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Objective: Food-derived bioactive peptides have been reported to exhibit various beneficial effects, including anti- 
microbial, anti-inflammatory, and anti-oxidant properties. Oxidative stress has been implicated in the devel-
opment of several inflammatory diseases such as periodontal disease. However, the anti-oxidative effect of food- 
derived bioactive peptides in gingival epithelial cells (GECs) is unknown. Therefore, we examined the bioactivity 
of the peptides in GECs. 
Design: Food-derived peptide fractionations derived from rice bran, rice endosperm, corn, and soy were screened 
for anti-oxidative effects using anti-oxidant response element (ARE)-luciferase–transfected HEK 293 cells. The 
induction of anti-oxidation–related genes and proteins in GECs by the fractions were examined by quantitative 
PCR and Western blotting, respectively. Then, the fraction-mediated anti-oxidative effects were examined by 
measuring intracellular reactive oxygen species (ROS) levels using flow cytometry. Furthermore, the anti- 
oxidative response-related cellular signaling pathways were analyzed via Western blotting. 
Results: Although treatment with the food-derived peptides alone did not activate anti-oxidative responses, co- 
treatment with sulforaphane (SFN; a potent anti-oxidant) and certain food-derived peptides enhanced anti- 
oxidative responses in ARE-luciferase–transfected HEK 293 cells. The fractions augmented heme oxygenase-1 
mRNA and protein expression in GECs. The percentage of ROS-positive cells was significantly decreased by 
co-treatment with SFN and peptide fractions derived from rice bran. Furthermore, the involvement of both 
nuclear factor erythroid 2-related factor 2 (Nrf2) and extracellular signal-regulated kinase (ERK) in the 
enhancement of anti-oxidative responses was demonstrated by Western blotting. 
Conclusions: Peptides derived from rice bran enhances SFN-induced anti-oxidative responses in GECs through 
ERK–Nrf2–ARE signaling.   

1. Introduction 

Oxidative stress is a phenomenon caused by an imbalance between 
oxidative and anti-oxidative events in the body, and this imbalance is 
attributable to excessive free radical levels (Pizzino et al., 2017). 
Elevated intracellular levels of reactive oxygen species (ROS), a major 
free radical derived from molecular oxygen, can cause DNA, protein, and 
lipid damage, leading to impaired cellular biological properties 

(Schieber & Chandel, 2014). ROS-mediated impairment has been 
implicated in the pathology of several human diseases including cancer, 
atherosclerosis, and rheumatoid arthritis (Quinonez-Flores, 
Gonzalez-Chavez, Del Rio Najera, & Pacheco-Tena, 2016; Reuter, Gupta, 
Chaturvedi, & Aggarwal, 2010). 

Anti-oxidants are substances that prevent oxidation and protect cells 
from damage caused by free radicals, and they play a pivotal role in 
suppressing or slowing the progression of oxidative stress-related 
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diseases (Young & Woodside, 2001). Sulforaphane (SFN), a well-known 
potent anti-oxidant that functions as a natural free radical scavenger, 
can reduce oxidative stress (Guerrero-Beltran, Calderon-Oliver, Pedra-
za-Chaverri, & Chirino, 2012; Mazarakis, Snibson, Licciardi, & Kar-
agiannis, 2020). SFN-induced anti-oxidation exerts beneficial effects on 
cardiovascular diseases (Bai et al., 2015), arthritis (Moon et al., 2021), 
and cancer (Yeh & Yen, 2009). SFN-induced anti-oxidative effects are 
mainly regulated by nuclear factor erythroid 2-related factor 2 (Nrf2), a 
transcription factor facilitating the expression of anti-oxidant substances 
including heme oxygenase-1 (HO-1). Nrf2 is normally bound to the 
adaptor protein Kelch-like ECH associated protein 1 (Keap1) in the 
cytoplasm, which leads to the degradation of Nrf2 by the proteosome. 
Anti-oxidants induce the dissociation of Nrf2 from Keap1, its trans-
location into the nucleus, and its subsequent binding bind to 
anti-oxidant response elements (AREs) in the nucleus, resulting in the 
expression of anti-oxidation–related genes (Loboda, Damulewicz, Pyza, 
Jozkowicz, & Dulak, 2016). The Keap/Nrf2/ARE-mediated anti--
oxidative response is mainly regulated by mitogen-activated protein 
kinase (MAPK) signaling pathways including extracellular 
signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and 
p38 pathways (Zipper & Mulcahy, 2003). Previous reports demonstrated 
that the phosphorylation and activation of ERK induced 
Keap/Nrf2/ARE-mediated anti-oxidative responses in gingival epithelial 
cells (GECs) (Yokoji-Takeuchi et al., 2020). 

