Altered Microbiota by a High-Fat Diet Accelerates Lethal Myeloid Hematopoiesis Associated with Systemic Socs3 Deficiency

Kaori Cho, Takashi Ushiki, Hajime Ishiguro, Suguru Tamura, Masaya Araki, Tatsuya Suwabe, Takayuki Katagiri, Mari Watanabe, Yoko Fujimoto, Riuko Ohashi, Yoichi Ajioka, Ippei Shimizu, Shujiro Okuda, Masayoshi Masuko, Yoshimi Nakagawa, Hideyo Hirai, Warren S. Alexander, Hitoshi Shimano, Hirohito Sone

PII: S2589-0042(21)01085-3

DOI: https://doi.org/10.1016/j.isci.2021.103117

Reference: ISCI 103117

To appear in: ISCIENCE

Received Date: 20 August 2020

Revised Date: 10 August 2021

Accepted Date: 9 September 2021

Please cite this article as: Cho, K., Ushiki, T., Ishiguro, H., Tamura, S., Araki, M., Suwabe, T., Katagiri, T., Watanabe, M., Fujimoto, Y., Ohashi, R., Ajioka, Y., Shimizu, I., Okuda, S., Masuko, M., Nakagawa, Y., Hirai, H., Alexander, W.S., Shimano, H., Sone, H., Altered Microbiota by a High-Fat Diet Accelerates Lethal Myeloid Hematopoiesis Associated with Systemic Socs3 Deficiency, *ISCIENCE* (2021), doi: https://doi.org/10.1016/j.isci.2021.103117.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 The Author(s).

1	Altered Microbiota by a High-Fat Diet Accelerates Lethal Myeloid Hematopoiesis
2	Associated with Systemic Socs3 Deficiency
3	
4	
5	Kaori Cho ^{1,13} , Takashi Ushiki ^{1,2,14, *} , Hajime Ishiguro ^{1,13} , Suguru Tamura ¹ , Masaya
6	Araki ³ , Tatsuya Suwabe ¹ , Takayuki Katagiri ¹ , Mari Watanabe ² , Yoko Fujimoto ² , Riuko
7	Ohashi ^{4,5} , Yoichi Ajioka ^{4,5} , Ippei Shimizu ⁶ , Shujiro Okuda ⁷ , Masayoshi Masuko ¹ ,
8	Yoshimi Nakagawa ⁸ , Hideyo Hirai ^{9,10} , Warren S. Alexander ^{11,12} , Hitoshi Shimano ³ and
9	Hirohito Sone ¹
10	
11	1) Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine,
12	Niigata University, Niigata City, Niigata 951-8510, Japan
13	2) Department of Transfusion Medicine, Cell Therapy and Regenerative Medicine,
14	Niigata University Medical and Dental Hospital, Niigata City, Niigata 951-8520,
15	Japan

16	3)	Department of Endocrinology and Metabolism, Faculty of Medicine, University of
17		Tsukuba, Tsukuba City, Ibaraki 305-8575, Japan
18	4)	Histopathology Core Facility, Faculty of Medicine, Niigata University, Niigata City,
19		Niigata 951-8510, Japan
20	5)	Division of Molecular and Diagnostic Pathology, Niigata University Graduate School
21		of Medical and Dental Sciences, Niigata City, Niigata 951-8510, Japan
22	6)	Department of Cardiovascular Biology and Medicine, Juntendo University Graduate
23		School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
24	7)	Division of Bioinformatics, Niigata University Graduate School of Medical and
25		Dental Sciences, Niigata City, Niigata 951-8510, Japan
26	8)	Division of Complex Biosystem Research, Department of Research and
27		Development, Institute of Natural Medicine, University of Toyama,
28		Toyama City, Toyama 930-0194, Japan
29	9)	Department of Clinical Laboratory Medicine, Kyoto University Hospital, Kyoto City,
30		Kyoto 606-8507, Japan

31 10) Laboratory of Stem Cell Regulation, School of Life Sciences, Tokyo University of

- 32 Pharmacy and Life Sciences, Hachioji City, Tokyo 192-0392, Japan
- 33 11) Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of
- 34 Medical Research, Parkville, Victoria 3052, Australia
- 35 12) Department of Medical Biology, The University of Melbourne, Parkville, Victoria
- **36** 3052, Australia
- 37 13) These authors contributed equally
- 38 14) Lead Contact
- **39** \star Correspondence
- 40
- 41 Correspondence to
- 42 Takashi Ushiki, MD, PhD,
- 43 Department of Transfusion Medicine, Cell Therapy and Regenerative Medicine, Niigata
- 44 University Medical and Dental Hospital
- 45 1-754 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8520, Japan
- 46 E-mail: tushiki@med.niigata-u.ac.jp
- 47
- 48

49 SUMMARY

50	The Suppressors of Cytokine Signaling (SOCS) proteins are negative regulators of
51	cytokine signaling required to prevent excessive cellular responses. In particular, SOCS3
52	is involved in the regulation of metabolic syndromes, such as obesity and diabetes, by
53	suppressing leptin and insulin signals. SOCS3 also suppresses the inflammatory response
54	associated with metabolic stress, but this specific role remains undefined. Wild-type mice
55	on a high-fat diet (HFD) exhibited only fatty liver, whereas systemic deletion of SOCS3
56	resulted in excessive myeloid hematopoiesis and hepatic inflammation. In addition,
57	depletion of the gut microbiota resulted in considerable improvement in excess
58	granulopoiesis and splenomegaly, halting the progression of systemic inflammation in
59	SOCS3KO mice on the HFD. This result suggests that intestinal dysbiosis is involved in
60	inflammation associated with SOCS3KO. Although contributing to diet-induced obesity
61	and fatty liver, SOCS3 is nevertheless critical to suppress excess myeloid hematopoiesis
62	and severe systemic inflammation associated with intestinal dysbiosis on HFD.

63 INTRODUCTION

64	High fat diets (HFDs) accelerate chronic diseases such as type 2 diabetes mellitus,
65	cardiovascular disease, inflammatory bowel disease, allergy, and certain types of cancer
66	via low grade inflammation. The inflammatory environment develops in the central
67	nervous system, including the hypothalamus, and in the peripheral tissues, including the
68	liver, adipose tissue, skeletal muscle, and intestine (Duan et al., 2018). In recent years, it
69	has been revealed that HFD affects bone marrow components and hematopoietic stem
70	cell (HSC) homeostasis through gut bacteria dysbiosis. For example, HFD loading alters
71	the gut microbiota and changes the bone marrow niche by increasing ectopic fat
72	accumulation in bone marrow, increasing fatty marrow via the activation of peroxisome
73	proliferator-activated receptor $\gamma 2$ (PPAR $\gamma 2$) and shifts hematopoietic stem cells toward
74	granulocyte hematopoiesis (Luo et al., 2015). In addition, in Spred1 knockout mice,
75	abnormalities in the intestinal flora contribute to enhanced ERK signaling in HSCs,
76	causing marked granulocyte hyperplasia, and this phenomenon is alleviated by depletion
77	of the gut microbiota (Tadokoro et al., 2018). These dysbiosis-mediated abnormalities in
78	the gut may be important for controlling low-grade inflammation via hematopoiesis, but

the detailed mechanisms and regulators of the intestinal-blood cell association remain

80	unclear.
81	The SOCS family is required to prevent spontaneous inflammation associated with
82	excessive cytokine responses. The SOCS family contains eight proteins, SOCS1-7 and
83	CIS (cytokine inducible SH2 containing protein), and is characterized by the presence of
84	an SH2 domain that mediates interaction with signaling proteins, such as the JAK kinases
85	and/or cytokine receptors, and a C-terminal SOCS Box motif. Regulation of signaling by
86	IL-6 and G-CSF by SOCS3 appears to be important in preventing inflammation (Croker
87	et al., 2003; Croker et al., 2004). Furthermore, SOCS3 is strongly associated with obesity
88	and insulin resistance. Inhibition of SOCS3 in obese mice improves insulin sensitivity
89	and fatty liver, and it also normalizes the increased expression of sterol regulatory element
90	binding protein (SREBP)-1c, which is the key regulator of fatty acid synthesis in the liver
91	(Ueki et al., 2004). These findings indicate that the inhibition of SOCS3 is a promising
92	therapeutic target for improving glucose tolerance and HFD-induced inflammatory
93	effects.

94	Herein, we show systemic homozygous SOCS3 knockout (KO) results in marked
95	myeloid hematopoiesis and lethal inflammation under conditions of HFD loading. In
96	these mice, myeloid cells invaded the liver and eventually caused systemic inflammation;
97	however, inflammation was substantially improved by depletion of the gut microbiota
98	using antibiotics.
99	
100	RESULTS
101	Generation of mice lacking SOCS3 on the HFD diet
102	Complete SOCS3 deficiency in mice causes embryonic lethality due to the uncontrolled
103	actions of leukemia inhibitory factor signaling (Roberts et al., 2001). To overcome the
104	embryonic lethality of SOCS3 deficiency, we used a tamoxifen-inducible Cre-
105	recombinase, <i>Rosa26-CreERT2</i> in combination with a homozygous floxed SOCS3 allele
106	(Socs3 ^{fl/fl}). To investigate the significant roles of SOCS3 in HFD, Socs3-knockout (KO)
107	genotypes were generated by treatment with tamoxifen. To explore the combined effect
108	of both SOCS3 deficiency and HFD-load in inflammation, mice were established as
109	indicated: SOCS3 deficiency in mice on HFD diet (S3-HFD, tamoxifen-treated Socs3 ^{fl/fl} ;
110	Rosa26-CreERT2) or control chow (S3-chow, tamoxifen-treated Socs3 ^{fl/fl} ; Rosa26-

111	<i>CreERT2</i>); functionally normal SOCS3 on HFD diet (<i>WT-HFD</i> , vehicle-treated <i>Socs3</i> ^{fl/fl} ;
112	Rosa26-CreERT2) or on control chow (WT-chow, vehicle-treated Socs3 ^{fl/fl} ; Rosa26-
113	CreERT2) (Fig S1). Previously, we confirmed highly efficient Cre-ERT2-dependent
114	recombination of the floxed <i>Socs3</i> allele in the hematopoietic organs of tamoxifen-, but
115	not vehicle-treated mice, using Southern blotting (Ushiki et al., 2016). Near-complete
116	tamoxifen-induced inactivation of the Socs3 allele was also confirmed in the trunk of
117	Socs3 deficient mice, but not in intracranial organs, using genomic PCR (Fig S2).
118	SOCS3KO protected against diet-induced obesity and fatty liver, and improved
119	blood glucose concentration without increasing activity and energy metabolism
119 120	blood glucose concentration without increasing activity and energy metabolism The S3-chow mice were lighter than WT-chow mice at 28 weeks of age. Furthermore,
119 120 121	blood glucose concentration without increasing activity and energy metabolism The S3-chow mice were lighter than WT-chow mice at 28 weeks of age. Furthermore, mice fed the HFD (WT-HFD) developed obesity; however, S3-HFD mice were
119 120 121 122	blood glucose concentration without increasing activity and energy metabolism The S3-chow mice were lighter than WT-chow mice at 28 weeks of age. Furthermore, mice fed the HFD (WT-HFD) developed obesity; however, S3-HFD mice were significantly protected from diet-induced obesity. Thus, SOCS3KO restricts weight gain,
119 120 121 122 123	blood glucose concentration without increasing activity and energy metabolism The S3-chow mice were lighter than WT-chow mice at 28 weeks of age. Furthermore, mice fed the HFD (WT-HFD) developed obesity; however, S3-HFD mice were significantly protected from diet-induced obesity. Thus, SOCS3KO restricts weight gain, especially that caused by HFD (Fig 1A). As for food intake at 15 weeks of age, intake
 119 120 121 122 123 124 	blood glucose concentration without increasing activity and energy metabolism The S3-chow mice were lighter than WT-chow mice at 28 weeks of age. Furthermore, mice fed the HFD (WT-HFD) developed obesity; however, S3-HFD mice were significantly protected from diet-induced obesity. Thus, SOCS3KO restricts weight gain, especially that caused by HFD (Fig 1A). As for food intake at 15 weeks of age, intake (g/day) did not differ with HFD. Caloric intake (kcal/day) in WT-HFD was significantly
 119 120 121 122 123 124 125 	blood glucose concentration without increasing activity and energy metabolism The S3-chow mice were lighter than WT-chow mice at 28 weeks of age. Furthermore, mice fed the HFD (WT-HFD) developed obesity; however, S3-HFD mice were significantly protected from diet-induced obesity. Thus, SOCS3KO restricts weight gain, especially that caused by HFD (Fig 1A). As for food intake at 15 weeks of age, intake (g/day) did not differ with HFD. Caloric intake (kcal/day) in WT-HFD was significantly higher than that in WT-chow, and the same was observed in S3-HFD compared with that

