1 Article Title

2	Low-dose droperidol suppresses transcranial electrical motor-evoked potential amplitude: a
3	retrospective study
4	Author Information
5	Hiroyuki Deguchi ¹ , Kenta Furutani ^{1*} , Yusuke Mitsuma ¹ , Yoshinori Kamiya ¹ , Hiroshi Baba ¹
6	
7	¹ Department of Anesthesiology, Niigata University Graduate School of Medical and Dental
8	Sciences
9	Address: 1-757 Asahimachi-Dori, Chuo-ku, Niigata 951-8510, Japan
10	
11	*Corresponding author
12	Kenta Furutani
13	Department of Anesthesiology, Niigata University Graduate School of Medical and Dental
14	Sciences
15	Address: 1-757 Asahimachi-Dori, Chuo-ku, Niigata 951-8510, Japan

16	E-mail:	kenta-f@	med.niigata	a-u.ac.jp
----	---------	----------	-------------	-----------

- 17 **Phone:** +81-25-227-2328
- 18 **FAX:** +81-25-227-0790

20 Acknowledgments

- 21 We would like to thank Editage (<u>www.editage.jp</u>) for English language editing and Satista
- 22 Inc. for statistical analysis.
- 23

24 **Previous presentations**

25 Japanese Society of Anesthesiologists Annual Meeting; May 17, 2018, Yokohama, Japan

27 Abstract

41

28	Purpose
29	Low-dose droperidol has been widely used as an antiemetic during and after
30	surgery. Although high-dose droperidol affects motor-evoked potential, the effects of
31	low-dose droperidol on motor-evoked potential amplitude are unclear. The aim of this study
32	was to investigate whether low-dose droperidol affects motor-evoked potential amplitude.
33	Methods
34	We retrospectively reviewed the data of patients who underwent spine surgery
35	under general anesthesia with motor-evoked potential monitoring from February 2016 to
36	February 2017. The outcome was the motor-evoked potential amplitude of the bilateral
37	abductor pollicis brevis muscle, tibialis anterior muscle, and abductor hallucis muscle
38	within 1 and 1-2 hours after droperidol administration, compared with the baseline
39	motor-evoked potential value.
40	Results

Thirty-four patients were analyzed. The median dose of droperidol was 21 μ g/kg.

42	The motor-evoked potential amplitudes of all muscles were significantly reduced after
43	droperidol administration and recovered to baseline values within 2 hours. The reduction of
44	all motor-evoked potential amplitudes after droperidol administration was 37-45% of
45	baseline values. There were no significant differences in other drugs administered. There
46	were no serious adverse effects of droperidol administration.
47	Conclusion
48	Motor-evoked potential amplitude was suppressed by low-dose droperidol.
49	During intraoperative motor-evoked potential monitoring in spine surgery, anesthesiologists
50	should pay careful attention to the timing of administration of droperidol, even at low doses.
51	Based on the results of this study, we are conducting a randomized controlled trial.
52	
53	Keywords: motor-evoked potential, droperidol, intraoperative monitoring, general
54	anesthesia
55	

57 Introduction

58	Low-dose droperidol (15–20 μ g/kg or 0.625–2.5 mg) has been used as an
59	antiemetic, and significantly reduces the incidence of postoperative nausea and vomiting
60	(PONV). In 2001, the US Food and Drug Administration warned consumers of the risk of
61	QT segment prolongation due to droperidol use; however, low-dose droperidol remains
62	widely used without severe complications, such as cardiac arrhythmias, in some countries
63	because the risks of droperidol use are dose-dependent [1-3].
64	Motor-evoked potential (MEP) measurement is a useful intraoperative monitoring
65	technique to detect damage to the pyramidal tract during spine surgery [4-7]. However,
66	various factors affect MEP amplitude. For example, anesthetic drugs such as volatile
67	anesthetics and propofol dose dependently decrease MEP amplitude [8]. High-dose
68	droperidol (70 μ g/kg) was also reported to decrease transcranial magnetic MEP
69	(TCM-MEP) amplitude [9]. However, the effect of low-dose droperidol on MEP amplitude
70	is largely unknown, with only a single case series that reported that low-dose droperidol (1-
71	1.25 mg) decreased transcranial electric MEP (TCE-MEP) amplitude [10].