Periodontitis, a chronic inflammatory disease of the oral cavity, is 
triggered by gram-negative microbial infection in tooth-supporting 

tissues. Without appropriate treatment, inflammation destroys the bone 
around the teeth, resulting in tooth loss (Kinane, Stathopoulou, & 
Papapanou, 2017; Lovegrove, 2004). A variety of studies investigated 
the involvement of ROS and the resultant oxidative stress in the 
onset/progression of periodontitis (Chapple & Matthews, 2007). The 
association of oxidative stress and periodontitis has been extensively 
demonstrated in clinical studies, which revealed that greater oxidative 
stress and lower anti-oxidant activity can be detected in the plasma, 
saliva, and gingival crevicular fluid of patients with periodontitis 
(Tothova & Celec, 2017). In addition, intervention studies illustrated 
that periodontal treatment improved the status of oxidative damage, 
suggesting a pathobiological association between oxidative stress and 
periodontitis (Bostanci, Toker, Senel, Ozdemir, & Aydin, 2014). An 
animal study using knockout mice clearly demonstrated the importance 
of Nrf2 in the pathogenesis of periodontitis (Sima et al., 2016). Tamaki 
et al. reported that the induction of experimental periodontitis in rats 
increased systemic oxidative marker levels, and these effects were 
reversed by the administration of an anti-oxidant compound (Tamaki 
et al., 2014). The gingival epithelium acts as a physical barrier in the 
oral cavity, and GECs are exposed to a large number of exogenous 
stimulants that can induce oxidative stress (Takahashi et al., 2019). 
Although ROS production by Porphyromonas gingivalis in GECs has been 
reported previously (H. Wang et al., 2014), the detailed dynamics of 
ROS in GECs remain to be elucidated. 

Food-derived bioactive peptides have attracted significant interest 
for their health benefits (Karami & Akbari-Adergani, 2019). Accumu-
lated evidence indicates that these bioactive peptides possess several 
activities including anti-microbial, ant-inflammatory, wound-healing, 
and angiogenic properties (Mansour, Pena, & Hancock, 2014). Some 
reports detailed the anti-oxidative effect of rice-derived peptides in he-
patic epithelial cells (Moritani et al., 2017, 2020). However, the effects 
of these peptides in GECs remain to be identified. Therefore, this study 
examined the effect of food-derived peptides on human GECs, focusing 

Table 1 
Oligonucleotide sequences.  

Gene Forward Reverse 

GAPDH ACCAAATCCGTTGACTCCGAC TTCGACAGTCAGCCGCATCT 
HO-1 GAAGAGGCCAAGACTGCGTT AGTGTAAGGACCCATCGGAGA 

GAPDH, glyceraldehyde 3-phosphate dehydrogenase; HO-1, heme oxygenase-1. 

Fig. 1. No induction of anti-oxidant responses by treatment with food-derived peptides alone. 
Relative luciferase activity in anti-oxidant response element-luciferase reporter plasmid-transfected HEK293 cells 4 h after treatment with various food-derived 
fractionated peptides at a concentration of 0.5 mg/mL (A: rice bran, B: rice endosperm, C: corn, D: soy). n = 5 per group. Sulforaphane (SFN, 5 μM) served as 
the positive control. Data are indicated as the mean ± SEM. *p < 0.05 compared to control via analysis of variance. 
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on the anti-oxidant stress response. 