127	significantly (Fig 1B). Lipid intake (g/day) displayed the same trend as caloric intake. A
128	significant increase between chow and HFD was evident in both WT and SOCS3-
129	deficient models (Fig 1C). Therefore, the amount of food and the nutritional value of the
130	food ingested cannot explain the significant weight difference observed between WT and
131	SOCS3-deficient mice on the HFD. In parallel with the body weight change, the
132	development of fatty liver and secretion of liver triglyceride (TG) were suppressed in S3-
133	HFD mice on day 30 after tamoxifen treatment (Fig 1D, E) and myeloid infiltrations were
134	observed in SOCS3-deficient mice (Fig 1D). Regarding movement, on day 30 after
135	tamoxifen treatment, open field total distance was lower in the HFD group than in the
136	control diet group in WT mice. The total distance was low in the chow group, and it did
137	not change with HFD feeding in SOCS3-deficient mice (Fig 1F). The open field total
138	movement duration agreed with the total distance trend observed (Fig 1G). The rotary
139	momentum test revealed lower scores in WT-HFD mice than in normal diet. The scores
140	of both SOCS3-deficient groups, HFD and normal diet, were lower than those of WT-
141	chow mice on day 30 after tamoxifen treatment (Fig 1H). Respiratory exchange ratio
142	appeared low in the HFD groups, for both WT and SOCS3-deficient mice, on day 30 after

tamoxifen (Fig 1I). Blood glucose levels were higher in the WT-HFD group than in the

143

144	S3-chow group, but there was no other difference (Fig 1J). Insulin resistance testing
145	indicated lower blood glucose level in SOCS3KO mice than in WT mice on day 14 after
146	tamoxifen treatment (Fig 1K), suggesting that the systemic effects of SOCS3-deficiency
147	improved HFD-induced insulin resistance.
148	It has been reported that the circulating leptin concentration is higher in wild-type mice
149	on an HFD than in mice on chow, whereas the leptin concentration in SOCS3
150	haploinsufficient mice on an HFD is not significantly higher than that in mice on chow
151	(Howard et al., 2004). Consistent with this, the plasma leptin level was significantly
152	increased by HFD in WT mice, and this was alleviated in S3 mice (Fig 1L).
153	Thus, SOCS3 deficiency ameliorated HFD-induced obesity and hepatic lipid secretion
154	that cannot be attributed to improved metabolism and increased energy expenditure alone.
155	In some cases, various types of tumors develop or are promoted in SOCS3-deficient mice
156	including gastric and pancreatic cancer (Inagaki-Ohara et al., 2014; Lesina et al., 2011).
157	These neoplasms were not detected on day 30 after tamoxifen in all phenotypes examined
158	(Table S1). Thus, neoplasm is not associated with obesity resistance.

159 SOCS3 deficiency combined with HFD induces rapid inflammatory disease with

160 myeloid hematopoiesis

161	While SOCS3-deficiency improved obesity and fatty liver, the mice rapidly became
162	unwell when fed the HFD from day 32 after tamoxifen treatment, and their median
163	survival was 65.5 days after tamoxifen-induced deletion of SOCS3. In contrast, several
164	S3-chow mice became moribund from day 106 after tamoxifen treatment; however, they
165	did not reach 50% mean survival over a 6-month observation period. The control group
166	mice (WT-chow, WT-HFD) did not become unwell (Fig 2A). All mice were analyzed
167	upon initial signs of disease (hereinafter referred to as moribund). Inflammation was
168	observed in the spleen and liver from day 30 after tamoxifen administration; thus, we
169	defined this period as the pre-inflammation phase. Only S3-HFD mice showed marked
170	neutrophilia in the blood (Fig 2B) and considerable splenomegaly (Fig 2C) in the pre-
171	inflammation phase. Furthermore, S3-chow mice subsequently exhibited splenomegaly
172	around the median survival time. Thus, SOCS3KO mice on a normal diet developed
173	splenomegaly; however, spleen weight of these mice was significantly lower than that of
174	the S3-HFD group and neutrophilia was not observed (Fig 2D, E). Thus, HFD is

175	necessary to induce neutrophilia and more significant splenomegaly. Pathological
176	analysis revealed that the S3-HFD group displayed hepatic inflammation without fatty
177	liver in the pre-inflammation phase. Moribund S3-HFD mice often displayed
178	inflammatory skin lesions such as pachyderma, alopecia, and/or ulcers (Fig 2F), and
179	autopsies also revealed splenomegaly, lymphadenopathy, and inflammation in the liver,
180	fat, lung, and kidney (Fig 2G). Thus, as SOCS3-deficient mice on normal chow or WT
181	mice on the HFD did not display excessive granulopoiesis, the combination of SOCS3
182	deficiency and HFD induced rapid granulopoiesis from day 30 after tamoxifen treatment,
183	suggesting that granulopoiesis contributed to systemic inflammation.
183 184	suggesting that granulopoiesis contributed to systemic inflammation. SOCS3 deficiency induced granulopoiesis in the spleen
183 184 185	suggesting that granulopoiesis contributed to systemic inflammation. SOCS3 deficiency induced granulopoiesis in the spleen Lymphoid follicle structure collapsed due to increasing numbers of CD11b ⁺ Gr-1 ⁺
183 184 185 186	suggesting that granulopoiesis contributed to systemic inflammation. SOCS3 deficiency induced granulopoiesis in the spleen Lymphoid follicle structure collapsed due to increasing numbers of CD11b ⁺ Gr-1 ⁺ granulocytes in the spleen (Fig 3A, B) under SOCS3 deficiency, but the percentage of
183 184 185 186 187	suggesting that granulopoiesis contributed to systemic inflammation. SOCS3 deficiency induced granulopoiesis in the spleen Lymphoid follicle structure collapsed due to increasing numbers of CD11b ⁺ Gr-1 ⁺ granulocytes in the spleen (Fig 3A, B) under SOCS3 deficiency, but the percentage of granulocytes was significantly higher in the S3-HFD group than in the S3-chow group.
183 184 185 186 187 188	suggesting that granulopoiesis contributed to systemic inflammation. SOCS3 deficiency induced granulopoiesis in the spleen Lymphoid follicle structure collapsed due to increasing numbers of CD11b ⁺ Gr-1 ⁺ granulocytes in the spleen (Fig 3A, B) under SOCS3 deficiency, but the percentage of granulocytes was significantly higher in the S3-HFD group than in the S3-chow group. Next, we investigated granulocyte maturation in the spleen in the pre-inflammation phase
183 184 185 186 187 188 189	suggesting that granulopoiesis contributed to systemic inflammation. SOCS3 deficiency induced granulopoiesis in the spleen Lymphoid follicle structure collapsed due to increasing numbers of CD11b ⁺ Gr-1 ⁺ granulocytes in the spleen (Fig 3A, B) under SOCS3 deficiency, but the percentage of granulocytes was significantly higher in the S3-HFD group than in the S3-chow group. Next, we investigated granulocyte maturation in the spleen in the pre-inflammation phase (Fig 3C). In brief, hematopoietic cells undergoing granulopoiesis were separated into

191	granulocyte differentiation and maturation stages were classified as follows:
192	Subpopulation #1 comprised mainly myeloblasts, #2 contained an abundance of
193	promyelocytes, #3 mainly myelocytes, #4 mainly metamyelocytes, and #5 mainly band
194	cells and segmented cells. Cells undergoing granulocytic maturation (#4-#5) were
195	predominant in SOCS3KO mice on both normal chow and HFD (Fig 3D). In addition,
196	considering the extensive splenomegaly in S3-HFD, mature granulopoiesis is likely more
197	active in the S3-HFD group than the S3-chow group. Colony assays revealed increased
198	myeloid progenitor cells (CFU-GM, CFU-G, and CFU-M) in the spleen in SOCS3-
199	deficient mice, with the HFD driving higher numbers of myeloid progenitor colonies in
200	S3-HFD mice (Fig 3E). Thus, SOCS3 deficiency enhanced granulopoiesis without HFD
201	in the spleen and maturation of granulocytes was similar in the S3-chow and S3-HFD
202	groups. However, hematopoiesis indicated by myeloid progenitor cell number was
203	significantly higher in the S3-HFD group than in the S3-chow group.
204	SOCS3 deficiency with HFD feeding accelerates hepatic inflammation without

205 obesity and ectopic fat accumulation

206	SOCS3 deficiency improved HFD-induced obesity and ectopic fat accumulation (Fig 1A,
207	E); however, myeloid infiltration was observed in the liver. These myeloid cells were
208	observed in the entire liver, including the hepatic vein area, portal region, and liver
209	parenchyma on day 30 after tamoxifen treatment during the pre-inflammation phase (Fig
210	4A). Additionally, analysis was performed on day 14 post-tamoxifen treatment, but at
211	this time hepatic infiltration and splenomegaly were not observed, and in the serum, liver
212	enzyme activities did not differ among the groups. The total cholesterol level was higher
213	in the S3-HFD and WT-HFD groups than in the S3-chow and WT-chow groups (Fig 4B).
214	In the pre-inflammatory phase (day 30 after tamoxifen treatment), the inflammation
215	marker TNF- α was increased in the liver, but IL-6 in the S3-HFD group did not mirror
216	this trend. Unexpectedly, marked Ly6G RNA expression was observed in the S3-HFD
217	group, indicating excess neutrophil infiltration and blood cells in the liver as local
218	inflammation (Fig 4C). Furthermore, elevation in CD11b, CD14, and CD68 RNA
219	expression indicated monocyte and macrophage infiltration in the liver in the S3-HFD
220	group. Although inflammasome markers IL-1 β and Caspase-1 were not increased in the
221	pre-inflammation phase (Fig 4D) in all phenotypes (day 30 after tamoxifen treatment),

these genes were significantly increased in the S3-HFD group in the moribund phase (day

222

223	65 post-tamoxifen treatment) (Fig 4E).
224	Furthermore, fatty acid synthetase including, fatty acid desaturase 1 (FADS-1), stearoyl-
225	CoA desaturase 1 (SCD-1), elongation of very long chain fatty acids 6 (Elovl6), and
226	Sterol regulatory element binding protein 1 (SREBP-1) were present in the pre-
227	inflammation phase (Oishi et al., 2017). The results indicated that FADS-1 was elevated
228	by the HFD in the WT-HFD group, but this increase was abolished in the absence of
229	SOCS3. In addition, SCD-1 expression was lower in the WT-HFD group than in the WT-
230	chow group, and SCD-1 expression was low in the SOCS3-deficient groups, irrespective
231	of diet. As fatty acid synthetase FADS-1 is classified as an anti-inflammatory gene
232	(Gromovsky et al., 2018) and <i>SCD-1</i> is classified as an inflammatory gene (Liu et al.,
233	2010), intra-hepatic environment cannot be predicted only by fatty acid synthetase in the
234	S3-HFD group. Regarding fat synthesis, low expression of FADS-1 and SCD-1
235	suppressed fat synthesis in the liver. SREBP-1 and Elov16 expression levels were
236	unchanged across all phenotypes (Fig S3).