72	We aimed to clarify the effects of antiemetic low-dose droperidol on TCE-MEP
73	and to improve the quality of intraoperative neurological monitoring. Hence, we performed
74	a retrospective study to investigate whether low-dose droperidol suppresses TCE-MEP
75	amplitude under general anesthesia.

78 Materials and Methods

79 **Patients**

80 This study was approved by the Ethics Committee of Niigata University Medical and Dental Hospital, Niigata, Japan (Approval No. 2017-0246). The Ethics Committee 81 82 waived the requirement for written informed consent due to the retrospective nature of this 83 study; however, patients received opt-out notices on the hospital's web site and information flyers were posted in the hospital. We retrospectively reviewed the data of patients who 84 85 underwent spine surgery under general anesthesia with TCE-MEP monitoring from 86 February 2016 to February 2017 at Niigata University Medical and Dental Hospital, 87 Niigata, Japan. The inclusion criteria were patients whose TCE-MEP amplitudes were 88 measured at three time points (T0: before droperidol administration as a baseline value, T1: 89 within 1 hour after droperidol administration, T2: 1-2 hours after droperidol 90 administration). The exclusion criteria included patients who did not undergo TCE-MEP 91 amplitude measurement at the three different time points (T0, T1, and T2), patients who

92	had changed their posture (e.g., from lateral decubitus position to prone position) within 2
93	hours of droperidol administration, and patients from whom TCE-MEP waveforms could
94	not be obtained in all muscles due to pre-existing neurological symptoms or technical
95	problems.
96	
97	General Anesthesia
98	General anesthesia was maintained with propofol, remifentanil, and fentanyl in
99	all patients. Propofol was administered using a target-controlled infusion pump (TE-371,
100	Terumo, Tokyo, Japan). The infusion rate of propofol was adjusted to maintain bispectral
101	index (BIS) values in the range of 40-60 and suppression ratios of 0. Remifentanil was
102	administered at 0.1–0.5 μ g/kg/min. Bolus doses of fentanyl (50–200 μ g) were administered
103	repeatedly to maintain the simulated effect site concentration above 1 ng/ml for intra- and
104	postoperative analgesia. Rocuronium (0.6-0.9 mg/kg) was administered to facilitate
105	tracheal intubation, and the neuromuscular blocking effect of rocuronium was reversed by
106	sugammadex (2-4 mg/kg) before TCE-MEP recording to maximize the TCE-MEP

107	amplitude. In all cases electrocardiography results and invasive blood pressure, pulse
108	oximetry, partial pressure of end-tidal carbon dioxide, and body temperature values were
109	monitored. If systolic blood pressure was less than 90 mmHg, ephedrine or phenylephrine
110	was administered. External heating devices were used to maintain body temperatures.
111	Intravenous patient-controlled analgesia (IV-PCA) (fentanyl combined with ketamine and
112	droperidol) was used postoperatively.
113	
114	MEP recordings
115	We used an intraoperative neurophysiological monitoring system (Neuromaster
115 116	We used an intraoperative neurophysiological monitoring system (Neuromaster MEE-1232, Nihon Kohden, Tokyo, Japan). An anesthesiologist who was an expert in
115 116 117	We used an intraoperative neurophysiological monitoring system (Neuromaster MEE-1232, Nihon Kohden, Tokyo, Japan). An anesthesiologist who was an expert in neurophysiological monitoring recorded and evaluated MEP. TCE-MEP was elicited by a
 115 116 117 118 	We used an intraoperative neurophysiological monitoring system (Neuromaster MEE-1232, Nihon Kohden, Tokyo, Japan). An anesthesiologist who was an expert in neurophysiological monitoring recorded and evaluated MEP. TCE-MEP was elicited by a train of five pulses with inter-stimulus intervals of 2 ms (low cut filter 10 Hz and high cut
 115 116 117 118 119 	We used an intraoperative neurophysiological monitoring system (Neuromaster MEE-1232, Nihon Kohden, Tokyo, Japan). An anesthesiologist who was an expert in neurophysiological monitoring recorded and evaluated MEP. TCE-MEP was elicited by a train of five pulses with inter-stimulus intervals of 2 ms (low cut filter 10 Hz and high cut filter 3 kHz), using a constant-voltage stimulator (SEN-4100, Nihon Kohden, Tokyo, Japan).
 115 116 117 118 119 120 	We used an intraoperative neurophysiological monitoring system (Neuromaster MEE-1232, Nihon Kohden, Tokyo, Japan). An anesthesiologist who was an expert in neurophysiological monitoring recorded and evaluated MEP. TCE-MEP was elicited by a train of five pulses with inter-stimulus intervals of 2 ms (low cut filter 10 Hz and high cut filter 3 kHz), using a constant-voltage stimulator (SEN-4100, Nihon Kohden, Tokyo, Japan). Stimulus intensity was initiated at 300 V and increased by 50 V increments until the

