaneously as “DM” by HGMD, “Pathogenic” or Likely 
pathogenic” by Intervar, CADD >25 and PROVEAN 
<2.5. These variants are infrequent and are considered to 
be highly pathogenic variants.

Comprehensive mRNA Expression Profiling of the CFs by 
Next Generation Sequencing
Total RNA was extracted from cultured CFs using a RNA 
column kit (Nucleospin) and evaluated by RNA sequenc-
ing using a next generation sequencer. Library preparation 
was performed using the TruSeq stranded mRNA sample 
prep kit (Illumina). An Illumina HiSeq 2500 platform in 
75-base single-end mode was used for sequencing. Illumina 
CASAVA 1.8.2 software was used for base calling. 
Sequenced reads were mapped to the human reference 
genome sequence (hg19) using TopHat version 2.0.13 in 
combination with Bowtie2 version 2.2.3 and SAMtools 
version 0.1.19. Fragments per kilobase of exon per million 
mapped fragments were calculated using Cuffnorm version 
2.2.1. Ingenuity Pathway Analysis was used to identify 
canonical pathways of differentially expressed genes. The 
transcriptomes of CFs obtained from RCM patients and 
healthy CFs were analyzed using integrated differential 
expression and pathway analysis (iDEP).24

Statistical Analysis
All data are expressed as means ± standard error. All sta-

Figure 3.    Indirect co-culture assays of 
patient-derived cardiac fibroblasts (CFs) 
and healthy rat cardiomyocytes. Three inde-
pendent co-culture experiments were con-
ducted for each patient. Ten to twenty 
beating cells were assayed in 1 experiment. 
The mean values were calculated from 3 dif-
ferent lines of healthy CFs (HCF) and 4 dif-
ferent restrictive cardiomyopathy (RCM) 
patient-derived CFs. The graphs show 
mean ± standard error. (A) Motion analyses 
of healthy cardiomyocytes under indirect co-
culture conditions with HCF and RCM CFs. 
(*P<0.05). (B) Quantitative real-time poly-
merase chain reaction (PCR) analyses of rat 
cardiomyocytes indirectly co-cultured with 
CFs. There was no significant difference 
between cardiomyocytes co-cultured with 
HCF and RCM CFs.

http://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/statmedEN.html
http://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/statmedEN.html
http://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/statmedEN.html
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cant change in CFs from RCM patients (Figure 2D). We 
also counted the number of α-smooth muscle actin 
(α-SMA)-positive CFs to identify activated fibroblasts, 
known as myofibroblasts.29 In our experiment, neither 
hypoxia nor serum deprivation increased the amount of 
α-SMA-positive cells (Figure 2E). Collectively, we could 
not identify any significant differences between healthy 
CFs and those of RCM patients regarding basic cellular 
behaviors. Additionally, no individual differences were 
identified among each sample, regardless of disease and 
TNNI3 mutations (Supplementary Figure 2).

Diastolic Function of Healthy Cardiomyocytes Was 
Impaired by Co-Culture With CFs From RCM Patients
To investigate whether CFs from RCM patients could 
affect the motional behavior of cardiomyocytes through 
paracrine effects or direct cell-cell contact, we performed 
both indirect and direct co-culture assays with neonatal rat 
cardiomyocytes. We evaluated the motion vectors of beat-
ing cardiomyocytes after 48 h co-culture with heathy CFs 
and those from RCM patients using a Sony SI8000 motion 
analyzer (Supplementary Figure 3).

The indirect co-culture experiment evidenced that the 
beating rate and contraction velocity of cardiomyocytes 
co-cultured with CFs from RCM patients was not signifi-
cantly different (66.9±18.6 beats/min vs. 72.0±14.9 beats/min, 
P=0.48 and 10.4±1.62 μm/s vs. 9.2±0.81 μm/s, P=0.21, 
respectively). Interestingly, the relaxation velocity of car-
diomyocytes co-cultured with CFs from RCM patients 

causative gene variants, we performed whole exome 
sequencing using peripheral blood samples. We identified 
the TNNI3 mutation, more specifically a missense mutation 
linked to RCM, in 3 of the 4 RCM patients (RCM_1: 
K178E; RCM_2: R170 W; RCM_3: R192H).6,27 In the 
other patient (RCM_4), we could not find any candidate 
variants using this method.28