15

237	Hematopoietic SOCS3KO is not involved in HFD-induced inflammation and is not
238	a direct pro-inflammatory factor
239	Given the excessive granulocyte infiltration into the liver, we next considered the specific
240	role of hematopoietic loss of SOCS3. Mature myeloid-specific SOCS3KO mice (LysM;
241	LysMCre Socs3 ^{fl/fl}) were fed the HFD from 4 weeks of age. In LysMCre Socs3 ^{fl/fl} mice,
242	SOCS3 was partially deleted in peripheral white blood cells and intraperitoneal cells (Fig
243	S4). While systemic lethal inflammation was not observed, HFD-induced obesity was
244	present in mature myeloid-specific SOCS3KO mice on the HFD (Fig 5A, B). Myeloid-
245	specific SOCS3KO mice exhibited mild HFD-induced fatty liver (Fig 5C); however
246	SOCS3 deficiency showed there were trends of decrease in liver lipids in contrast to those
247	in WT, thereby suppressing fatty liver in myeloid-specific SOCS3KO mice (Fig 5D).
248	Inflammation was not observed in myeloid-specific SOCS3KO mice (Fig 5C). In addition,
249	granulocytosis in peripheral blood and splenomegaly were not observed (Fig 5E, F). Next,
250	we investigated the effect of deletion of SOCS3 in the entire hematopoietic system,
251	including myeloid progenitors, using Vav-cre (VavCre Socs3 ^{fl/fl}). In VavCre Socs3 ^{fl/fl}
252	mice, SOCS3 was completely deleted in peripheral white blood cells (Fig S4). The results

253	in VavCre Socs3 ^{fl/fl} mice were similar to those in LysMCre Socs3 ^{fl/fl} mice: hepatic
254	inflammation and excess neutrophilia-related systemic inflammation were not observed
255	(Fig 5G, I). Hematopoietic-specific SOCS3KO mice displayed mild fatty liver (Fig 5G,
256	H), but granulocytosis was not evident (Fig 5I, J). Differentiation and maturation of
257	neutrophils in the spleen did not significantly differ between the VavCre Socs3 ^{fl/fl} mice
258	and controls (Fig 5K). These data suggest that the loss of SOCS3 in blood cells is not
259	likely to be the cause of systemic inflammation, rather non-hematopoietic SOCS3 appears
260	to be important.
261	Intestinal tract is the source of HFD-induced inflammation and depletion of the gut
261 262	Intestinal tract is the source of HFD-induced inflammation and depletion of the gut microbiota abolishes inflammation
261 262 263	Intestinal tract is the source of HFD-induced inflammation and depletion of the gut microbiota abolishes inflammation Considering the above results, and given the link among diet, gut biota, and hematopoiesis
261 262 263 264	Intestinal tract is the source of HFD-induced inflammation and depletion of the gut microbiota abolishes inflammation Considering the above results, and given the link among diet, gut biota, and hematopoiesis as previously described (Luo et al., 2015; Tadokoro et al., 2018), a meta 16S rRNA gene
261 262 263 264 265	Intestinal tract is the source of HFD-induced inflammation and depletion of the gut microbiota abolishes inflammation Considering the above results, and given the link among diet, gut biota, and hematopoiesis as previously described (Luo et al., 2015; Tadokoro et al., 2018), a meta 16S rRNA gene sequencing analysis of intestinal microbiota was performed. The principal coordinate
261 262 263 264 265 266	Intestinal tract is the source of HFD-induced inflammation and depletion of the gut microbiota abolishes inflammation Considering the above results, and given the link among diet, gut biota, and hematopoiesis as previously described (Luo et al., 2015; Tadokoro et al., 2018), a meta 16S rRNA gene sequencing analysis of intestinal microbiota was performed. The principal coordinate analysis showed genetic differences among microbiota in all groups of mice (Fig 6A).
261 262 263 264 265 266 267	Intestinal tract is the source of HFD-induced inflammation and depletion of the gut microbiota abolishes inflammation Considering the above results, and given the link among diet, gut biota, and hematopoiesis as previously described (Luo et al., 2015; Tadokoro et al., 2018), a meta 16S rRNA gene sequencing analysis of intestinal microbiota was performed. The principal coordinate analysis showed genetic differences among microbiota in all groups of mice (Fig 6A). Phylogenetic classification showed reduced <i>Bifidobacteriales</i> members in the HFD

283	mice
282	Intestinal tract microbiota depletion improves myeloid hematopoiesis in S3-HFD
281	controlling systemic inflammation caused by enteric bacteria in the context of an HFD.
280	inflammation by improving dysbiosis. The data suggest that SOCS3 plays a key role in
279	(Fig 6H). Therefore, depletion of the gut microbiota might also suppress colon
278	levels of <i>TNF</i> - α in the colon decreased across all phenotypes after microbiota depletion
277	also significantly reduced by microbiota depletion in S3-HFD mice (Fig 6G). mRNA
276	granulopoiesis in WT mice. In addition, altered granulocyte-maturation in the spleen was
275	HFD group (Fig 6D-F), whereas there were no effects of 4Abx treatment on survival or
274	Interestingly, both granulopoiesis and splenomegaly were substantially reduced in the S3-
273	the intestinal tract was demonstrated as the primary inflammation-initiating organ.
272	of the S3-HFD group significantly improved following 4Abx treatment (Fig 6C). Thus,
271	abundance in not only the HFD groups, but also the chow groups (Fig 6B). The survival
270	Methods) and phylogenetic classification indicated a dominance in Lactobacillales
269	of the gut microbiota with a cocktail of four antibiotics (4Abx, see Materials and

284	Next, we checked the serum cytokine/chemokine levels that could affect granulopoiesis
285	and inflammation. Although the differences were not statistically significant, GM-CSF,
286	IL-17A, CCL-2, and CCL-4 were higher in S3-HFD mice than in WT mice, and
287	normalized by the depletion of the gut microbiota. IL-6 and S100A8/A9 were higher in
288	S3-chow than in WT, however compositions of gut microbiota such as <i>Bifidobacteriales</i>
289	and Clostridiales are similar in S3-chow and WT-HFD, indicating SOCS3 deficiency
290	itself potentially contributed to elevation of these cytokines. In addition, levels of these
291	cytokines were reduced by the depletion of gut microbiota, indicating these cytokines
292	were enhanced by gut microbiota-associated inflammation. Although, gene expression of
293	TNF- α in the liver of S3-HFD mice was high (Fig 4), there were no differences in the
294	serum protein levels (Fig 7A). Regarding the origin of IL-17A from Th17 cells, which
295	are abundant in the gut, especially the duodenum (Esplugues et al., 2011), we checked
296	IL-17A- and IL-17-related genes in the duodenum. In addition, Th17 cells also express
297	the chemokine receptor CCR6 in a cell-specific manner. However, there was no
298	significant difference in the expression levels of IL-17A- and IL-17-related genes and
299	CCR6 between WT and SOCS3-deficient mice in the duodenum before microbiota

300	depletion (Fig S5). Regarding hematopoiesis in the bone marrow (BM), myeloid
301	hyperplasia persisted in SOCS3-deficient mice with microbiota depletion (Table S1), and
302	Gram staining revealed no bacteria in all groups (Table S2). In addition, hematopoietic
303	stem cells (Lineage ⁻ Sca-1 ⁺ c-Kit ⁺ ; LSK cells and CD34 ⁻ LSK cells) and myeloid
304	progenitors (common myeloid progenitor; CMP and granulocyte-macrophage progenitor;
305	GMP) were significantly higher in S3-HFD mice than WT mice. However, these
306	differences were variably alleviated by 4Abx treatment (Fig 7B). Combined with the
307	observation that the elevated leukocyte count observed in S3-HFD mice was reversed by
308	microbiota depletion, the existence of myeloproliferative diseases was unlikely in these
309	mice.
310	

311 DISCUSSION

312 Previously, systemic SOCS3 haploinsufficiency has been shown to attenuate diet-

313 induced obesity by improving insulin resistance and enhancing leptin sensitivity (Howard

314 et al., 2004). Thus, SOCS3KO is expected to improve obesity and obesity-associated

315 metabolic complications. In fact, while a rtic dissection is associated with arteriosclerosis

316	or hypertension, smooth muscle specific SOCS3KO (Hirakata et al., 2020) or conversely
317	SOCS3 expression in macrophages (Ohno-Urabe et al., 2018) protected against aortic
318	dissection via inflammation control. However, systemic homogenous SOCS3KO resulted
319	in systemic inflammation due to excess myeloid hematopoiesis, particularly
320	granulopoiesis. SOCS3 is reportedly associated with HFD-induced low-grade
321	inflammation in local organs (Duan et al., 2018; Sachithanandan et al., 2010), however,
322	obvious systemic inflammation and excess granulopoiesis has not been reported.
323	Systemic haploinsufficiency or neural cell-specific SOCS3KO was originally reported
324	to enhance hypothalamic leptin signals and reduce weight gain in mice on an HFD
325	(Howard et al., 2004; Mori et al., 2004). In our study, mice were fed an HFD to examine
326	"systemic" homogenous SOCS3KO effects on obesity. The results demonstrated that
327	there were no differences in dietary intake across all genotypes, thus the amounts of
328	consumed calories and fat intake were the same between the S3-HFD and WT-HFD
329	groups. As tamoxifen cannot easily transit the blood-brain barrier, Cre recombinase
330	cannot be efficiently released in the CreERT system in intracranial organs. In turn, this
331	resulted in low SOCS3 deletion rates and presumably no accentuation of leptin signals in

332	intracranial organs, including the hypothalamus. SOCS3KO mice on the HFD received
333	high calories without increasing activity and energy consumption. In addition, the
334	phenotype differed from brain-specific SOCS3KO mice (Mori et al., 2004), especially
335	regarding appetite. Systemic inflammation was suspected to be strongly associated with
336	obesity resistance in systemic SOCS3KO, rather than enhanced leptin signaling. In fact,
337	the serum leptin level was not increased in SOCS3KO mice on the HFD.
338	Similar phenomena have been observed in organ-specific SOCS3KO mice. Liver-
339	specific SOCS3KO mice exhibited improved insulin resistance on the control diet;
340	however, liver-specific KO mice on the HFD exhibited increased hypothalamic SOCS3
341	expression and fatty acid synthase expression. Finally, liver-specific KO mice on the HFD
342	displayed obesity and hepatic inflammation (Sachithanandan et al., 2010). In this study,
343	hepatic inflammation was observed with an increase in F4/80-positive cells, and hepatic
344	gene expression and plasma levels of TNF- α and IL-6 were also elevated, indicating that
345	independent hepatic SOCS3KO can potentially induce low-grade inflammation. In our
346	study, systemic SOCS3KO also showed low-grade inflammation similar to hepatic
347	SOCS3KO; however, this inflammation was attenuated by the depletion of the gut