122	(SN-100-1500AD, Unique medical, Tokyo, Japan) were fixed at C3 (cathode) and C4
123	(anode) (international 10-20 system). Adhesive gel Ag-AgCl electrodes (NM314YL, Nihon
124	Kohden, Tokyo, Japan) were attached on the skin and used for TCE-MEP recording.
125	TCE-MEP amplitude was measured as peak to peak amplitude.
126	
127	Outcomes
128	We analyzed the TCE-MEP amplitudes of the bilateral abductor pollicis brevis
129	muscle (APB), tibialis anterior muscle (TA), and abductor hallucis muscle (AH) at T0, T1,
130	and T2. The baseline value of MEP was defined as the MEP recorded before administration
131	of droperidol (T0). In addition, we collected data on pulse rate, mean blood pressure, partial
132	pressure of end-tidal carbon dioxide, pulse oximetry, body temperature, dose and simulated
133	effect site concentration of remifentanil and fentanyl, and the BIS value from the anesthesia

records. The patients' demographic data including age, sex, height, and weight were alsorecorded.

136

The effect site concentration of remifentanil was calculated from the

administration rate using the pharmacokinetic models reported by Minto and Kunisawa
[11-13]. In addition, the effect site concentration of fentanyl was calculated using the
Shafer model [14, 15].

140

141 Statistical analysis

142Patients' demographic data and droperidol dose were expressed as median and 143range [minimum-maximum]. Other continuous variables with non-parametric distribution 144 were expressed as median and interquartile range [25%, 75%]. Bilateral TCE-MEP 145amplitudes obtained from the same patient were analyzed together. Statistical analyses of bilateral TCE-MEP amplitudes (APB, TA, AH), dosages of other drugs (propofol, 146 147 remifentanil, fentanyl), and vital signs (pulse rate, mean blood pressure, partial pressure of 148 end-tidal carbon dioxide, pulse oximetry, body temperature, BIS value) that were obtained 149at the three different time points (T0, T1, and T2) were performed using the Friedman test. 150The Wilcoxon signed rank test adjusted by Bonferroni correction was used for post hoc 151analysis when significance was determined by the Friedman test. During analysis,

152 completion of missing values was not performed. All statistical tests were two-sided, and

- 153 statistical significance was defined by a p-value < 0.05. Statistical analyses were performed
- using R version 3.2.4.

Results

157	Fifty patients underwent spine surgery with TCE-MEP monitoring during the
158	period studied. Sixteen patients were excluded for the following reasons: TCE-MEP was
159	not measured at T1 and T2 (n=11 patients); TCE-MEP could not be obtained in all muscles
160	due to pre-existing neurological symptoms or technical problems (n=4 patients); posture
161	was changed within 1 hour after droperidol administration (n=1 patient). Although
162	TCE-MEP amplitude could not be obtained at the bilateral APB in one patient, the other
163	two sites (TA, AH) in that patient were included in the analysis. Therefore, 34 patients' data
164	(APB: 66 sites, TA: 68 sites, AH: 68 sites) were analyzed (Fig 1). The demographic data are
165	presented in Table 1. The median dose of droperidol was 21 μ g/kg. Heart rate was increased
166	at T2, compared to T1. Body temperature increased over time. Propofol was significantly
167	different by Friedman test, but not by post hoc analysis. There were no significant
168	differences in other vital signs or other drugs administered (Table 2). The TCE-MEP
169	amplitudes of all muscles were significantly reduced at T1 and recovered to baseline values
170	at T2 (Table 3; Fig 2). The median reductions of TCE-MEP recorded from each muscle

after droperidol administration were 37%–45% of baseline value. There were no adverse
events such as torsades de pointes, severe hypotension, extrapyramidal symptoms, or
neurological symptoms in the perioperative period.