Physiological Features of Cardiac Fibroblasts From RCM 
Patients
To evaluate general physiological features of CFs from 
RCM patients, we assessed the ability of proliferation, 
apoptosis, migration, attachment, and activation toward 
myofibroblast phenotype. First, we analyzed the ratio of 
EdU-positive cells for 24 h to assess proliferative ability. 
We evidenced no significant difference between healthy 
CFs and those from RCM patients (0.39±0.09 vs. 0.44±0.07, 
P=0.43; Figure 2A). Thereafter, we performed the wound 
healing assay to investigate the migration capacity of CFs. 
The shortening of wound distance 12 h after scratching 
demonstrated no significant difference between healthy 
CFs and those from RCM patients (0.28±0.15 vs. 
0.36±0.12, P=0.51; Figure 2B). Additionally, we conducted 
the cell attachment assay, which indicated no significant 
difference in the number of adherent cells (251.7±78.3 cells/
mm2 vs. 225.9±47.1 cells/mm2, P=0.65; Figure 2C). More-
over, we investigated the apoptosis of CFs under 4 experi-
mental conditions, more specifically with and without 
hypoxia and serum deprivation, and evidenced no signifi-

Figure 4.    Direct co-culture assays of 
patient-derived cardiac fibroblasts (CFs) 
and healthy rat cardiomyocytes. Three inde-
pendent co-culture experiments were con-
ducted for each patient. Thirty to fifty beating 
cells were assayed in 1 experiment. The 
mean values were calculated from 3 different 
lines of healthy CFs (HCF) and 4 different 
restrictive cardiomyopathy (RCM) patient-
derived CFs. The graphs show mean ± stan-
dard error. (A) Motion analysis under direct 
co-culture conditions. (**P<0.01). (B) Quan-
titative real-time polymerase chain reaction 
(PCR) analyses of cardiomyocytes directly 
co-cultured with CFs by using rat-specific 
primers.
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vs. 7.3±0.53 μm/s, P<0.01, respectively; Figure 4A), though 
the beating rate of cardiomyocytes was not significantly 
changed (70.2±13.9 beats/min vs. 56.7±5.6 beats/min, 
P=0.12; Figure 4A). Additionally, there was no significant 
differences among each patient regardless of TNNI3 muta-
tions (Supplementary Figure 4). Quantitative polymerase 
chain reaction (qPCR) did not yield any significant changes 
(Figure 4B). Therefore, CFs from RCM patients affected 
both the contractile and diastolic behavior of healthy car-
diomyocytes via paracrine effects and direct interactions.

was significantly lower than that for healthy CFs 
(6.7±0.54 μm/s vs. 5.6±0.68 μm/s, P=0.038; Figure 3A). We 
investigated mRNA, including Myh7, Nppa, Nppb, Cx43, 
Atp2a2, and Pln expression levels of cardiomyocytes; how-
ever, no significant differences were detected between 
healthy controls and RCM patients (Figure 3B).

Conversely, both the contraction and relaxation velocity 
of cardiomyocytes directly co-cultured with CFs from 
RCM patients were significantly lower than that of healthy 
CFs (14.7±0.85 μm/s vs. 11.6±1.18 μm/s, P<0.01; 9.7±0.55 μm/s 

Figure 5.    RNA-Seq analyses for cardiac fibroblasts (CFs) derived from restrictive cardiomyopathy (RCM) patients. (A) Hierarchi-
cal clustering of RNA-seq in healthy CFs (HCF) and RCM CFs. (B) K-means clustering analysis of the top 2,000 differentially 
expressed genes. (C) Enriched pathways in each cluster revealed by gene ontology (GO)-term analyses. (D) Principal component 
analysis (PCA; Left panel) and t-distributed Stochastic Neighbor Embedding (t-SNE; Right panel) analysis of RNA-seq. Each 
number represents each RCM patient and healthy control.
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underlying the pathogenesis of RCM it is strongly 
required. Recently, whole exome sequencing revealed sev-
eral single nucleotide variants, especially in TNNI3, as 
candidates for causing RCM.3,4 However, the majority of 
RCM patients do not possess any candidate variants of 
cardiomyocyte expressing genes. Moreover, genotype-
phenotype correlation is ambiguous in RCM, as well as in 
other cardiomyopathies.4,9 These previous findings suggest 
that we should consider “non-myocyte” factors in the 
pathogenesis of cardiomyopathy. It is well known that CFs 
are the most common cell population in the heart. 
Recently, various studies have demonstrated that CFs play 
important roles in maintaining cardiac function in isch-
emic and pressure overload models.11–13 However, the 
functions and behaviors of CFs in cardiomyopathy have 
not been elucidated until now.