348	microbiota. These phenomena indicated gut dysbiosis accelerated hepatic inflammation.
349	Skeletal muscle-specific SOCS3KO mice displayed improved insulin resistance
350	(Jorgensen et al., 2013). It has been confirmed that skeletal muscle damage in SOCS3KO
351	mature muscle fibers did not improve muscle regeneration, but tended to induce an
352	inflammatory response with elevated TNF- α and macrophage infiltration in muscles
353	(Swiderski et al., 2016).
354	As for fatty liver, here, systemic SOCS3 deficiency clearly improved fatty liver
355	compared to that in wild-type mice on the HFD. The phosphorylation of STAT signal
356	transducers is important against both inflammation and metabolism. For example, the
357	level of IL-6 and phosphorylation of STAT3 signaling in hepatocytes are reported to
358	change hepatic metabolism toward the suppression of hepatic glucose production (Inoue
359	et al., 2006), or to improve fatty liver on a choline-deficient, ethionine-supplemented diet
360	(Kroy et al., 2010). In our model, hepatic IL-6 gene expression was not different, but
361	serum IL-6 level was significantly elevated in SOCS3-deficient mice compared with that
362	in wild-type mice in the Luminex assay. In addition, SOCS3 deficiency can result in
363	prolonged phosphorylation of STAT3 signaling (Ushiki et al., 2016); thus, a high serum

364	IL-6 level with SOCS3 deficiency might be one of the factors that contribute to improving
365	fatty liver.
366	We previously demonstrated a rapid inflammation and neutrophilia in mice lacking both
367	SOCS1 and SOCS3 in hematopoietic cells (Ushiki et al., 2016). We showed that
368	SOCS1KO and SOCS3KO independently modulate the proliferation and activation of
369	lymphoid and myeloid cells in the onset of rapid inflammatory disease. In brief, excessive
370	CD8 ⁺ CD44 ^{hi} T cells, a defining feature of the absence of SOCS1 (Cornish et al., 2003;
371	Davey et al., 2005), were observed and increased auto-reactive CD8 ⁺ T cells underpins
372	the autoimmunity in SOCS1-deficient mice (Davey et al., 2005). Our previous data were
373	extended to this model to suggest that the absence of SOCS3, in the already pro-
374	inflammatory environment established by SOCS1 deficiency, results in hyper-
375	responsiveness of immune cells to cytokines, such as G-CSF and IL-6, even in modest
376	amounts, and substantially accelerates myeloid proliferation and inflammatory
377	infiltration of the target tissues (Ushiki et al., 2016). Thus, a lack of SOCS3 alone in
378	hematopoietic cells did not result in disease development (Croker et al., 2012); however,
379	SOCS3KO could accelerate inflammation via excessive granulopoiesis (Ushiki et al.,

380	2016). Thus, regarding granulopoiesis in the current study, stimulation from activated T
381	cell or low-grade inflammation by metabolic stress may be involved in granulocyte
382	proliferation in SOCS3KO hematopoiesis. Our results suggest that GM-CSF, IL-17A,
383	CCL-2, and CCL-4 are candidates as cytokines/chemokines that may contribute to
384	systemic inflammation in S3-HFD mice and worthy of further study. As for IL-17A,
385	SOCS3 is known to suppress Th17 differentiation (Chen et al., 2006; Qin et al., 2009),
386	and Th17 cells are also known to be abundant in the gut (Esplugues et al., 2011). In our
387	study, IL-17A and related gene expression in the duodenum of S3-HFD did not differ
388	from those in other groups. Thus, IL-17 may be secreted from other organs that show
389	local inflammation.
390	The effects of an HFD on hematopoiesis are also becoming apparent. HFD decreases

the number of long-term LSK cells and shifts hematopoiesis from lymphoid to myeloid
differentiation at the progenitor cell level (Luo et al., 2015). HFD also affects the bone
marrow by altering the gut microbiota (Luo et al., 2015). In our experiments, myeloid
cell-infiltration was observed in the spleen and liver in the S3-HFD group. However, this
inflammation was not seen in myeloid-specific SOCS3KO mice. This indicates that

396	excess myeloid hematopoiesis in the S3-HFD group requires the involvement of intestinal
397	and hepatic inflammation, rather than the direct effects of HFD or SOCS3 deficiency on
398	blood cells. In fact, LSK and myeloid progenitors indicated shifts to myeloid
399	differentiation from the hematopoietic stem cell-level in S3-HFD mice in our study. BM
400	histopathology also showed myeloid hyperplasia, slight erythroid hypoplasia, and
401	megakaryocytosis features resembling chronic myeloid leukemia feature. However,
402	myeloid hematopoiesis was significantly reduced in the BM and peripheral blood in
403	response to depletion of the gut microbiota, indicating that myeloid proliferation was
404	reversible and likely to have a crucial role in the systemic inflammation development in
405	S3-deficient mice on the HFD.
406	Suppression of the gut microbiota substantially alleviated myeloid hematopoiesis and
407	halted the progression of systemic inflammation in S3-HFD mice. In addition, the gut
408	microbiota composition was altered by antibiotic treatment to primarily enrich
409	Lactobacillales in all groups. It has been reported that HFD chronically increased plasma
410	bacterial lipopolysaccharide (LPS) levels by increasing the proportion of LPS-containing
411	microbiota in the gut, called metabolic endotoxemia. In our study, Bifidobacteriales

412	members were reduced in the HFD groups (Turnbaugh et al., 2006). Bifidobacteria are
413	known to reduce intestinal LPS levels and improve mucosal barrier function (Cani et al.,
414	2007b). Thus, the HFD groups are suspected to be sensitive to HFD-induced low-grade
415	inflammation. Furthermore, various myeloid cells, such as granulocytes, monocytes, and
416	macrophages, infiltrated the liver due to HFD-induced metabolic stress in our study. LPS
417	receptor CD14-mutant mice on an HFD did not exhibit inflammation in the adipose tissue
418	and liver, whereas insulin sensitivity was improved (Cani et al., 2007a). This suggests
419	that CD14 cells in S3-HFD mice might enhance metabolic endotoxemia. It has also been
420	shown that bacteria belonging to <i>Clostridiales</i> can induce Treg differentiation (Atarashi
421	et al., 2011; Furusawa et al., 2013). We showed that SOCS3KO mice on an HFD
422	displayed a slight decrease in <i>Clostridiales</i> in contrast to WT mice on an HFD. Thus,
423	dysbiosis could affect the pro-inflammatory environment in SOCS3KO mice on an HFD.
424	In conclusion, SOCS3 is strongly associated with excess myeloid hematopoiesis in the
425	context of the HFD. SOCS3 deficiency may cause resistance to diet-induced obesity, but
426	also causes severe systemic inflammation accompanying HFD-induced microbiota

427 alteration. Therefore, although SOCS3 could be a therapeutic target for obesity, potent

428 inflammatory adverse reaction should be taken into account.

429

430 Limitations of the study

This study shows that systemic deletion of SOCS3 results in excessive myeloid
hematopoiesis and hepatic inflammation, which are dependent on gut microbiota.
Moreover, SOCS3 crucially regulates intestinal dysbiosis-mediated inflammation with
high fat diet. However, it is currently unclear how a high-fat diet can alter the composition
of the gut microbiota. Similarly, future studies will further define the specific roles of
SOCS3 in regulation of the gut microbiota and systemic inflammation in this context.

438 ACKNOWLEDGMENTS

439 The authors acknowledge Ms. Junko Kumagai and Mr. Kenji Oyachi (Histopathology

440 Core Facility, Faculty of Medicine, Niigata University, Niigata, Japan) for special

- technical support in pathological analysis. This study was supported by a Grant-in-Aid
- 442 for Scientific Research (C) (19K11716) to TU, (16K09168) to MM, (21K11671) to HI, a

443	Grant-in-Aid for Young Scientists (B) (15K19547) to TU from the Ministry of Education,
444	Culture, Sports, Science and Technology, Japan and the Japanese society of hematology
445	research grant (2017-2020) to TU. WSA was supported by grants from the Australian
446	National Health and Medical Research Council (1058344, 1173342, 1113577).
447	
448	AUTHOR CONTRIBUTIONS
449	KC and TU designed all studies and wrote the manuscript. KC, TU, and HI performed
450	most of the experiments. ST, TS, TK, and MM performed FACS analyses. HI and MA
451	performed hepatic lipid analyses. KC, HI, RO, and YA performed pathological analyses.
452	IS analyzed physiological analyses data. TU and HH provided advice regarding
453	granulopoiesis. TU and SN analyzed bioinformatic data. TU, MW, YF, YN, HH, and WA
454	reviewed and edited the paper. TU, YN, WA, HS, and HS provided information regarding
455	all experiments.

456

457 DECLARATION OF INTERESTS

458 The authors declare no competing interests.

29

Journal

461 Figure Legends

462	Fig 1. Effects of diet and genotype on body weight, liver fat, and glucose tolerance.
463	(A) Weekly body weight gain. Mean \pm SD is shown with **** $p < 0.0001$ and ** $p < 0.01$
464	for the comparison of WT with HFD and S3 with HFD, or WT with chow and SOCS3KO
465	with chow at 28 weeks after birth, using the one-way ANOVA with Tukey's multiple
466	comparisons test, $n = 3-22/group$. (B, C) Total daily food intake, total daily caloric intake,
467	and lipid intake at 15 weeks of age, $n = 6-9/\text{group}$. Mean \pm SD is shown with
468	**** <i>p</i> <0.0001, *** <i>p</i> <0.001, ** <i>p</i> <0.01, and * <i>p</i> <0.05. (D) Liver pathology (hematoxylin
469	and eosin staining). (E) Hepatic total cholesterol and triglyceride levels on day 30 after
470	tamoxifen treatment, n = 5/group. Mean \pm SD is shown with ** p <0.01, and * p <0.05. Bar
471	= 100 μ m. (F, G) Total distances and total movement duration in open field tests at 30
472	days after tamoxifen administration, $n = 4-6/group$. (H) Number of rotations with running
473	wheel system at 30 days after tamoxifen administration, $n = 3-7/group$. (I) Respiratory
474	exchange ratio at 30 days after tamoxifen administration, $n = 3-5/group$. Mean \pm SD is
475	shown with **** p <0.0001, ** p <0.01, and * p <0.05 (J) Casual blood glucose on day 14
476	after tamoxifen administration (left, n = 5–6/group). Mean \pm SD is shown with $*p<0.05$

477	for comparison. (K) Insulin tolerance test on day 14 after tamoxifen administration (right,
478	n = 5–6/group). # p<0.05 (WT-HFD vs. S3-chow), Ψ p<0.05 (WT-HFD vs. WT-chow)
479	and $p < 0.01$ (WT-HFD vs. S3-chow), $\theta p < 0.05$ (WT-HFD vs. WT-chow and S3-chow).
480	(L) Serum leptin level at 30 days after tamoxifen administration. $n = 9-12/group$. Mean
481	\pm SD is shown with *** p <0.001. ND: normal diet, HFD: high fat diet, S3-HFD: SOCS3-
482	deficient with HFD, S3-chow: SOCS3-deficient with chow, WT-HFD: SOCS3 ^{fl/fl} with
483	HFD, WT-chow: SOCS3 ^{fl/fl} with chow.
484	

Fig 2. SOCS3KO exacerbates rapid granulopoiesis with HFD in the blood and spleen. 485 486 (A) Disease onset in mice with systemic SOCS3KO. ****p<0.0001, ***p<0.001, and **p<0.01 for the pairwise comparison of survival of S3-HFD (\bigcirc) and S3-chow (\bigcirc) or 487 488 other control genotypes. Mantel-Cox Log-rank test, n = 15-28/group. (B) Peripheral 489 blood counts and (C) spleen weight on day 30 following tamoxifen or vehicle 490 administration, n = 6-15. (D) Spleen weight and (E) peripheral blood cell counts on day 491 65 following tamoxifen or vehicle administration, n = 4-13/group. (F) Images of representative live WT-HFD and S3-HFD mice on day 30 following tamoxifen or vehicle 492