175 **Discussion**

176	This study showed that low-dose droperidol (approximately 20 μ g/kg) reduced
177	TCE-MEP amplitude and that the median reductions of TCE-MEP were 37%-45% of
178	baseline values.
179	Previous studies have revealed that high-dose droperidol, 70 μ g/kg and 300 μ g/kg
180	suppresses TCM-MEP amplitude in humans [9] and monkeys [16], respectively. However,
181	there have been no clinical trials to demonstrate whether low-dose droperidol, which is
182	used as an antiemetic, affects TCE-MEP amplitude. A recent case report regarding a
183	58-year-old woman suggested that low-dose droperidol (1.25 mg) could reduce the
184	TCE-MEP amplitude [10]. Our retrospective analysis in a more comprehensive patient
185	cohort supports this finding.
186	Notably, the reduction rate of TCE-MEP amplitude in this study reached the
187	approximate clinical alarm point. Although clinical alarm points of TCE-MEP amplitude to

- 188 avoid neurological damage in the spine surgery are not clearly defined, most reports
- 189 conclude that a 50%–80% decrease of TCE-MEP amplitude is clinically relevant [5-7, 17].

190	Hence, the attenuation of TCE-MEP amplitude in response to low-dose droperidol could
191	cause false-positives. Because there have been no previous reports to demonstrate the
192	influence of low-dose droperidol on TCE-MEP amplitude, technologists/monitoring
193	physicians cannot diagnose that the reduction of TCE-MEP amplitude is the effect of
194	droperidol, which would lead to false-positive results. Our research results suggest that we
195	should obtain both new baselines after administration of droperidol and sufficiently
196	frequent TCE-MEP measurements repeatedly to account for the time-varying effects of the
197	drug post-administration without causing false-positives. In addition, during intraoperative
198	TCE-MEP monitoring in spine surgery, anesthesiologists should avoid droperidol
199	administration during a crucial surgical manipulation, even when using a low dose.
200	Therefore, it is crucial to clarify the effect of low-dose droperidol on TCE-MEP amplitude
201	in a randomized controlled trial.
202	IV-PCA using opioids is an essential analgesic method for postoperative pain
203	management but represents a risk factor of PONV [18, 19]. The median dose of droperidol
204	in this study was 21 μ g/kg. According to previous reports, doses of droperidol similar to

205	that used in this study (1–1.25 mg or 15–20 μ g/kg) prevent nausea and vomiting in the
206	early postoperative period [20]. Therefore, our dosage regimen of droperidol was thought to
207	be effective for the prevention of PONV. Therefore, the results of our study could improve
208	both the quality of life postoperatively [21], as well as quality of postoperative analgesia
209	and intraoperative neurophysiological monitoring, together leading to safer surgery.
210	The mechanisms underlying the effects of low-dose droperidol are unknown. The
211	antiemetic effect of droperidol is thought to result from inhibition of the D2 receptor
212	[22-24]. Droperidol has no specific pharmacological targets, and can act as a
213	γ-aminobutyric acid type A receptor antagonist/agonist, a nicotinic acetylcholine receptor
214	antagonist, and a sodium channel blocker [25, 26]. Droperidol is reported to suppress
215	spontaneous electrical activity in neurons [27]. Therefore, it is reasonable to hypothesize
216	that droperidol attenuates the amplitude of TCE-MEP, which are elicited by the sum of
217	neuronal excitations in the motor system by inhibiting excitatory neurotransmissions.
218	Limitations

