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Chapter 1

Introduction

The concept of fuzzy sets was introduced by Zadeh in his most famous paper

[38] published in 1965 as a generalization of ordinary sets. In natural language, we

commonly use indefinite expressions such as “young people,” “old people,” “num-

bers around 10,” and “numbers much greater than 10.” Within the framework of

ordinary set theory, we cannot define the sets corresponding to these expressions

because modifiers such as “young,” “old,” “around 10,” “much greater than 10”

are subjective and have vague boundaries. Fuzzy set theory enables us to mathe-

matically quantify them as fuzzy sets reflecting individual subjective views. In [38],

the concept of fuzzy relations was also introduced as a generalization of ordinary

relations. Fuzzy theory, which uses fuzzy sets, fuzzy relations, fuzzy logic, and other

fuzzy concepts, has been developed by numerous researchers and has been applied

to a wide range of scientific fields (see [2] and the references therein).

In various decision-making situations, comparing and ranking multiple objects

are essentially important. As individuals, companies, and even countries, we often

compare and rank multiple alternatives on the basis of some kind of criterion and

choose the best or a better one from them. In mathematical optimization, we need

to compare the values of an objective function and sometimes to check whether

each element of its domain fulfills constraint inequalities. If the set of objects to be

compared is totally ordered, the comparison is simple for the reason that we can

completely rank the objects. If not, the comparison is complicated. Especially if

the set of objects is not even partially ordered, it becomes more complicated.

For example, the set of all real numbers is totally ordered by the usual “less

than or equal to” relation. Vectors in the n-dimensional Euclidean space with n ≥ 2

are usually compared by the componentwise order, which is not a total order but

1



a partial order on the space. In general, any real vector space is preordered by a

convex cone containing the origin. If the convex cone is pointed, then the space

is partially ordered. When we consider comparing ordinary sets in a real vector

space, we notice that there inconveniently does not exist on the power set of the

space any total order or partial order which is naturally defined. In the area of

set optimization, certain kinds of binary relations called “set relations” are used

to compere the values of a set-valued objective function (see [8, 18, 19, 23]). The

most famous set relations are two types called “l-type” and “u-type” which both are

preorders. Six types of set relations proposed by Kuroiwa, Tanaka, and Ha in [24]

include these two types and have a systematic structure: They are defined based

on all combinations of the universality and existence of elements. The set relations

except for the above two types are not preorders, but it is known that they satisfy

certain order-like properties.

Next, let us turn our eyes to comparing fuzzy sets. There are a large number of

studies discussing how to compare and rank multiple fuzzy sets, particularly fuzzy

numbers (i.e., fuzzy sets in the real line with certain restrictions). Some of the

comparison criteria and ranking methods proposed in these studies are reviewed in

[1, 33, 34]. As the large number of studies implicitly tell us, it is difficult to have a

definitive criterion for comparing fuzzy sets. This is because every criterion focuses

only on a particular aspect of fuzzy sets and hence cannot fit various situations

and demands. In [3], Dubois and Prade proposed four comparison indices for fuzzy

numbers based on possibility theory. These indices jointly describe all of the relative

positions of two fuzzy numbers and thus constitute a candidate for a definitive set

of criteria for the comparison. In [14], Inuiguchi, Ichihashi, and Kume extended the

four indices to define six types of fuzzy relations between fuzzy sets in a general

setting. Some properties of these fuzzy relations were investigated in [14, 16]. In

addition, they were applied to certain fuzzy mathematical programming problems

in [13, 15, 16].

This thesis presents a further study on the above six types of fuzzy relations

of Inuiguchi and others. Its main part is based on my recent paper [10]. We here

consider the fuzzy relations specifically in a preordered vector space. It is shown

that the six types of fuzzy relations are completely related to the six types of set

relations of Kuroiwa and others. In fact, this relationship was hinted before in [16].

We state the relationship explicitly as three theorems with different assumptions.

Furthermore, one of the theorems is applied to the area of fuzzy optimization. As a
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result, it is demonstrated that solving a general fuzzy optimization problem with re-

spect to each of the fuzzy relations is equivalent to solving a certain set optimization

problem with respect to the corresponding set relation or its extension.

The rest of the thesis is organized as follows. Chapter 2 is devoted to the prelimi-

nary knowledge which is necessary for the subsequent parts of the thesis. Chapter 3

is divided into three sections. In Section 3.1, we define six types of possibility-

theoretical fuzzy relations between fuzzy sets and provide some basic properties

of them. In Section 3.2, we describe a relationship of the fuzzy relations to six

types of set relations. In Section 3.3, we apply the described relationship to fuzzy

optimization. Chapter 4 finally concludes the thesis.
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Chapter 2

Preliminaries

We begin by recalling some fundamental concepts and their properties related

to the areas of topological vector space theory, set optimization, fuzzy set theory,

and possibility theory.