493	administration. (G) Pathology in SOCS3-deficient mice on HFD. S3-HFD mice started
494	to show liver inflammation on day 30 after tamoxifen administration (left column), but
495	infiltration of inflammatory cells was not observed in fat, lung, and kidney. Moribund
496	S3-HFD mice showed obvious infiltration of inflammatory cells (right column). Arrows
497	indicate infiltrating inflammatory cells. Mean \pm SD is shown with $*p<0.05$, $**p<0.01$,
498	*** <i>p</i> <0.001, and **** <i>p</i> <0.0001 for comparison.
499	
500	Fig 3. Characteristics of granulocytes and their maturation in the spleen.
501	(A) Spleen pathology (hematoxylin and eosin stain) from mice with HFD on day 30 after
502	tamoxifen treatment. Bar = 100 μ m. n = 8–12/group. (B) Granulocytes (CD11b ⁺ Gr-1 ⁺
502 503	tamoxifen treatment. Bar = 100 μ m. n = 8–12/group. (B) Granulocytes (CD11b ⁺ Gr-1 ⁺ cells) in the spleen on day 30 following tamoxifen or vehicle treatment, n = 3–7/group.
502 503 504	tamoxifen treatment. Bar = 100 μ m. n = 8–12/group. (B) Granulocytes (CD11b ⁺ Gr-1 ⁺ cells) in the spleen on day 30 following tamoxifen or vehicle treatment, n = 3–7/group. (C) After flow cytometric analysis, granulocyte differentiation and maturation stages
502 503 504 505	tamoxifen treatment. Bar = 100 μ m. n = 8–12/group. (B) Granulocytes (CD11b ⁺ Gr-1 ⁺ cells) in the spleen on day 30 following tamoxifen or vehicle treatment, n = 3–7/group. (C) After flow cytometric analysis, granulocyte differentiation and maturation stages were classified from gates #1 to #5. (D) Flow cytometric analysis of granulopoiesis from
502 503 504 505 506	tamoxifen treatment. Bar = 100 μ m. n = 8–12/group. (B) Granulocytes (CD11b ⁺ Gr-1 ⁺ cells) in the spleen on day 30 following tamoxifen or vehicle treatment, n = 3–7/group. (C) After flow cytometric analysis, granulocyte differentiation and maturation stages were classified from gates #1 to #5. (D) Flow cytometric analysis of granulopoiesis from immature to mature stages in the spleen on day 30 after tamoxifen treatment. n = 5–

508	6, $n = 3/\text{group}$.	Mean	\pm SD	is	shown	with	* <i>p</i> <0.05,	** <i>p</i> <0.01,	*** <i>p</i> <0.001,	and
509	****p<0.0001 for	r compa	arison.							

511	Fig 4. Features of inflammation and infiltration markers of myeloid series cells in
512	the liver. (A) Photomicrograph showing inflammation and mixed hematopoietic
513	infiltration of the liver in S3-HFD mice on day 30 following tamoxifen administration.
514	Bar = $100\mu m$. (B) Biochemical examinations on day 30 following tamoxifen
515	administration. n = 6–9/group. (C) Inflammation markers: <i>TNF</i> - α and <i>IL</i> -6 mRNA levels;
516	Myeloid infiltration markers: CD11b, F4/80, Ly6G, and CD68 mRNA levels. $n = 3-$
517	6/group. (D) Inflammasome markers: <i>IL-1β</i> and <i>Caspase-1</i> mRNA levels on day 30
518	following tamoxifen or vehicle administration. $n = 3-4/group$. (E) Inflammasome
519	markers on day 65 following tamoxifen or vehicle administration. $n = 4-5/group$. Mean
520	\pm SD is shown with * <i>p</i> <0.05, ** <i>p</i> <0.01, *** <i>p</i> <0.001, and **** <i>p</i> <0.0001 for comparison,
521	using the one-way ANOVA with Tukey's multiple comparisons test.
522	

524	(A) Disease onset in mice with systemic SOCS3KO. **** p <0.0001 for pairwise
525	comparison of survival of S3-HFD (\bigcirc), LysM-HFD (\bigcirc), and LysM-chow (\blacklozenge). Mantel-
526	Cox Log-rank test, $n = 12-18$ mice/group. (B) Weekly body weight gain. Mean \pm SD is
527	shown with $****p < 0.0001$ for comparison of LysM-chow and LysM-HFD, or WT with
528	chow and WT with HFD at 28 weeks after birth, using the one-way ANOVA with
529	Tukey's multiple comparisons test, $n = 13-26/group$. (C) Liver fat pathology
530	(hematoxylin and eosin staining), (D) hepatic total cholesterol and triglyceride levels in
531	LysM-SOCS3KO mice at 12 weeks of age, $n = 5/group$. (E) Number of neutrophils
532	in the blood at 30 days after HFD or chow intake, $n = 7-11$ in each group. (F) Spleen
533	weight, $n = 5-9$ in each group. (G) Liver fat pathology (hematoxylin and eosin staining),
534	(H) hepatic total cholesterol and triglyceride levels in Vav-SOCS3KO mice at 12 weeks
535	old, n = 5 in each group. Mean \pm SD is shown with ** <i>p</i> <0.01, and * <i>p</i> <0.05. Bar = 100 μ m.
536	(I) Numbers of neutrophils in the blood at 30 days in mice with hematopoietic SOCS3KO
537	after HFD or chow intake, $n = 3-12/group$. (J) Spleen weight, $n = 3-12$ in each group.
538	(K) Percentage of each fraction by flow cytometric analysis of murine granulopoiesis in
539	the spleen at 30 days after tamoxifen administration. Mean \pm SD is shown with * <i>p</i> <0.05

540	and $**p<0.01$ for comparison. LysM: mature myeloid-specific SOCS3KO mice, Vav:
541	hematopoietic specific KO mice.
542	
543	Fig 6. Effects of orally administered antibiotics for intestinal tract microbiota
544	depletion.
545	Cocktails containing four antibiotics (Abx) were administered from 4 weeks of age. (A)
546	The results of the principal coordinate analysis and (B) relative mean abundance of the
547	operative taxonomic units (OTUs) in the fecal matter at the order level. Proportions of
548	the first (PCoA1) and second (PCoA2) components are shown ($n = 3/group$). Four Abx-
549	treated (WT-chow, WT-HFD, S3-chow, and S3-HFD) and four dots overlap at one point.
550	(C) Disease onset in mice with SOCS3KO on HFD with four Abx (S3-HFD + 4Abx).
551	Mantel-Cox Log-rank test, $n = 7-18$ mice/group. (D) Number of neutrophils in the blood
552	(n = 4-14), (E) spleen weight (n = 4-12) and (F) number of granulocytes (CD11b ⁺ Gr-1 ⁺
553	cells) in the spleen (n = $3-7$) on day 30, following tamoxifen or vehicle treatment with or
554	without 4Abx. (G) Percentage of each murine granulopoiesis fraction, by flow cytometric
555	analysis, in the spleen at 30 days after tamoxifen administration with or without 4Abx. n

556	= 4–8/group. Mean ± SD is shown with $p < 0.05$, $p < 0.01$, $p < 0.001$, and
557	**** $p < 0.0001$ for comparison of S3-HFD with all phenotypes. (H) gut inflammation:
558	<i>TNF-</i> α mRNA concentration in the colon on day 30 following tamoxifen administration
559	with or without 4Abx. n = 3–4/group. Mean \pm SD is shown with ** p <0.05, ** p <0.01,
560	*** p <0.001, and **** p <0.0001 for comparison, One-way ANOVA with Tukey's
561	multiple comparisons test. Four Abx; ampicillin, neomycin, metronidazole, and
562	vancomycin.
563	
564	Fig 7. Effects of intestinal tract microbiota depletion on myeloid hematopoiesis.
564 565	Fig 7. Effects of intestinal tract microbiota depletion on myeloid hematopoiesis.(A) Concentrations of cytokines/chemokines in the serum on day 30 following tamoxifen
564 565 566	Fig 7. Effects of intestinal tract microbiota depletion on myeloid hematopoiesis. (A) Concentrations of cytokines/chemokines in the serum on day 30 following tamoxifen administration with or without 4Abx. $n = 6-12$ /group. (B) Absolute numbers of BM cells,
564 565 566 567	Fig 7. Effects of intestinal tract microbiota depletion on myeloid hematopoiesis. (A) Concentrations of cytokines/chemokines in the serum on day 30 following tamoxifen administration with or without 4Abx. $n = 6-12$ /group. (B) Absolute numbers of BM cells, Lineage ⁻ Sca-1 ⁺ c-Kit ⁺ (LSK) cells, CD34 ⁻ LSK cells, CMP cells (Lineage ⁻ Sca-1 ⁻ c-
564 565 566 567 568	Fig 7. Effects of intestinal tract microbiota depletion on myeloid hematopoiesis. (A) Concentrations of cytokines/chemokines in the serum on day 30 following tamoxifen administration with or without 4Abx. n = 6–12/group. (B) Absolute numbers of BM cells, Lineage ⁻ Sca-1 ⁺ c-Kit ⁺ (LSK) cells, CD34 ⁻ LSK cells, CMP cells (Lineage ⁻ Sca-1 ⁻ c- Kit ⁺ CD16/32 ^{Low} CD34 ⁺), GMP cells (Lineage ⁻ Sca-1 ⁻ c-Kit ⁺ CD16/32 ^{High} CD34 ⁺), MEP
564 565 566 567 568 569	Fig 7. Effects of intestinal tract microbiota depletion on myeloid hematopoiesis. (A) Concentrations of cytokines/chemokines in the serum on day 30 following tamoxifen administration with or without 4Abx. n = 6–12/group. (B) Absolute numbers of BM cells, Lineage ⁻ Sca ⁻¹⁺ c-Kit ⁺ (LSK) cells, CD34 ⁻ LSK cells, CMP cells (Lineage ⁻ Sca ⁻¹⁻ c- Kit ⁺ CD16/32 ^{Low} CD34 ⁺), GMP cells (Lineage ⁻ Sca ⁻¹⁻ c-Kit ⁺ CD16/32 ^{High} CD34 ⁺), MEP cells (Lineage ⁻ Sca ⁻¹⁻ c-Kit ⁺ CD16/32 ⁻ CD34 ⁻) in the femures on day 30 following
564 565 566 567 568 569 570	Fig 7. Effects of intestinal tract microbiota depletion on myeloid hematopoiesis. (A) Concentrations of cytokines/chemokines in the serum on day 30 following tamoxifen administration with or without 4Abx. n = 6–12/group. (B) Absolute numbers of BM cells, Lineage ⁻ Sca-1 ⁺ c-Kit ⁺ (LSK) cells, CD34 ⁻ LSK cells, CMP cells (Lineage ⁻ Sca-1 ⁻ c- Kit ⁺ CD16/32 ^{Low} CD34 ⁺), GMP cells (Lineage ⁻ Sca-1 ⁻ c-Kit ⁺ CD16/32 ^{High} CD34 ⁺), MEP cells (Lineage ⁻ Sca-1 ⁻ c-Kit ⁺ CD16/32 ⁻ CD34 ⁻) in the femures on day 30 following tamoxifen administration with or without 4Abx. n = 6–11/group. Mean ± SD is shown

572 with Tukey's multiple comparisons test.