This study had some limitations. First, this was a single-center, retrospective

220	study with a small number of patients. Patients' background, doses of droperidol, and
221	timing of TCE-MEP recording, as well as the other anesthesia regimens were not uniform.
222	Especially, there was large variation in age and diseases among the surgically treated
223	patients. Therefore, we could not exclude the possibility of the influence of the surgical
224	procedure in increasing or decreasing the TCE-MEP amplitude on our outcome measures.
225	However, because the reduction of TCE-MEP amplitude after the administration of
226	droperidol was reversible, we do not think that the surgical procedure affected our results.
227	Second, we could not confirm the train of four ratio from the anesthetic records. However,
228	rocuronium bromide was administered only at the induction of general anesthesia. Besides,
229	we administered sugammadex to reverse the effect of rocuronium before the TCE-MEP
230	recording. Even if the effect of rocuronium remained, it would be too small to reduce the
231	TCE-MEP amplitude. Therefore, we do not think that the residual effect of rocuronium
232	affected the results of the study. Third, we could not exclude the influence of trial-to-trial
233	variability on TCE-MEP amplitude because the present study was a retrospective study
234	without a placebo group. However, if the trial-to-trial variability affected the results of this

235	study, the variability would affect not only the MEP amplitude at T1 but also those at T0
236	and T2. Besides, the MEP amplitudes at T2 were recovered from those at T1 with a
237	statistically significant difference. Therefore, it is reasonable to state that the reduction of
238	TCE-MEP amplitude at T1 was due to droperidol administration.
239	Conclusions
240	TCE-MEP amplitude was suppressed by low-dose droperidol administration for
241	the prevention of PONV. During intraoperative TCE-MEP monitoring in spine surgery,
242	anesthesiologists should pay careful attention to the timing of droperidol administration,
243	even if using a low dose. We are conducting a randomized controlled trial to further
244	validate these findings.
245	
246	Author contributions
247	Conceptualization and Methodology: Hiroyuki Deguchi, Kenta Furutani; Formal analysis,
248	data curation, investigation: Hiroyuki Deguchi, Yusuke Mitsuma; Writing - original draft
249	preparation: Hiroyuki Deguchi; Writing - review and editing: Kenta Furutani, Yoshinori

251	Referen	ces
252	1.	Schaub I, Lysakowski C, Elia N, Tramèr MR (2012) Low-dose droperidol (≤1 mg
253		or $\leq 15 \ \mu g \ kg-1$) for the prevention of postoperative nausea and vomiting in
254		adults: quantitative systematic review of randomised controlled trials. Eur J
255		Anaesthesiol 29:286-294. https://doi.org/10.1097/EJA.0b013e328352813f.
256	2.	Henzi I, Sonderegger J, Tramèr MR (2000) Efficacy, dose-response, and adverse
257		effects of droperidol for prevention of postoperative nausea and vomiting. Can J
258		Anaesth 47:537-551. https://doi.org/10.1007/BF03018945
259	3.	Nuttall GA, Malone AM, Michels CA, Trudell LC, Renk TD, Marienau ME,
260		Oliver WC, Ackerman MJ (2013) Does low-dose droperidol increase the risk of
261		polymorphic ventricular tachycardia or death in the surgical patient?
262		Anesthesiology 118:382-386. https://doi.org/10.1097/ALN.0b013e31827dde8d.
263	4.	Gonzalez AA, Jeyanandarajan D, Hansen C, Zada G, Hsieh PC (2009)
264		Intraoperative neurophysiological monitoring during spine surgery: a review.

250 Kamiya, Hiroshi Baba; Supervision: Kenta Furutani, Yoshinori Kamiya, Hiroshi Baba.

265		Neurosurg Focus 27:E6. https://doi.org/10.3171/2009.8.FOCUS09150
266	5.	Pelosi L, Lamb J, Grevitt M, Mehdian SM, Webb JK, Blumhardt LD (2002)
267		Combined monitoring of motor and somatosensory evoked potentials in
268		orthopaedic spinal surgery. Clin Neurophysiol 113:1082-1091.
269		https://doi.org/10.1016/S1388-2457(02)00027-5
270	6.	Park P, Wang AC, Sangala JR, Kim SM, Hervey-Jumper S, Than KD, Farokhrani
271		A, Lamarca F (2011) Impact of multimodal intraoperative monitoring during
272		correction of symptomatic cervical or cervicothoracic kyphosis. J Neurosurg
273		Spine 14:99-105. https://doi.org/10.3171/2010.9.SPINE1085
274	7.	Langeloo DD, Lelivelt A, Journee HL, Louis Journée H, Slappendel R, de
275		Kleuver M (2003) Transcranial electrical motor-evoked potential monitoring
276		during surgery for spinal deformity: a study of 145 patients. Spine 28:1043-1050.
277		https://doi.org/10.1097/01.BRS.0000061995.75709.78
278	8.	Nathan N, Tabaraud F, Lacroix F, Mouliès D, Viviand X, Lansade A, Terrier G,
279		Feiss P (2003) Influence of propofol concentrations on multipulse transcranial