2. Materials and methods 

2.1. Reagents and antibodies 

Anti-Nrf2, anti-ERK, anti-phosphorylated ERK, anti-p38, anti-phos-
phorylated p38, anti-JNK, and anti-phosphorylated JNK antibodies were 
purchased from Cell Signaling Technology (Danvers, MA, USA). Anti- 
HO-1 antibody was obtained from GeneTex, Inc. (San Antonio, TX, 
USA). For Western blotting, we used rabbit anti-mouse glyceraldehyde 
3-phosphate dehydrogenase (GAPDH; Cell Signaling Technology) and 
peroxidase-labeled anti-rabbit IgG antibodies (Cell Signaling Technol-
ogy). Tert-butyl hydroperoxide (TBHP) and ERK kinase inhibitor, 
PD98059 was purchased from Wako Pure Chemical Industries (Osaka, 
Japan). SFN was acquired from Cayman Chemical (Ann Arbor, MI, USA). 
Food-derived peptides (rice bran, rice endosperm, corn, and soy) used in 
this study were prepared in accordance with previously published 
methods (Taniguchi et al., 2017). Briefly, powdered food-derived pro-
tein was dissolved in ultrapure water and homogenized using a POLY-
TRON homogenizer (KINEMATICA; Bohemia, NY). The pH of the 
suspension was adjusted to 7.8 using 1 M NaOH. Then the homogenized 
mixture was digested by adding enzymes and incubated at 37 ◦C for 5 h. 
After inactivating the enzyme by incubating it at 90 ◦C for 10 min, the 
mixture was then centrifuged at 12,000 × g for 30 min at 4 ◦C. After 
dialysis against ultrapure water using Spectra/Por dialysis tubing 
(MWCO, 500–1000 Da; Spectrum Laboratories, Inc., Rancho Domi-
nguez, CA), peptides with low molecular weights were removed and the 
supernatants were freeze-dried and stored for subsequent separation 
stages. Freeze-dried hydrolysates were dissolved in ultrapure water and 
fractionated by ampholyte-free isoelectric focusing (autofocusing) using 
a Rotofor (Bio-Rad, Richmond, CA). Autofocusing is a preparative iso-
electric focusing technique based on the ampholytic properties of pep-
tide mixtures, containing tryptic hydrolysates of food proteins. The 

constant power and run times were adjusted to 12 W and 2 h, respec-
tively; samples were collected in 20 fraction tubes and used for the 
experiments. 

2.2. Cell preparation and cultures 

A human GEC line (Ca9-22) was purchased from the RIKEN Bio-
resource Center (Tsukuba, Japan) and cultured in Dulbecco’s modified 
Eagle’s medium (DMEM, Thermo Fisher Scientific, Waltham, MA, USA) 
in the presence of 10 % fetal bovine serum (FBS), 100 U/mL penicillin, 
and 100 μg/mL streptomycin (Thermo Fisher Scientific). A human em-
bryonic kidney cell line (HEK293) was obtained from DS Pharma 
Biomedical Co., Ltd. (Osaka, Japan) and grown in DMEM in the presence 
of 10 % FBS, 100 U/mL penicillin, and 100 μg/mL streptomycin. All cell 
lines were grown in an incubator at 37 ◦C in an atmosphere of 5 % CO2. 
For the treatment of cells with food-derived peptides alone, the peptides 
at a concentration of 0.5 mg/mL were added to the culture plate and 
further analysis was performed after the indicated incubation time. For 
the co-treatment of cells with food-derived peptides and SFN, the pep-
tides (0.5 mg/mL) and SFN (5 μM SFN) were added at the same time. 
GECs were pre-incubated with PD98059 (5 μM) for 30 min before 
adding the indicated stimulants. 