2.1 Preordered topological vector space

Let Z be a real vector space. The set of all subsets of Z is called its power set

and is denoted by P(Z). On P(Z), the addition and the scalar multiplication are

defined respectively by

A+B := {a+ b | a ∈ A, b ∈ B} , λA := {λa | a ∈ A}

for A,B ∈ P(Z) and λ ∈ R. In particular, we use the notations z + A = A + z :=

A + {z} for z ∈ Z, −A := (−1)A, and A − B := A + (−B). Note that A − B is

different from the relative complement A \B := {z | z ∈ A, z /∈ B}.
A subset C of Z is called a cone if λC ⊂ C for all λ > 0 and a convex cone if

it is a cone and C + C ⊂ C. Any convex cone C containing the origin 0Z defines a

preorder (i.e., reflexive and transitive relation) on Z by

z ≤C z′ :⇐⇒ z′ − z ∈ C

for z, z′ ∈ Z. Thus the space Z is preordered by the convex cone C. The preorder

≤C is compatible with the linear structure of Z in the sense that

z ≤C z′ =⇒ z + z′′ ≤C z′ + z′′, λz ≤C λz′
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for every z, z′, z′′ ∈ Z and λ > 0. If C is pointed (i.e., C ∩ (−C) = {0Z}), then ≤C is

antisymmetric and hence becomes a partial order. Given z ∈ Z, two order intervals

are defined as

[z,+∞)C := {z′ ∈ Z | z ≤C z′} , (−∞, z]C := {z′ ∈ Z | z′ ≤C z} .

Next, let Z be a real topological vector space. This means the vector space Z

is equipped with a topology such that the addition Z × Z 3 (z, z′) 7→ z + z′ ∈ Z

and the scalar multiplication R × Z 3 (λ, z) 7→ λz ∈ Z are both continuous. The

topological interior and the topological closure of a set A are denoted by intA

and clA, respectively. It is known that there exists a neighborhood base B of 0Z

satisfying the following properties (see [9, p. 47]):

(i) Every V ∈ B is closed and balanced (i.e., λV ⊂ V for all λ ∈ [−1, 1]).

(ii) For any V ∈ B, there exists V ′ ∈ B such that V ′ + V ′ ⊂ V .

If we can take such a neighborhood base with an additional condition that every

V ∈ B is convex (i.e., λV + (1− λ)V ⊂ V for all λ ∈ (0, 1)), then the space is said

to be locally convex. A set A is said to be compact if its every open cover has a

finite subcover. If Z is Hausdorff (i.e., any two distinct points can be separated by

disjoint neighborhoods), then every compact subset of Z is closed.

A function f : Z → R is said to be

(i) upper semicontinuous at z0 ∈ Z if for any α > f(z0), there exists a neighbor-

hood V of z0 such that f(z) ≤ α for all z ∈ V .

(ii) lower semicontinuous at z0 ∈ Z if for any α < f(z0), there exists a neighbor-

hood V of z0 such that f(z) ≥ α for all z ∈ V .

(iii) upper semicontinuous (or lower semicontinuous) if it is so at every z0 ∈ Z.

It holds that f is upper (resp., lower) semicontinuous if and only if {z ∈ Z | f(z) ≥ α}
(resp., {z ∈ Z | f(z) ≤ α}) is closed for every α ∈ R. As is well known, an upper

(resp., lower) semicontinuous function defined on a compact set always has a maxi-

mum (resp., minimum).

A set-valued mapping is, as the name suggests, a mapping whose values are sets.

Let X be a topological space. Then a set-valued mapping F : X → P(Z) is said to

be
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(i) upper continuous at x0 ∈ X if for any open set O in Z with F (x0) ⊂ O, there

exists a neighborhood U of x0 such that F (x) ⊂ O for all x ∈ U .

(ii) lower continuous at x0 ∈ X if for any open set O in Z with F (x0) ∩ O 6= ∅,
there exists a neighborhood U of x0 such that F (x) ∩O 6= ∅ for all x ∈ U .

(iii) upper continuous (or lower continuous) if it is so at every x0 ∈ X.

These kinds of continuities are unique to set-valued mappings. Intuitively speaking,

the upper (resp., lower) continuity of F requires that the set F (x) cannot suddenly

expand (resp., shrink) as x changes.