573

574

575 STAR★METHODS

- 576 Detailed methods are provided in the online version of this paper and include the
- 577 following:
- 578 KEY RESOURCES TABLE
- **579** RESOURCE AVAILABILITY
- 580 O Lead Contact
- 581 O Materials Availability
- 582 O Data and Code Availability
- **583** EXPERIMENTAL MODEL AND SUBJECT DETAILS
- 584 O Animals and ethics statement
- 585 METHOD DETAILS
- 586 O Tamoxifen treatment and genotyping
- 587 O High fat diet
- 588 O Antibiotics treatment
- 589 O Blood glucose measurement
- 590 O Hepatic lipid analysis

Hematology and flow cytometry 591 Ο 0 Colony assay 592 593 **RT-PCR** analysis Ο Cytokine Luminex assay 594 Ο 595 Physiological analyses Ο 596 Bacterial 16S rRNA amplicon sequencing and analysis Ο **QUANTIFICATION AND STATISTICAL ANALYSIS** 597

598

599

600	STAR ★ METHODS

601 KEY RESOURCES TABLE

602

603 **RESOURCE AVAILABILITY**

- 604 Lead Contact
- 605 Further information and requests for resources and reagents should be directed to and

606 will be fulfilled by the lead contact, Takashi Ushiki (tushiki@med.niigata-u.ac.jp).

607 Materials Availability

608 This study did not generate new unique reagents.

609 Data and Code Availability

- 610 16S rRNA amplicon sequencing was performed at Techno Suruga Laboratory, Inc.
- 611 (Shizuoka, Japan). Bacterial identification from sequences was performed using the
- 612 TechnoSuruga Lab Microbial Identification database DB-BA 13.0 (TechnoSuruga

613 Laboratory).

- 614 Microbiome sequencing data have been deposited at the DDBJ Sequence Read
- 615 Archive (http://trace.ddbj.nig.ac.jp/dra/) under accession number DRA012691.

• All original code is available in this paper's supplemental information.

• Any additional information requires to reanalyze the data reported in this paper is

618 available from the lead contact upon request.

619

620 EXPERIMENTAL MODEL AND SUBJECT DETAILS

621 Animals and ethics statement

622 SOCS3 floxed ($Socs3^{fl}$), Rosa26-CreERT2, LysM-Cre, and Vav-Cre mice have been

described previously (Clausen et al., 1999; Joseph et al., 2013; Kiu et al., 2007; Seibler

624 et al., 2003); they were maintained in a C57BL/6 background. In experimental mice, the

625 Rosa26-CreERT2 and Vav-Cre alleles were heterozygous and LysM-Cre was

626 homozygous. 4 weeks old male and female mice were randomly assigned to experiments

627 for 8-24 weeks. All animal experiments in this study were performed with the approval

- 628 of the Animal Ethics Committees of Niigata University (SA00520, SD01054) or Walter
- and Eliza Hall Institute of Medical Research Animal Ethics Committee (2011.031,

630 2014.029).

631

632 METHOD DETAILS

633 Tamoxifen treatment and genotyping

- Tamoxifen (4.2 mg for two doses after 4 days) was administered by oral gavage at 8
- 635 weeks of age, as previously described (Anastassiadis et al., 2010). PCR genotyping was
- 636 performed using the following primers to distinguish the $Socs3^+$ (613bp), $Socs3^{fl}$ (740bp),
- 637 and Socs3⁻ (288bp) alleles: 5'-ACGTCTGTGATGCTTTGCTG-3', 5'-

638 TCTTGTGTCTCTCCCCATCC-3', and 5'-TGACGCTCAACGTGAAGAAG-3'.

639 High fat diet

- 640 Mice of all genotypes were fed an HFD (D12492; 60 kcal % fat, Research Diet Inc., New
- 641 Brunswick, NJ, USA) or control chow (D12450J; 10 kcal % fat, Research diet, Inc.) from
- 642 4 weeks of age to the end of the observation period.

643 Antibiotics treatment

- 644 For intestinal tract microbiota depletion, mice were administered the following cocktail
- of four antibiotics (4Abx) in their drinking water from 4 weeks of age: ampicillin (Sigma-
- 646 Aldrich, Merck KGaA, Darmstadt, Germany) 1 g/L, neomycin (Sigma-Aldrich) 1 g/L,

647	metronidazole (Sigma-Aldrich) 1 g/L, and vancomycin (Nacalai Tesque, Inc., Kyoto,
648	Japan) 500 mg/L. The 4Abx treatment was continued during the observation period.
649	Blood glucose measurement
650	Serum blood glucose was measured using blood collected from the retro-orbital plexus
651	into Microtainer [®] tubes (BD Biosciences, Bedford, MA, USA) using Bio Majesty 6500
652	(JEOL Ltd., Tokyo, Japan). For the insulin tolerance test, 10-week-old mice were
653	administered intraperitoneal insulin injections (0.375 U/kg body weight) following 5.5 h
654	of fasting, blood was collected from the tail, and the glucose level was measured using a
655	blood glucose meter.

656 Hepatic lipid analysis

657 Total lipids were extracted from the liver as previously described (Kuba et al., 2015).

658 Hepatic T-Chol and TG were measured using the Cholesterol E-test and Triglyceride E-

659 test (Fujifilm Wako Pure Chemical, Osaka, Japan).

660 Hematology and flow cytometry

- 661 Cells in blood collected from the retro-orbital plexus into Microtainer® tubes containing
- 662 EDTA (BD biosciences, Bedford, MA, USA) were counted using Sysmex pocH-

100iVDiff (Sysmex corporation, Kobe, Japan). Flow cytometric analysis was performed

664	using CytoFLEX (Beckman coulter, NJ, USA). Antibodies were sourced from Biolegend
665	(CA, USA): CD3 (17A2), CD4 (GK1.5), CD8 (53-6.7), Gr-1 (RB6-8C5), CD11b
666	(M1/70), CD34 (RAM34), c-Kit (ACK2), Ly6G (1A8), CD19 (6D5), B220 (RA3-6B2),
667	and TER119 (TER-119). LSK, CMP, GMP and megakaryocyte-erythroid progenitor
668	(MEP) cells were counted as previously described (Katagiri et al., 2021). Granulocyte
669	maturation was assessed based on the expression of c-kit and Ly6G as previously
670	described (Fig S6) (Satake et al., 2012).

671 Colony assay

663

- 672 BM cells (2.0×10^4) were harvested from 8–10-week old mice and cultured in MethoCult
- 673 M3534 (Stem Cell Technologies, Vancouver, Canada) according to the manufacturer's
- 674 instructions. Total number of colonies, colony forming unit-granulocyte/macrophage
- 675 (CFU-GM, CFU-G, and CFU-M), was scored after 7 days of culture.

676 **RT-PCR analysis**

- 677 The total RNA was isolated from the liver and colon using the RNeasy Mini kit (Qiagen,
- 678 Hilden, Germany) according to the manufacturer's instructions. Regarding liver samples,

679	RNA was collected without systemic perfusion. Reverse transcription of RNA to cDNA
680	was performed using the SuperScript Reverse Transcriptase III kit (Thermo Fisher
681	Scientific, MA, USA) with random hexamer primers. Each cDNA sample was analyzed
682	using quantitative PCR with the StepOnePlus [™] Real-Time PCR System (Thermo
683	Fisher Scientific). Gene mRNA levels were determined by RT-qPCR using TaqMan
684	probes (Thermo Fisher Scientific) (Table S3). Samples were run in triplicate and relative
685	fold-changes in mRNA levels were calculated using the $2^{-\Delta\Delta Ct}$ method.

686 Cytokine Luminex assay

687 The serum concentrations of 20 cytokines (GM-CSF, CXCL1, TNFα, CCL2, IL-1β,

- 688 S100A8, S100A9, IL-6, IL-10, IL-13, IL-17A, IFNγ, IL-3, Leptin, CCL5, G-CSF, IL-33,
- 689 M-CSF, CCL3, and CCL4) were determined using the Luminex100/200 System
- 690 (Luminex Corporation, TX, USA). Data were analyzed using MILLIPLEX Analyst 5.1
- 691 (EMD Millipore Corporation, MA, USA).

692 Physiological analyses

- 693 Mice were individually housed to monitor body weight and food intake. Oxygen
- 694 consumption was measured at 30 days after tamoxifen administration using an O_2/CO_2

695	metabolic measurement system (Columbus Instruments, OH, USA), according to the
696	manufacturer's instruction. Spontaneous activity levels were measured at 30 days after
697	tamoxifen administration using the running wheel system and an open field test. Using
698	the Igloo Fast-Tracs Running Wheel system MK-713 (Muromachi Kikai, Tokyo, Japan),
699	mice were housed individually in a cage containing this system, and the data were
700	collected over 24 h using CompACT AMS Data Collection Software version 3.84
701	(Muromachi Kikai) following the training period for 12–16 h. In the open field test, each
702	mouse was placed in the corner of an enclosed platform (40 cm \times 40 cm \times 30 cm), and
703	the total distance traveled, time traveled, and time spent in the central area (20 cm \times 20
704	cm) was recorded for 10 min.
705	Bacterial 16S rRNA amplicon sequencing and analysis
706	Fecal samples of mice at 30 days post-tamoxifen treatment were collected. 16S rRNA
707	amplicon sequencing was performed at Techno Suruga Laboratory, Inc. (Shizuoka,
708	Japan). In brief, bacterial genomic DNA was isolated as previously described (Takahashi
709	et al., 2014). The V3-V4 hypervariable regions of the 16S rRNA were amplified from

710 microbial genomic DNA using PCR with the bacterial universal primers (341F/R806)

711	(Caporaso et al., 2011; Muyzer et al., 1993) and the dual-index method. All amplicons
712	were sequenced on a MiSeq (Illumina, USA). The obtained read sequences on both sides
713	were joined using fastq_join. After extracting a sequence with a QV of more than 20 with
714	99% or more bases in the sequence, the chimeric sequence was removed using
715	USEARCH. Bacterial identification from sequences was performed using the
716	TechnoSuruga Lab Microbial Identification database DB-BA 13.0 (TechnoSuruga
717	Laboratory) and the results of RDP MultiClassifier ver.2.11 using Metagenome@KIN
718	analysis software (World Fusion, Japan). Comparative analyses were also performed
719	using Metagenome@KIN analysis software. In addition, we performed principal
720	coordinate analysis (PCoA). The Euclidean distance was calculated using genus relative
721	abundance in each sample. The PCoA was performed using the pcoa function in the R
722	"ape" library (Paradis and Schliep, 2019).

723

724 QUANTIFICATION AND STATISTICAL ANALYSIS

725 Unless otherwise stated, data were analyzed using the analysis of variance (ANOVA)
726 corrected for multiple testing. *P*-values for specific comparisons were determined using

727 GraphPad Prism (GraphPad Software, CA, USA). Further analyses are indicated in the

figure legends. *P*<0.05 was considered significant.

729

730

Journal Prevention

731 REFERENCES

- 732 Anastassiadis, K., Glaser, S., Kranz, A., Berhardt, K., and Stewart, A.F.
- 733 (2010). A practical summary of site-specific recombination, conditional
- 734 mutagenesis, and tamoxifen induction of CreERT2. Methods Enzymol 477,
 735 109-123.
- 736 Atarashi, K., Tanoue, T., Shima, T., Imaoka, A., Kuwahara, T., Momose, Y.,
- 737 Cheng, G., Yamasaki, S., Saito, T., Ohba, Y., et al. (2011). Induction of colonic
- regulatory T cells by indigenous Clostridium species. Science *331*, 337-341.
- 739 Cani, P.D., Amar, J., Iglesias, M.A., Poggi, M., Knauf, C., Bastelica, D.,
- 740 Neyrinck, A.M., Fava, F., Tuohy, K.M., Chabo, C., et al. (2007a). Metabolic
- real endotoxemia initiates obesity and insulin resistance. Diabetes *56*, 1761-1772.
- 742 Cani, P.D., Neyrinck, A.M., Fava, F., Knauf, C., Burcelin, R.G., Tuohy, K.M.,
- 743 Gibson, G.R., and Delzenne, N.M. (2007b). Selective increases of
- 744 bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in
- 745 mice through a mechanism associated with endotoxaemia. Diabetologia 50,
- **746** 2374-2383.