2.3. Cell viability assay 

The 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium 
bromide (MTT) assay was performed to examine the cytotoxicity of the 
peptides according to the manufacturer’s protocol (Sigma-Aldrich, St. 
Louis, MO, USA). Briefly, GECs were seeded onto flat-bottomed 96-well 
plates at a density of 5 × 104 cells/mL and incubated overnight with 
complete culture medium at 37 ◦C in an atmosphere of 5 % CO2. Then, 
the GECs were treated with fractions derived from rice bran for 4 h and 
subjected to the MTT assay. MTT solution (1 mg/mL) in PBS was added 
into each well, and the cells were incubated for 2 h. After cell lysis using 

Fig. 2. Peptides from rice bran and rice endosperm enhanced sulforaphane (SFN)-induced anti-oxidative responses. 
Relative luciferase activity in the anti-oxidant response element-luciferase reporter plasmid-transfected HEK293 cells 4 h after treatment with the combination of the 
indicated food-derived fractionated peptides (0.5 mg/mL) and 5 μM SFN (A: rice bran, B: rice endosperm, C: corn, and D: soy). n = 5 per group. SFN (5 μM) served as 
a positive control. Data are presented as the mean ± SEM. *p < 0.05 compared to control via analysis of variance. 
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DMSO solution, the optical density (OD) of the wells was measured 
using a Spectra Max ABS Plus plate reader (Molecular Devices, San Jose, 
CA, USA) at a wavelength of 540 nm, and relative proliferation rate was 
calculated on the basis of the OD. 

2.4. Real-time quantitative PCR 

TRI Reagent® (Molecular Research Center, Inc., Cincinnati, OH, 
USA) was used to isolate total RNA from the cells. Then, a Universal 
cDNA Master Transcriptor (Roche Molecular Systems, Inc., Branchburg, 
NJ, USA) was used to synthesize cDNA. Following this, FastStart 
Essential DNA Green Master (Roche Molecular Systems) was used to 
quantify gene expression on a LightCycler® 480 (Roche Molecular 
Systems). GAPDH mRNA levels were used to normalize the level of each 
mRNA sample using the ΔΔCt method, as reported previously (Livak & 
Schmittgen, 2001). The primer sequences used in this study are dis-
played in Table 1 (Thermo Fisher Scientific). 

2.5. Western blotting 

Whole protein was extracted from the cells using M-PER Mammalian 
Protein Extraction Reagent (Thermo Fisher Scientific) with the Halt 
Protease Inhibitor Cocktail and Halt Phosphatase Inhibitor Cocktail 
(Pierce Biotechnology, Rockford, IL, USA). A protein assay was per-
formed using a Pierce Bicinchoninic Acid Protein Assay Kit (Pierce 
Biotechnology). Then, extracted proteins were subjected to SDS- 
polyacrylamide gel electrophoresis and transferred to polyvinylidene 
fluoride membranes (EMD Millipore Corporation, Burlington, MA, 
USA). The membranes were incubated with primary (HO-1, 1:500; Nrf2, 
1:1000; ERK, 1:1000; p-ERK, 1:1000; p38, 1:1000; p-p38, 1:1000; JNK, 

1:1000; p-JNK, 1:1000; GAPDH, 1:5000) and secondary antibodies 
(peroxidase-labeled anti-rabbit IgG antibody, 1:10,000). ECL Plus 
Western blotting detection reagents (GE Healthcare, Chicago, IL, USA) 
and ImageQuant LAS 4000 (GE Healthcare) were used to observe the 
targeted proteins. The intensity of the signal was converted using 
ImageJ software (NIH, Bethesda, MD, USA). 

2.6. Establishment of a stably transfected cell line and luciferase reporter 
assay 

HEK293 cells were transfected with ARE-luciferase reporter plasmids 
(pGL4.37[luc2P/ARE/Hygro]; Promega, Southampton, UK) using Lip-
ofectamine 2000 (Invitrogen) reagent in accordance with the manu-
facturer’s guideline. Then, a stably transfected cell line was generated 
via positive selection with hygromycin. For the screen, the cells were 
treated with substances as indicated in each experiment for 4 h, and 
firefly luciferase activities were monitored in their lysates. Luciferase 
bioluminescence measurements were performed at room temperature 
using a GloMax luminometer (Promega). Activity was expressed as 
relative light units emitted from total assays, and it was calculated with 
respect to background activity. 