280		motor evoked potentials. Br J Anaesth 91:493-497.
281		https://doi.org/10.1093/bja/aeg211
282	9.	Kalkman CJ, Drummond JC, Patel PM, Sano T, Chesnut RM (1994) Effects of
283		droperidol, pentobarbital, and ketamine on myogenic transcranial magnetic
284		motor-evoked responses in humans. Neurosurgery 35:1066-1071.
285		https://doi.org/10.1227/00006123-199412000-00008
286	10.	Saponaro González Á, Pérez Lorensu PJ, Chaves Gómez S, Nodarse Medina JF,
287		Torres Dios JÁ (2017) What can we learn from two consecutive cases?
288		Droperidol may abolish TcMEPs. Turk J Anaesthesiol Reanim 45:53-55.
289		https://doi.org/10.5152/TJAR.2016.50336.
290	11.	Minto CF, Schnider TW, Egan TD, Youngs E, Lemmens HJ, Gambus PL, Billard
291		V, Hoke JF, Moore KH, Hermann DJ, Muir KT, Mandema JW, Shafer SL (1997)
292		Influence of age and gender on the pharmacokinetics and pharmacodynamics of
293		remifentanil. I. Model development. Anesthesiology 86:10-23.
294		https://doi.org/10.1097/00000542-199701000-00004

295 12.	Kunisawa T, Nagashima M, Suzuki A, Takahata O, Iwasaki H (2008) Calculating
296	variable 'alpha' for predicting plasma concentrations of steady-state remifentanil.
297	Anaesthesia 63:103-104. https://doi.org/10.1111/j.1365-2044.2007.05391.x.
298 13.	Kunisawa T, Nagashima M, Suzuki A, Takahata O, Iwasaki H (2010) The range
299	of values of "variable alpha" when predicting plasma concentrations and/or effect
300	site concentrations of remifentanil is huge. J Anesth 24:656-657.
301	https://doi.org/10.1007/s00540-010-0961-y.
302 14.	Shafer SL, Siegel LC, Cooke JE, Scott JC (1988) Testing computer-controlled
303	infusion pumps by simulation. Anesthesiology 68:261-266.
304	https://doi.org/10.1097/00000542-198802000-00013
305 15.	Shafer SL, Varvel JR, Aziz N, Scott JC (1990) Pharmacokinetics of fentanyl
306	administered by computer-controlled infusion pump. Anesthesiology
307	73:1091-1102. https://doi.org/10.1097/00000542-199012000-00005
308 16.	Ghaly RF, Stone JL, Levy WJ, Kartha R, Brunner EA, Aldrete JA, Laege R
309	(1991) The effect of neuroleptanalgesia (droperiodol-fentanyl) on motor

310		potentials evoked by transcranial magnetic stimulation in the monkey. J
311		Neurosurg Anesthesiol 3:117-123.
312		https://doi.org/10.1097/00008506-199106000-00006
313	17.	Kobayashi S, Matsuyama Y, Shinomiya K, Kawabata S, Ando M, Kanchiku T,
314		Saito T, Takahashi M, Ito Z, Muramoto A, Fujiwara Y, Kida K, Yamada K, Wada
315		K, Yamamoto N, Satomi K, Tani T (2014) A new alarm point of transcranial
316		electrical stimulation motor evoked potentials for intraoperative spinal cord
317		monitoring: a prospective multicenter study from the Spinal Cord Monitoring
318		Working Group of the Japanese Society for Spine Surgery and Related Research.
319		J Neurosurg Spine 20:102-107. https://doi.org/10.3171/2013.10.SPINE12944.
320	18.	Cassady JF Jr, Lederhaas G, Cancel DD, Cummings RJ, Loveless EA (2000) A
321		randomized comparison of the effects of continuous thoracic epidural analgesia
322		and intravenous patient-controlled analgesia after posterior spinal fusion in
323		adolescents. Reg Anesth Pain Med 25:246-253.
324	19.	O'Hara JF, Jr., Cywinski JB, Tetzlaff JE, Xu M, Gurd AR, Andrish JT (2004) The