- 747 Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A.,
- 748 Turnbaugh, P.J., Fierer, N., and Knight, R. (2011). Global patterns of 16S
- rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad
- 750 Sci U S A *108 Suppl 1*, 4516-4522.
- 751 Chen, Z., Laurence, A., Kanno, Y., Pacher-Zavisin, M., Zhu, B.M., Tato, C.,
- 752 Yoshimura, A., Hennighausen, L., and O'Shea, J.J. (2006). Selective
- 753 regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc
- 754 Natl Acad Sci U S A *103*, 8137-8142.
- 755 Clausen, B.E., Burkhardt, C., Reith, W., Renkawitz, R., and Forster, I. (1999).
- 756 Conditional gene targeting in macrophages and granulocytes using LysMcre
- 757 mice. Transgenic Res *8*, 265-277.
- 758 Cornish, A.L., Davey, G.M., Metcalf, D., Purton, J.F., Corbin, J.E.,
- 759 Greenhalgh, C.J., Darwiche, R., Wu, L., Nicola, N.A., Godfrey, D.I., et al.
- 760 (2003). Suppressor of cytokine signaling-1 has IFN-gamma-independent
- 761 actions in T cell homeostasis. Journal of immunology (Baltimore, Md. : 1950)
- 762 *170*, 878-886.

- 763 Croker, B.A., Kiu, H., Pellegrini, M., Toe, J., Preston, S., Metcalf, D.,
- 764 O'Donnell, J.A., Cengia, L.H., McArthur, K., Nicola, N.A., et al. (2012). IL-6
- 765 promotes acute and chronic inflammatory disease in the absence of SOCS3.
- 766 Immunol Cell Biol *90*, 124-129.
- 767 Croker, B.A., Krebs, D.L., Zhang, J.G., Wormald, S., Willson, T.A., Stanley,
- 768 E.G., Robb, L., Greenhalgh, C.J., Forster, I., Clausen, B.E., et al. (2003).
- 769 SOCS3 negatively regulates IL-6 signaling in vivo. Nat Immunol 4, 540-545.
- 770 Croker, B.A., Metcalf, D., Robb, L., Wei, W., Mifsud, S., DiRago, L., Cluse, L.A.,
- 771 Sutherland, K.D., Hartley, L., Williams, E., et al. (2004). SOCS3 is a critical
- 772 physiological negative regulator of G-CSF signaling and emergency
- 773 granulopoiesis. Immunity 20, 153-165.
- 774 Davey, G.M., Starr, R., Cornish, A.L., Burghardt, J.T., Alexander, W.S.,
- 775 Carbone, F.R., Surh, C.D., and Heath, W.R. (2005). SOCS-1 regulates IL-15-
- driven homeostatic proliferation of antigen-naive CD8 T cells, limiting their
- autoimmune potential. J Exp Med 202, 1099-1108.
- 778 Duan, Y., Zeng, L., Zheng, C., Song, B., Li, F., Kong, X., and Xu, K. (2018).

- 779 Inflammatory Links Between High Fat Diets and Diseases. Front Immunol780 9, 2649.
- 781 Esplugues, E., Huber, S., Gagliani, N., Hauser, A.E., Town, T., Wan, Y.Y.,
- 782 O'Connor, W., Jr., Rongvaux, A., Van Rooijen, N., Haberman, A.M., et al.
- 783 (2011). Control of TH17 cells occurs in the small intestine. Nature 475, 514-
- **784** 518.
- 785 Furusawa, Y., Obata, Y., Fukuda, S., Endo, T.A., Nakato, G., Takahashi, D.,
- 786 Nakanishi, Y., Uetake, C., Kato, K., Kato, T., et al. (2013). Commensal
- 787 microbe-derived butyrate induces the differentiation of colonic regulatory T
- 788 cells. Nature *504*, 446-450.
- 789 Gromovsky, A.D., Schugar, R.C., Brown, A.L., Helsley, R.N., Burrows, A.C.,
- 790 Ferguson, D., Zhang, R., Sansbury, B.E., Lee, R.G., Morton, R.E., et al. (2018).
- 791 Delta-5 Fatty Acid Desaturase FADS1 Impacts Metabolic Disease by
- 792 Balancing Proinflammatory and Proresolving Lipid Mediators. Arterioscler
- 793 Thromb Vasc Biol *38*, 218-231.
- 794 Hirakata, S., Aoki, H., Ohno-Urabe, S., Nishihara, M., Furusho, A., Nishida,

- 795 N., Ito, S., Hayashi, M., Yasukawa, H., Imaizumi, T., et al. (2020). Genetic
- 796 Deletion of Socs3 in Smooth Muscle Cells Ameliorates Aortic Dissection in
- 797 Mice. JACC Basic Transl Sci 5, 126-144.
- 798 Howard, J.K., Cave, B.J., Oksanen, L.J., Tzameli, I., Bjorbaek, C., and Flier,
- 799 J.S. (2004). Enhanced leptin sensitivity and attenuation of diet-induced
- 800 obesity in mice with haploinsufficiency of Socs3. Nat Med *10*, 734-738.
- 801 Inagaki-Ohara, K., Mayuzumi, H., Kato, S., Minokoshi, Y., Otsubo, T.,
- 802 Kawamura, Y.I., Dohi, T., Matsuzaki, G., and Yoshimura, A. (2014).
- 803 Enhancement of leptin receptor signaling by SOCS3 deficiency induces
- 804 development of gastric tumors in mice. Oncogene *33*, 74-84.
- 805 Inoue, H., Ogawa, W., Asakawa, A., Okamoto, Y., Nishizawa, A., Matsumoto,
- 806 M., Teshigawara, K., Matsuki, Y., Watanabe, E., Hiramatsu, R., et al. (2006).
- 807 Role of hepatic STAT3 in brain-insulin action on hepatic glucose production.
- 808 Cell Metab *3*, 267-275.
- 809 Jorgensen, S.B., O'Neill, H.M., Sylow, L., Honeyman, J., Hewitt, K.A.,
- 810 Palanivel, R., Fullerton, M.D., Oberg, L., Balendran, A., Galic, S., et al. (2013).

- 811 Deletion of skeletal muscle SOCS3 prevents insulin resistance in obesity.
- 812 Diabetes *62*, 56-64.
- 813 Joseph, C., Quach, J.M., Walkley, C.R., Lane, S.W., Lo Celso, C., and Purton,
- 814 L.E. (2013). Deciphering hematopoietic stem cells in their niches: a critical
- 815 appraisal of genetic models, lineage tracing, and imaging strategies. Cell
- 816 Stem Cell 13, 520-533.
- 817 Katagiri, T., Uemura, S., Ushiki, T., Nakajima-Takagi, Y., Oshima, M.,
- 818 Mikami, T., Kawasaki, A., Ishiguro, H., Tanaka, T., Sone, H., et al. (2021).
- 819 Distinct effects of chondroitin sulfate on hematopoietic cells and the stromal
- 820 microenvironment in bone marrow hematopoiesis. Exp Hematol 96, 52-62.e55.
- 821 Kiu, H., Hilton, D.J., Nicola, N.A., Ernst, M., Marquez, R., Alexander, W.S.,
- 822 Roberts, A.W., and McManus, E.J. (2007). Mechanism of crosstalk inhibition
- 823 of IL-6 signaling in response to LPS and TNFalpha. Growth Factors 25, 319-
- **824** 328.
- 825 Kroy, D.C., Beraza, N., Tschaharganeh, D.F., Sander, L.E., Erschfeld, S.,
- 826 Giebeler, A., Liedtke, C., Wasmuth, H.E., Trautwein, C., and Streetz, K.L.

827	(2010). Lack of interleukin-6/glycoprotein 130/signal transducers and
828	activators of transcription-3 signaling in hepatocytes predisposes to liver
829	steatosis and injury in mice. Hepatology <i>51</i> , 463-473.
830	Kuba, M., Matsuzaka, T., Matsumori, R., Saito, R., Kaga, N., Taka, H.,
831	Ikehata, K., Okada, N., Kikuchi, T., Ohno, H., et al. (2015). Absence of Elovl6
832	attenuates steatohepatitis but promotes gallstone formation in a lithogenic
833	diet-fed Ldlr(-/-) mouse model. Sci Rep <i>5</i> , 17604.
834	Lesina, M., Kurkowski, M.U., Ludes, K., Rose-John, S., Treiber, M., Klöppel,
835	G., Yoshimura, A., Reindl, W., Sipos, B., Akira, S., et al. (2011). Stat3/Socs3
836	activation by IL-6 transsignaling promotes progression of pancreatic
837	intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell
838	<i>19</i> , 456-469.

- 839 Liu, X., Miyazaki, M., Flowers, M.T., Sampath, H., Zhao, M., Chu, K., Paton,
- 840 C.M., Joo, D.S., and Ntambi, J.M. (2010). Loss of Stearoyl-CoA desaturase-1
- 841 attenuates adipocyte inflammation: effects of adipocyte-derived oleate.
- 842 Arterioscler Thromb Vasc Biol *30*, 31-38.

56

- 843 Luo, Y., Chen, G.L., Hannemann, N., Ipseiz, N., Kronke, G., Bauerle, T.,
- 844 Munos, L., Wirtz, S., Schett, G., and Bozec, A. (2015). Microbiota from Obese
- 845 Mice Regulate Hematopoietic Stem Cell Differentiation by Altering the Bone
- 846 Niche. Cell Metab 22, 886-894.
- 847 Mori, H., Hanada, R., Hanada, T., Aki, D., Mashima, R., Nishinakamura, H.,
- 848 Torisu, T., Chien, K.R., Yasukawa, H., and Yoshimura, A. (2004). Socs3
- 849 deficiency in the brain elevates leptin sensitivity and confers resistance to
- diet-induced obesity. Nat Med 10, 739-743.
- 851 Muyzer, G., de Waal, E.C., and Uitterlinden, A.G. (1993). Profiling of complex
- 852 microbial populations by denaturing gradient gel electrophoresis analysis of
- 853 polymerase chain reaction-amplified genes coding for 16S rRNA. Appl
- 854 Environ Microbiol *59*, 695-700.
- 855 Ohno-Urabe, S., Aoki, H., Nishihara, M., Furusho, A., Hirakata, S., Nishida,
- 856 N., Ito, S., Hayashi, M., Yasukawa, H., Imaizumi, T., et al. (2018). Role of
- 857 Macrophage Socs3 in the Pathogenesis of Aortic Dissection. J Am Heart Assoc
- 858 7.