2.7. Flow cytometric analysis of ROS detection 

ROS production was assessed using CellROX Green reagent (Thermo 
Fisher Scientific) according to the manufacturer’s instructions. CellROX 
reagent was added to culture plates, which were incubated for 30 min 
and then washed three times with PBS. ROS levels were quantified using 
flow cytometry (NovoCyte Flow Cytometer; ACEA Biosciences, Inc., CA, 
USA). 

Fig. 3. Rice bran peptides (RBPs) enhanced 
sulforaphane (SFN)-induced anti-oxidation–re-
lated gene and protein expression in gingival 
epithelial cells (GECs). 
(A) Cell viability in GECs. GECs were treated for 
4 h with the indicated substances. Relative 
mRNA (B, C) and protein (D) expression of 
heme oxygenase-1 (HO-1) in GECs 4 h after 
treatment with the indicated substances. 
GAPDH served as a loading control. The protein 
signal was standardized to GAPDH. n = 3 per 
group. Data are indicated as the mean ± SEM. 
*p < 0.05 versus control, #p < 0.05 and ##p <
0.01 vs. SFN only via analysis of variance.   
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2.8. Statistical analysis 

Data are presented as the mean ± SEM. Statistical analysis was 
performed using one-way analysis of variance followed by post hoc tests 
for multiple comparisons. All statistical analyses were performed using 
GraphPad Prism (GraphPad Software, Inc., La Jolla, CA, USA). Signifi-
cance was indicated by p ≤ 0.05. 

3. Results 

3.1. Peptides derived from rice bran and rice endosperm enhanced SFN- 
induced anti-oxidative responses 

First, we examined the activation of anti-oxidant responses following 
the treatment of ARE-luciferase reporter plasmid-transfected HEK293 
cells with various food-derived peptides (rice bran, rice endosperm, 
corn, and soy). Unexpectedly, none of them induced anti-oxidant re-
sponses (Fig. 1). However, co-treatment with SFN and several peptides 
derived from rice bran and rice endosperm significantly increased 
luciferase activity compared to the effects of SFN alone (Fig. 2). These 
findings suggested that several food-derived peptides, especially rice 
bran peptides (RBPs), enhanced anti-oxidative responses induced by 
SFN. 

3.2. RBPs enhanced SFN-induced anti-oxidation–related gene and protein 
expression in GECs 

Next, we explored the involvement of RBPs in the induction of anti- 
oxidation–related gene and protein expression in GECs. After confirming 
that RBPs were not cytotoxic to GECs (Fig. 3A), we examined the in-
duction of HO-1 mRNA and protein expression by RBPs. Consistent with 
the previous findings in transfected HEK293 cells, co-treatment with 
SFN and several RBPs (RBP7–10) significantly increased HO-1 mRNA 
expression, but HO-1 mRNA expression was not observed following 
exposure to RBPs alone (Fig. 3B, C). Similarly as the alterations of mRNA 
levels, HO-1 protein expression was higher in the SFN + RBP7–10 
groups than in the SFN only group (Fig. 3D). Altogether, several RBPs in 
combination with SFN augmented HO-1 expression at both the mRNA 
and protein level in GECs. 

3.3. RBPs increased the inhibitory effect against TBHP-induced ROS 
generation 

To examine the functional effects of RBPs on SFN-induced anti- 
oxidative responses in GECs, we performed a fluorescent probe-based 
ROS production assay using flow cytometry in vitro (Fig. 4A). After 
gating the GEC area, the population of ROS-positive cells in each group 
was plotted on a histogram (Fig. 4B, C). The dramatic ROS generation 
induced by TBHP, a strong oxidizing agent, was suppressed by SFN 
treatment, and further suppression was observed in the SFN + RBP 
groups (Fig. 4C). Quantification illustrated the significant inhibitory 