In this study, we demonstrated that CFs obtained from 
pediatric RCM patients exhibited distinct gene expression 
patterns and deteriorated the relaxation ability of normal 
cardiomyocytes via paracrine effects and direct cell-cell 
interaction. To our knowledge, this is the first report that 
evidences that the cellular character of CFs is altered in 
cardiomyopathy patients. Moreover, these expression 
changes were not different among each patient, regardless 
of TNNI3 mutation. We identified 3 types of TNNI3 gene 
mutation in 4 patients. All of these mutants were reported 
to increase Ca2+ sensitivity of the actin myosin interaction, 
which might to lead relaxation disability in cardiomyo-
cytes.27,37,38 As the physiological properties and gene 
expression patterns of CFs were not significantly different 
among the RCM patients, regardless of TNNI3 mutations, 
we speculated that these properties of CFs from RCM 
patients were not attributed to genomic disorders of car-
diomyocytes or CFs themselves, but to pathological hemo-
dynamic situations or cardiomyocyte-fibroblast interactions 
in RCM patients in vivo. Additionally, we assume that 
those features of CFs were maintained in primary culture 
in vitro. However, we could not clarify how and which 
specific signals and molecules could affect the expression 
pattern and characteristics of CFs in RCM patients. Sev-
eral previous reports have demonstrated that CFs function 
as a substrate and play important roles in homeostasis in 
the heart. Furthermore, dysregulation of extracellular 
matrix components and cytokines has been reported in 
pathological situations. Our results, obtained from RNA-
seq, were consistent with these previous reports evidencing 
that the expression of ITGA11, COL16A1, TGFBI, MMP2, 
and COL1A1 significantly increased, whereas FGF5, 

Comprehensive Gene Expression Profiling Revealed 
Distinct mRNA Expression Patterns in CFs From RCM 
Patients
To investigate expression profiles of CFs from RCM 
patients, we conducted RNA-seq. Heat map analysis of the 
top 100 genes demonstrated the different pattern between 
healthy CFs and those of RCM patients (Figure 5A). 
K-means clustering, dividing the top 2,000 genes into 3 
groups, also evidenced similar expression patterns and that 
the pathways of cell adhesion, cell and tissue development, 
and extracellular matrix organization were enriched 
(Figure 5B,C; Supplementary CSV File). Both principal 
component analysis (PCA) and t-distributed Stochastic 
Neighbor Embedding (t-SNE) analysis markedly indicated 
the distinct grouping of healthy CFs and those of RCM 
patients. However, there was no obvious differences 
between RCM patients with and without TNNI3 muta-
tions (Figure 5D). This finding indicates that the genetic 
background of cardiomyocytes did not affect the gene 
expression patterns of CFs in RCM patients.

Expression of Several Specific Cytokines and  
Extracellular Matrix Components Were Altered in CFs  
From RCM Patients
Using the DESeq2 package, with a threshold false discovery 
rate <0.1 and fold-change >2, we identified 610 upregulated 
and 649 downregulated genes in CFs from RCM patients. 
Gene ontology (GO) term enrichment analysis illustrated 
that genes associated with cytokines and the extracellular 
matrix were upregulated or downregulated in CFs from 
RCM patients. The expression of ITGA11, COL16A1, 
TGFBI, MMP2, and COL1A1 were upregulated in CFs 
from RCM patients. Reports have evidenced that these 
factors are elevated in various cardiac disease models.30–33 
In contrast, the expression of FGF5, CXCL12, MMP1, 
and IL33 were downregulated in CFs from RCM patients 
(Figure 6). These factors have been reported as protective 
components for cardiomyocyte homeostasis.30,34–36 These 
results indicate that alterations in extracellular matrix 
composition and humoral factor secretion in RCM CFs 
might have multiple associations with the impaired con-
traction and relaxation ability of cardiomyocytes.

Discussion
RCM in children is very rare, but prognosis is extremely 
poor.1 As there is no effective therapy for ventricular dia-
stolic dysfunction, elucidation of molecular mechanisms 

Figure 6.    Relative mRNA expression levels 
in restrictive cardiomyopathy (RCM) cardiac 
fibroblasts (CFs) obtained by RNA-seq anal-
ysis. Differential gene expression analysis 
demonstrated that ITGA11, COL16A1, 
TGFB1, MMP2, and COL1A1 were signifi-
cantly elevated in RCM CFs as compared to 
healthy CFs. In contrast, FGF5, CXCL12, 
MMP1, and IL33 were significantly down-
regulated in RCM CFs.
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ducted whole exome sequencing and analysis. H.T. and Y.I. per-
formed RNA-seq analysis. H.T. and H.I. wrote the manuscript and 
all authors revised and approved the final version of the manuscript. 
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