325		effect of epidural vs intravenous analgesia for posterior spinal fusion surgery.
326		Paediatr Anaesth 14:1009-1015.
327		https://doi.org/10.1111/j.1460-9592.2004.01387.x.
328	20.	Apfel CC, Cakmakkaya OS, Frings G, Kranke P, Malhotra A, Stader A, Turan A,
329		Biedler A, Kolodzie K (2009) Droperidol has comparable clinical efficacy against
330		both nausea and vomiting. Br J Anaesth 103:359-363.
331		https://doi.org/10.1093/bja/aep177
332	21.	Macario A, Weinger M, Carney S, Kim A (1999) Which clinical anesthesia
333		outcomes are important to avoid? The perspective of patients. Anesth Analg
334		89:652-658.
335	22.	Hamik A, Peroutka SJ (1989) Differential interactions of traditional and novel
336		antiemetics with dopamine D 2 and 5-hydroxytryptamine 3 receptors. Cancer
337		Chemother Pharmacol 24:307-310. https://doi.org/10.1007/BF00304763
338	23.	Heyer EJ, Flood P (2000) Droperidol suppresses spontaneous electrical activity in
339		neurons cultured from ventral midbrain: Implications for neuroleptanesthesia.

340		Brain Res 863:20-24. https://doi.org/10.1016/S0006-8993(00)02066-7
341	24.	Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts
342		clinical and pharmacological potencies of antischizophrenic drugs. Science
343		192:481-483. https://doi.org/10.1126/science.3854
344	25.	Flood P, Coates KM (2002) Droperidol inhibits GABA(A) and neuronal nicotinic
345		receptor activation. Anesthesiology 96:987-993.
346		https://doi.org/10.1097/00000542-200204000-00029
347	26.	Olschewski A, Bräu ME, Hempelmann G, Vogel W, Safronov BV (2000)
348		Differential block of fast and slow inactivating tetrodotoxin-sensitive sodium
349		channels by droperidol in spinal dorsal horn neurons. Anesthesiology
350		92:1667-1676. https://doi.org/10.1097/00000542-200006000-00026
351	27.	Nakayama M, Kanaya N, Ichinose H, Yamamoto S, Namiki A (2003) Intravenous
352		droperidol causes a reduction in the bispectral index in propofol-sedated patients
353		during spinal anesthesia. Anesth Analg 96:765-768.
354		https://doi.org/10.1213/01.ANE.0000048517.98692.53

356	Figure captions
357	Fig. 1 Participant Flow Diagram.
358	TCE-MEP, transcranial electric motor-evoked potential
359	
360	Fig. 2 Box-Plot Diagrams of Transcranial Electric Motor-Evoked Potential Amplitudes of
361	Each Muscle.
362	Transcranial electric motor-evoked potential amplitudes recorded from each muscle after
363	droperidol administration were significantly reduced and recovered to baseline values
364	within 2 hours (T0 and T2 were not significantly different).
365	T0: before droperidol administration.
366	T1: within 1 hour after droperidol administration.
367	T2: 1–2 hours after droperidol administration.
368	*: P < 0.0001. P-values are according to Wilcoxon signed-rank test, with Bonferroni
369	adjustment. APB, abductor pollicis muscle; TA, tibialis anterior muscle; AH, abductor
370	hallucis muscle