Fig. 4. Rice bran peptides (RBPs) increased the 
inhibitory effect against tert-butyl hydroperox-
ide (TBHP)-induced ROS generation. 
(A) Experimental design for flow cytometry. (B) 
A representative image presented the gated 
cells following flow cytometry. (C) Represen-
tative flow cytometry histograms as an overlay 
of the indicated groups. (D) Quantification of 
reactive oxygen species (ROS) production in 
gingival epithelial cells. The population of ROS- 
positive cells was measured by flow cytometry. 
n = 4 per group. Data are indicated as the mean 
± SEM. *p < 0.05 **p < 0.01 as indicated via 
analysis of variance.   
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effect of SFN + RBP treatment on TBHP-induced ROS production; in 
particular, remarkable inhibition was observed in the SFN + RBP8 group 
(Fig. 4D). These results indicated the enhancement of anti-oxidative 
responses by RBPs in combination with SFN. 

3.4. ERK–Nrf2 axis is responsible for the enhancement of SFN-induced 
anti-oxidative responses by RBP8 

To elucidate the intracellular signaling pathway involved in SFN- 
induced anti-oxidative responses, we focused on the ERK–Nrf2 
cascade, which was previously reported to regulate anti-oxidative re-
sponses by phosphorylating ERK (Sun et al., 2015; Yokoji-Takeuchi 
et al., 2020). As expected, Nrf2 was induced by SFN treatment, and 
further induction was observed following SFN + RBP8 treatment 
(Fig. 5A). In addition, SFN treatment resulted in the phosphorylation of 
ERK, but not p38 and JNK, and combined treatment with SFN and RBP8 
increased the level of ERK phosphorylation (Fig. 5B). The Nrf2 induction 
on SFN + RBP8 treatment diminished significantly by pretreating it with 
a selective ERK inhibitor (Fig. 5C). Taken together, these results sug-
gested that RBP8 enhances SFN-induced anti-oxidative responses 
through the ERK–Nrf2–ARE pathway in GECs. 

4. Discussion 

In this study, we revealed that RBPs enhanced SFN-induced anti- 
oxidative responses in GECs. To our knowledge, this is the first report 

describing the involvement of food-derived bioactive peptides in anti- 
oxidant effects in GECs and their cellular signaling pathways. These 
findings suggested the possible application of food-derived bioactive 
peptides in the prevention/treatment of oxidative stress-related chronic 
diseases, including periodontitis. 

As demonstrated in this study, stimulation with food-derived pep-
tides alone unexpectedly did not induce anti-oxidative responses. Most 
previous pubs demonstrated in this study, stimulation with food-derived 
peptides alone unexpectedly did not induce anti-oxidative responses. 
Most previous publications demonstrated that food-derived peptides 
alone function as bioactive substances (Kawakami et al., 2017; Matsu-
gishi et al., 2021; Tamura et al., 2019). Moritani et al. reported that 
hydrolyzed peptides from rice bran protein directly exert a protective 
effect against oxidative stress by modulating anti-oxidative enzyme 
expression via the Nrf2 pathway in hepatic epithelial cells (Moritani 
et al., 2017). The discrepancy might be attributable to the differences in 
the types of target cells and/or technical methods of preparation of the 
substances. 

Regarding the molecular mechanisms by which the combination of 
SFN and RBPs enhanced anti-oxidative activity, the following two 
mechanisms are suggested: i) increased cell membrane permeability and 
ii) enhancement of cellular signal transduction by the peptides. SFN 
possesses a lipophilic nature and exhibits relatively low molecular 
weight, permitting its flux into cells via passive diffusion (Houghton, 
Fassett, & Coombes, 2016). Destabilization of the cell membrane by 
specific peptides has been proposed, leading to an increasing influx of 