- 859 Oishi, Y., Spann, N.J., Link, V.M., Muse, E.D., Strid, T., Edillor, C., Kolar,
- 860 M.J., Matsuzaka, T., Hayakawa, S., Tao, J., et al. (2017). SREBP1 Contributes
- to Resolution of Pro-inflammatory TLR4 Signaling by Reprogramming Fatty
- Acid Metabolism. Cell Metab 25, 412-427.
- 863 Paradis, E., and Schliep, K. (2019). ape 5.0: an environment for modern
- 864 phylogenetics and evolutionary analyses in R. Bioinformatics *35*, 526-528.
- 865 Qin, H., Wang, L., Feng, T., Elson, C.O., Niyongere, S.A., Lee, S.J., Reynolds,
- 866 S.L., Weaver, C.T., Roarty, K., Serra, R., et al. (2009). TGF-beta promotes
- 867 Th17 cell development through inhibition of SOCS3. J Immunol *183*, 97-105.
- 868 Roberts, A.W., Robb, L., Rakar, S., Hartley, L., Cluse, L., Nicola, N.A., Metcalf,
- 869 D., Hilton, D.J., and Alexander, W.S. (2001). Placental defects and embryonic
- 870 lethality in mice lacking suppressor of cytokine signaling 3. Proc Natl Acad
- 871 Sci U S A *98*, 9324-9329.
- 872 Sachithanandan, N., Fam, B.C., Fynch, S., Dzamko, N., Watt, M.J., Wormald,
- 873 S., Honeyman, J., Galic, S., Proietto, J., Andrikopoulos, S., et al. (2010). Liver-
- 874 specific suppressor of cytokine signaling-3 deletion in mice enhances hepatic

- 875 insulin sensitivity and lipogenesis resulting in fatty liver and obesity.
- 876 Hepatology *52*, 1632-1642.
- 877 Satake, S., Hirai, H., Hayashi, Y., Shime, N., Tamura, A., Yao, H., Yoshioka,
- 878 S., Miura, Y., Inaba, T., Fujita, N., et al. (2012). C/EBPbeta is involved in the
- 879 amplification of early granulocyte precursors during candidemia-induced
- 880 "emergency" granulopoiesis. J Immunol 189, 4546-4555.
- 881 Seibler, J., Zevnik, B., Kuter-Luks, B., Andreas, S., Kern, H., Hennek, T.,
- 882 Rode, A., Heimann, C., Faust, N., Kauselmann, G., et al. (2003). Rapid
- generation of inducible mouse mutants. Nucleic Acids Res 31, e12.
- 884 Swiderski, K., Thakur, S.S., Naim, T., Trieu, J., Chee, A., Stapleton, D.I.,
- 885 Koopman, R., and Lynch, G.S. (2016). Muscle-specific deletion of SOCS3
- increases the early inflammatory response but does not affect regeneration
- after myotoxic injury. Skelet Muscle 6, 36.
- 888 Tadokoro, Y., Hoshii, T., Yamazaki, S., Eto, K., Ema, H., Kobayashi, M., Ueno,
- 889 M., Ohta, K., Arai, Y., Hara, E., et al. (2018). Spred1 Safeguards
- 890 Hematopoietic Homeostasis against Diet-Induced Systemic Stress. Cell Stem

- 891 Cell 22, 713-725.e718.
- 892 Takahashi, S., Tomita, J., Nishioka, K., Hisada, T., and Nishijima, M. (2014).
- 893 Development of a prokaryotic universal primer for simultaneous analysis of
- 894 Bacteria and Archaea using next-generation sequencing. PLoS One 9,
 895 e105592.
- 896 Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., and
- 897 Gordon, J.I. (2006). An obesity-associated gut microbiome with increased
- 898 capacity for energy harvest. Nature 444, 1027-1031.
- 899 Ueki, K., Kondo, T., Tseng, Y.H., and Kahn, C.R. (2004). Central role of
- 900 suppressors of cytokine signaling proteins in hepatic steatosis, insulin
- 901 resistance, and the metabolic syndrome in the mouse. Proc Natl Acad Sci U S
- **902** A *101*, 10422-10427.
- 903 Ushiki, T., Huntington, N.D., Glaser, S.P., Kiu, H., Georgiou, A., Zhang, J.G.,
- 904 Metcalf, D., Nicola, N.A., Roberts, A.W., and Alexander, W.S. (2016). Rapid
- 905 Inflammation in Mice Lacking Both SOCS1 and SOCS3 in Hematopoietic
- 906 Cells. PLoS One *11*, e0162111.

Journal Prevention

Figure 2, CHO K, et al.

Figure 5, CHO K, et al.

Highlights

- SOCS3 suppresses severe systemic inflammation associated with high fat diet.
- SOCS3 deficiency on high fat diet accelerates excess myeloid hematopoiesis.
- SOCS3 controls gut dysbiosis on high fat diet.

Journal Pression

Figure S1. Experimental design for the generation of mice completely lacking SOCS3, Related to Figure 1.

High-fat diets were administered to the mice from 4 weeks of age. Tamoxifen and vehicle were administered at 8 weeks age for *in vivo* knockout of SOCS3.

Figure S2. SOCS3KO rate in the organs after tamoxifen treatment, Related to Figure 1 and Figure 2. To determine SOCS3KO efficiency in SOCS3^{fl/fl}Rosa26-CreERT2^{KI/+} mice, tamoxifen (4.2 mg for two consecutive days) was administered by oral gavage at 8 weeks of age. PCR genotyping was performed using the following primers to distinguish the *Socs3*⁺ (613bp), *Socs3*^{fl} (740bp), and *Socs3*⁻ (288bp) alleles: 5'-ACGTCTGTGATGCTTTGCTG-3', 5'-TCTTGTGTCTCTCCCCATCC-3', and 5'-TGACGCTCAACGTGAAGAAG-3'. Intracranial organs, such as brain, medulla, and eye did not achieve complete SOCS3 KO due to the blood–brain barrier; however, other trunk organs achieved efficient SOCS3 KO on day 7 after tamoxifen treatment. Representative image is shown. WT (+), wild-type allele; fl, floxed allele; Δ , recombined, deleted allele; MEF, mouse embryonic fibroblast.

Figure S3. Features of fatty acid metabolism markers in the liver, Related to Figure 4.

Fatty acid metabolism markers: *FADS1*, *SCD1*, *SREBP-1*, and *Elov16* on day 30 following tamoxifen or vehicle treatment. Mean \pm SD is shown with **p*<0.05, ***p*<0.01, ****p*<0.001, and *****p*<0.0001 for comparison, using the one-way ANOVA with Tukey's multiple comparisons test, n = 3–6/group.

Figure S4. SOCS3KO rate in the organs after tamoxifen treatment, Related to Figure 5.

SOCS3KO efficiency in *VavCre Socs3*^{*fl/fl}</sup> (<i>Vav*) and *LysMCre Socs3*^{*fl/fl*} (*LysM*) mice was analyzed at 12–15 weeks of age. Intraperitoneal cells include macrophages. PCR genotyping was performed using the following primers to distinguish the *Socs3*⁺ (613bp), *Socs3*^{*fl*} (740bp), and *Socs3*⁻ (288bp) alleles: 5'-ACGTCTGTGATGCTTTGCTG-3', 5'-TCTTGTGTCTCTCCCCATCC-3', and 5'-TGACGCTCAACGTGAAGAAG-3'. Representative image is shown. WT (+), wild-type allele; fl, floxed allele; Δ , recombined, deleted allele.</sup>

Figure S5. Features of Th-17 cell-related markers in the duodenum, Related to Figure 7A.

Th-17 cell-related markers *IL-17a*, *IL-21*, *IL-22*, and *CCR6* on day 30 following tamoxifen or vehicle treatment. Mean \pm SD is shown; one-way ANOVA with Tukey's multiple comparisons test, n = 4/group. NS, not significant.

Figure S6. Flow cytometric analysis of murine granulopoiesis in the spleen, Related to Figure 3.

Murine granulopoiesis in the spleen was evaluated, as previously described (Satake S, *et al.*, 2012). (A) Strategy used for flow cytometric analysis of mouse granulopoiesis. (B–E) Staining and gating of mouse spleen cells. First, the cells that had lost the potential to give rise to granulocytes were removed from the target population (B–D). The remaining cells (R5) were then analyzed for the expression of c-Kit and Ly-6G (E). Subpopulation #1 was c-Kit^{high}Ly-6G⁻, #2 was c-Kit^{int}Ly-6G⁻, and #5 was a discrete c-Kit^{low}Ly-6G^{high}. The remaining cells between #2 and #5 were divided into subpopulations #3 and #4 according to their expression levels of Ly-6G (E). After the flow cytometric identification, granulocyte differentiation and maturation stages were classified as indicated: Subpopulation #1 comprised mainly myeloblasts, #2 contained an abundance of promyelocytes, #3 mainly myelocytes, #4 mainly metamyelocytes, and #5 mainly band cells and segmented cells. HSC, hematopoietic stem cell; CMP, common myeloid progenitor; GMP, granulocyte-macrophage progenitor; MEP, megakaryocyte-erythroid progenitor; Ery, erythrocyte; 7-AAD, 7-amino-actinomycin D. n = 5-8/group. Mean \pm SD is shown with *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001 for comparison.

							+4Abx	
	WT -chow	WT -HFD	SOCS3KO -chow	SOCS3KO -HFD	WT -chow	WT -HFD	SOCS3KO -chow	SOCS3KO -HFD
No. cases	2	2	3	3	3	3	3	3
Bone Marrow								
Myeloid hyperplasia	0	0	3	3	1	0	2	3
Slight erythroid hypoplasia	0	0	3	3	0	0	2	3
Megakaryocytosis	0	0	2	0	0	0	2	3
Pancreas								
Tumor	0	0	0	0	0	0	0	0
Stomach								
Tumor	0	0	0	0	0	0	0	0

Table S1. Pathological analyses on day 30 following tamoxifen administration with or without 4Abx,Related to Figure1A and Figure 7B.

Table S2. Gram staining of the organs on day 30 following tamoxifen administration with or without4Abx, Related to Figure 7B.

						+4Abx			
	WT -chow	WT -HFD	SOCS3KO -chow	SOCS3KO -HFD		WT -chow	WT -HFD	SOCS3KO -chow	SOCS3KO -HFD
No. cases	2	2	3	3		3	3	3	3
Bone Marrow									
Bacteria	negative	negative	negative	negative	r	negative	negative	negative	negative

Table S3	. TaqMan	probes,	Related	to STAI	R Methods
----------	----------	---------	---------	---------	-----------

Name	Source	Assay ID
CD11b	Thermo Fisher SCIENTIFIC	Mm00434455_m1
Ly6G	Thermo Fisher SCIENTIFIC	Mm04934123_m1
CD68	Thermo Fisher SCIENTIFIC	Mm03047343_m1
CD14	Thermo Fisher SCIENTIFIC	Mm00438094_g1
F4/80	Thermo Fisher SCIENTIFIC	Mm00802529_m1
TNF-a	Thermo Fisher SCIENTIFIC	Mm00443258_m1
IL-6	Thermo Fisher SCIENTIFIC	Mm00446190_m1
FADS-1	Thermo Fisher SCIENTIFIC	Mm00507605_m1
SCD-1	Thermo Fisher SCIENTIFIC	Mm00772290_m1
SREBP-1	Thermo Fisher SCIENTIFIC	Mm00550338_m1
Elov16	Thermo Fisher SCIENTIFIC	Mm00851223_s1
IL-1β	Thermo Fisher SCIENTIFIC	Mm00434228_m1
IL-18	Thermo Fisher SCIENTIFIC	Mm00434226_m1
Caspase-1	Thermo Fisher SCIENTIFIC	Mm00438023_m1
IL-17A	Thermo Fisher SCIENTIFIC	Mm00439618_m1
IL-21	Thermo Fisher SCIENTIFIC	Mm00517640_m1
IL-22	Thermo Fisher SCIENTIFIC	Mm01226722_g1
CCR6	Thermo Fisher SCIENTIFIC	Mm99999114_s1
GAPDH	Thermo Fisher SCIENTIFIC	Mm99999915_g1