Characteristics		n =	n = 34	
Gender male		8	(23.5 %)	
Age (years)		22	[12-80]	
Height (cm)		154.6	[129.6-182.0]	
Weight (kg)		51.2	[30.0-74.1]	
Disease				
	Scoliosis	20	(58.8 %)	
	Kyphosis	10	(29.4 %)	
	Spinal tumor	4	(11.8 %)	
Surgical procedure				
	Posterior spine fusion	25	(73.5 %)	
	Posterior spine fusion + Anterior spine fusion	7	(20.6 %)	
	Tumor resection	2	(5.9 %)	
Droperidol dose (mcg/kg)		21	[16-28]	

1 Table 1. Characteristics of patients and droperidol dose.

2 Data are expressed as median [range] or number (%).

	n		T0		T1		T2	P-value [‡]
Propofol TCI (µg/ml)	34	2.9	[2.5, 3.0]	2.8	[2.6, 3.0]	2.8	[2.6, 3.0]	0.004
Remifentanil (µg/kg/min)	34	0.2	[0.2, 0.2]	0.2	[0.2, 0.2]	0.2	[0.2, 0.2]	0.59
Remifentanil (ng/ml)	34	3.38	[2.78, 4.37]	3.56	[3.09, 4.75]	3.52	[3.09, 4.75]	0.59
Fentanyl (ng/ml)	34	2.11	[0.98, 3.21]	2.06	[1.65, 2.96]	2.03	[1.58, 2.41]	0.85
Heart rate (bpm)	34	61	[54, 75]	65	[59, 73]	69^{\dagger}	[60, 78]	0.006
Mean blood pressure (mmHg)	34	66	[63, 74]	66	[59, 73]	66	[61, 69]	0.34
ETCO ₂ (mmHg)	34	34	[32, 36]	34	[33, 36]	34	[33, 36]	0.75
SpO2 (%)	34	100	[100, 100]	100	[100, 100]	100	[100, 100]	0.18
Body temperature (°C)	34	36.3	[35.9, 36.6]	36.4*	[35.9, 36.6]	36.5 [†]	[36.1, 36.8]	0.0005
Bispectral index	34	50	[42, 57]	51	[45, 55]	53	[45, 59]	0.21

4 Table 2. Anesthetics and demographic data for 3 groups of droperidol administration.

5 Data are expressed as median and interquartile range [25%, 75%].

- 6 T0: before droperidol administration.
- 7 T1: within 1 hour after droperidol administration.
- 8 T2: 1-2 hours after droperidol administration.
- 9 TCI, Target-controlled infusion; ETCO₂, partial pressure of end-tidal carbon dioxide;

10 SpO2, percutaneous oxygen saturation.

11 *P < 0.05 (T1 vs T2). P values are according to Wilcoxon signed-rank test, with

- 12 Bonferroni adjustment.
- 13 $^{\dagger}P < 0.05$ (T0 vs T2). P values are according to Wilcoxon signed-rank test, with 14 Bonferroni adjustment.
- 15 [‡]Friedman test.
- 16

T0 T1 T2 P-value[§] n APB amplitude (µV) 378*† [40, 1029] 645[‡] [115, 1280] < 0.0001 682 [113, 1583] 66 TA 872 [299, 2361] 385*† [150, 1681] 937[‡] [311, 2109] < 0.0001 68 AH [189, 553] 291‡ [136, 609] < 0.0001 68 343 $156^{*\dagger}$ [70, 473]

17 Table 3. TCE-MEP amplitudes for each group.

18 Droperidol significantly decreased the TCE-MEP amplitudes recorded from bilateral

19 APB, TA, and AH muscles.

20 Data are expressed as median and interquartile range [25%, 75%].

21 T0: before droperidol administration.

22 T1: within 1 hour after droperidol administration.

23 T2: 1-2 hours after droperidol administration.

24 TCE-MEP, transcranial electric motor-evoked potential; APB, abductor pollicis muscle;

25 TA, Tibialis anterior muscle; AH, Abductor hallucis muscle.

 $^{*}P < 0.0001$ (T1 vs T0). P values are according to Wilcoxon signed-rank test, with Bonferroni adjustment.

 $^{+}P < 0.0001$ (T1 vs T2). P values are according to Wilcoxon signed-rank test, with Bonferroni adjustment.

30 [‡]P > 0.05 (T0 vs T2). P values are according to Wilcoxon signed-rank test, with

31 Bonferroni adjustment.

32 [§]Friedman test.