In this section, we have mentioned several concepts related to the linearity and

topology of the space in the respective settings. Throughout the rest of the thesis,

we set Z as a real Hausdorff topological vector space preordered by a convex cone

C with 0Z ∈ C 6= Z.

2.2 Set relations in set optimization

Set relations are extensions of the vector preorder ≤C to the power set P(Z)

and are mainly used to compare the values of a set-valued objective function in set

optimization (see [8, 18, 19, 23]). The original idea of six types of set relations can

be found in Kuroiwa, Tanaka, and Ha’s paper [24]. The relationship between two

sets A and B in the sense that A is dominated by B from above or A dominates B

from below is classified as follows:

(i) A ⊂
⋂

b∈B(b− C), or equivalently
⋂

a∈A(a+ C) ⊃ B.

(ii) A ∩
(⋂

b∈B(b− C)
)
6= ∅.

(iii)
(⋂

a∈A(a+ C)
)
∩B 6= ∅.

(iv) A+ C ⊃ B.

(v) A ⊂ B − C.

(vi) A ∩ (B − C) 6= ∅, or equivalently (A+ C) ∩B 6= ∅.

This classification gives the following definition of set relations, where the superscript

numbering is the same as originally employed in [12]. The letters L and U stand for

“lower” and “upper,” respectively.
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Definition 2.1. Six types of set relations �(∗)
C (∗ = 1, 2L, 2U, 3L, 3U, 4) are defined

by

A �(1)
C B :⇐⇒ ∀a ∈ A ∀b ∈ B : a ≤C b,

A �(2L)
C B :⇐⇒ ∃a ∈ A ∀b ∈ B : a ≤C b,

A �(2U)
C B :⇐⇒ ∃b ∈ B ∀a ∈ A : a ≤C b,

A �(3L)
C B :⇐⇒ ∀b ∈ B ∃a ∈ A : a ≤C b,

A �(3U)
C B :⇐⇒ ∀a ∈ A ∃b ∈ B : a ≤C b,

A �(4)
C B :⇐⇒ ∃a ∈ A ∃b ∈ B : a ≤C b

for A,B ∈ P(Z).

Here, we assume “∀z ∈ ∅ : Q(z)” is true and “∃z ∈ ∅ : Q(z)” is false for every

propositional function Q. If A = ∅ and B 6= ∅ for example, then A �(∗)
C B holds for

∗ = 1, 2U, 3U and does not hold for ∗ = 2L, 3L, 4.

The set relation �(∗)
C is transitive for ∗ = 1, 2L, 2U, 3L, 3U and a preorder only

for ∗ = 3L, 3U . For this reason, �(3L)
C and �(3U)

C especially play key roles in many

existing studies. The propositions below describe four basic properties of the six

types of set relations.

Proposition 2.1 ([24]). Let A,B ∈ P(Z) be nonempty. Then the following impli-

cations hold:

A �(1)
C B =⇒ A �(2L)

C B =⇒ A �(3L)
C B =⇒ A �(4)

C B,

A �(1)
C B =⇒ A �(2U)

C B =⇒ A �(3U)
C B =⇒ A �(4)

C B.

Proof. The implications are derived from Definition 2.1 and the following properties

of the universal and existential quantifiers ∀,∃:

S 6= ∅, ∀z ∈ S : Q(z) =⇒ ∃z ∈ S : Q(z),

∃z ∈ S ∀z′ ∈ S ′ : Q′(z, z′) =⇒ ∀z′ ∈ S ′ ∃z ∈ S : Q′(z, z′)

for every sets S, S ′ and propositional functions Q on S and Q′ on S × S ′.

Proposition 2.2 ([25]). Let A,B ∈ P(Z), z ∈ Z, and λ > 0. Then the following

implication holds for each ∗ = 1, 2L, 2U, 3L, 3U, 4:

A �(∗)
C B =⇒ A+ z �(∗)

C B + z, λA �(∗)
C λB.
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Proof. The compatibility of ≤C with the linear structure of Z and Definition 2.1

immediately give the implication to be proved.

Proposition 2.3 ([11]). Let A,B ∈ P(Z). Then the following equivalences hold:

A �(1)
C B ⇐⇒ B �(1)

−C A, A �(2L)
C B ⇐⇒ B �(2U)

−C A,

A �(2U)
C B ⇐⇒ B �(2L)

−C A, A �(3L)
C B ⇐⇒ B �(3U)

−C A,

A �(3U)
C B ⇐⇒ B �(3L)

−C A, A �(4)
C B ⇐⇒ B �(4)

−C A.