Fig. 5. Extracellular signal-regulated kinase (ERK)–nuclear factor erythroid 2-related factor 2 (Nrf2) axis is responsible for the rice bran peptide (RBP)-induced 
augmentation of anti-oxidative responses in gingival epithelial cells (GECs). 
(A) The cell lysate was evaluated via Western blots using Nrf2-specific antibody. GECs were stimulated with the indicated treatments for 4 h. Glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH) served as the loading control. (B) Western blots of mitogen-activated protein kinase (MAPK) phosphorylation and quantification of 
the phosphorylated ERK protein in GECs. GECs were stimulated with the indicated treatments for 4 h. GAPDH served as a loading control. The protein signal was 
standardized to GAPDH. n = 3 per group. Data are indicated as mean ± SEM. *p < 0.05 as indicated using analysis of variance. (C) Western blots and quantification of 
Nrf2 with or without ERK inhibitor. GECs were pre-treated in the presence or absence of ERK inhibitor (5 μM) for 30 min before the indicated treatment. The protein 
signal was standardized to total ERK. n = 3 per group. Data are indicated as mean ± SEM. *p < 0.05 as indicated using analysis of variance. 
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SFN into the cytosol through the formation of transient pores (Herce 
et al., 2009; Yesylevskyy, Marrink, & Mark, 2009). In addition, specific 
peptide fractions called cell-penetrating peptides (CPPs) have been 
widely investigated, and the CPP-conjugated drug delivery system is 
gaining increasing attention as a therapeutic modality in medical fields 
(Guidotti, Brambilla, & Rossi, 2017; Patel et al., 2019). Given the fact 
that most rice peptides are cationic, binding of the peptides to SFN might 
increase the affinity of the complex for negatively charged cell mem-
branes, resulting in the enhancement of influx to cells and subsequent 
induction of anti-oxidative responses by SFN in this present study. 
Conversely, enhancement of cellular signal transduction by the peptides 
could be another possible mechanism. Ranjan et al. reported that a 
chemically conjugated protein with a specific peptide augmented 
apoptotic signaling in intestinal epithelial cells (Ranjan, Waghela, Vai-
dya, & Pathak, 2020). A specific peptide is known to inhibit the 
DNA-binding and transcriptional activities of the p65 NF-κB subunit as 
well as the production of inflammatory mediators in macrophages upon 
stimulation (Wang et al., 2011). Furthermore, Fotin-Mleczek et al. 
demonstrated that three types of cationic peptides modulate tumor ne-
crosis factor (TNF) receptor-mediated signal transduction upon TNF 
stimulation (Fotin-Mleczek et al., 2005). Of note, this article mentioned 
that the peptides themselves did not activate signal transduction, sug-
gesting the augmentation of cellular response without any direct in-
duction of signaling activation by the peptides themselves. Given the 
possible manipulation of a peptide in the Nrf2/Keap1 interaction in 
oxidative response signaling (Steel, Cowan, Payerne, O’Connell, & 
Searcey, 2012), RBPs might function in the same manner. 

Two limitations in this study could be addressed in future research. 
First, this study lacked proof of bioactive peptide-mediated anti-peri-
odontitis effects in vivo. Several studies described the involvement of 
oxidative stress in the pathogenesis of periodontitis in mice using Nrf2- 
knockout or oxidative stress detector-luciferase models (Kataoka et al., 
2016; Sima et al., 2016). Ikeda et al. reported that the anti-oxidant 
resveratrol, which is likely to directly inhibit the effects of ROS, pro-
motes the healing of periodontal destruction in a mouse 
ligature-induced experimental periodontitis model (Ikeda et al., 2018). 
Elucidation of the anti-periodontitis property of SFN though epithelial 
anti-oxidative effects can strengthen our hypothesis. Second, this study 
revealed the suppression of ROS accumulation by co-treatment with SFN 
and RBPs; however, we did not demonstrate the biological cellular re-
sponses resulting from ROS suppression. Excess ROS accumulation via 
oxidative stress affects proliferation, differentiation, and apoptosis in 
epithelial cells (Aw, 2003). The effects of the combination of SFN and 
RBPs in epithelial biology must be clarified in future research. 

5. Conclusions 

A specific peptide derived from rice bran enhances SNF-induced anti- 
oxidative responses in GECs through ERK–Nrf2–ARE signaling. Given 
the previous findings of anti-microbial and anti-inflammatory of 
bioactive food-derived peptides, RBPs could be a possible application in 
the prevention/treatment of periodontal diseases. 
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