Proof. For any a, b ∈ Z, a ≤C b is equivalent to b ≤−C a because b − a ∈ C can

be deformed into a − b ∈ −C. We therefore obtain the desired equivalences from

Definition 2.1.

Proposition 2.4 ([10]). Let A,A′, B,B′ ∈ P(Z). If

(i) A ⊃ A′ and B ⊃ B′ for ∗ = 1,

(ii) A ⊂ A′ and B ⊃ B′ for ∗ = 2L, 3L,

(iii) A ⊃ A′ and B ⊂ B′ for ∗ = 2U, 3U ,

(iv) A ⊂ A′ and B ⊂ B′ for ∗ = 4,

then

A �(∗)
C B =⇒ A′ �(∗)

C B′.

Proof. For every sets S, S ′ with S ⊃ S ′ and propositional function Q on S,

∀z ∈ S : Q(z) =⇒ ∀z ∈ S ′ : Q(z),

∃z ∈ S ′ : Q(z) =⇒ ∃z ∈ S : Q(z).

The conclusion follows from Definition 2.1 and these facts.

Next, let us introduce a setting for set optimization. A set optimization prob-

lem is an optimization problem whose objective function is a set-valued mapping.

Specifically, it is given in a general form as

(SOP)

minimize F (x)

subject to x ∈ X

for a nonempty set X and a mapping F : X → P(Z). We need to determine the

meaning of “minimization.” In the literature, there are the following three solution

concepts for (SOP).
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Definition 2.2 ([18] for (i)–(ii), [7] for (iii)). Let � be a binary relation on P(Z).

An element x̄ ∈ X is called

(i) an optimal solution of (SOP) with respect to � if

∀x ∈ X : (F (x) � F (x̄) =⇒ F (x̄) � F (x)) .

(ii) a strongly optimal solution of (SOP) with respect to � if

∀x ∈ X \ {x̄} : F (x̄) � F (x).

(iii) a strictly optimal solution of (SOP) with respect to � if

∄x ∈ X \ {x̄} : F (x) � F (x̄).

It is easily verified that any strongly optimal or strictly optimal solution is also

an optimal solution. In actual use, the relation � in this definition is substituted

with each of the set relations.

At the end of this section, we mention a scalarization technique for sets. Scalar-

ization is considered to be a powerful tool for handling set relations (see [6, 20,

25, 30]). In [25], two kinds of scalarizing functions for sets are defined for each

∗ = 1, 2L, 2U, 3L, 3U, 4:

I
(∗)
k,B(A) := inf

{
t ∈ R

∣∣∣ A �(∗)
C B + tk

}
,

S
(∗)
k,B(A) := sup

{
t ∈ R

∣∣∣ B + tk �(∗)
C A

}
where k ∈ intC and A,B ∈ P(Z). By using these functions, we can measure the

relative position between sets A and B with respect to each set relation. In [36, 37],

calculation algorithms of the value I
(∗)
k,B(A) in certain polyhedral cases are discussed.

2.3 Fuzzy set and fuzzy relation

Fuzzy sets are a generalization of ordinary sets originated by Zadeh [38]. A fuzzy

set Ã in Z is uniquely determined by a function µÃ : Z → [0, 1]. The value µÃ(z)

represents the grade of membership of z in Ã, and hence µÃ is called the membership

function of Ã. In ordinary set theory, the characteristic function of a set A in Z is

given as

χA : Z → {0, 1} , χA(z) :=

1 (z ∈ A)

0 (z /∈ A)
.

10



This is a special case of the membership function of a fuzzy set. Ordinary sets are

usually called crisp sets in fuzzy set theory.

The set of all fuzzy sets in Z is denoted by F(Z). Let Ã, B̃ ∈ F(Z). We say

(i) Ã is equal to B̃, written as Ã = B̃, if µÃ(z) = µB̃(z) for all z ∈ Z.

(ii) Ã is included in B̃, written as Ã ⊂ B̃, if µÃ(z) ≤ µB̃(z) for all z ∈ Z.

The complement of Ã is denoted by Ãc and is defined by

µÃc(z) := 1− µÃ(z), z ∈ Z.

For each α ∈ [0, 1], the α-cut (or α-level set) of Ã is defined as

[Ã]α :=

{z ∈ Z | µÃ(z) ≥ α} (α ∈ (0, 1])

cl {z ∈ Z | µÃ(z) > 0} (α = 0)
.

Clearly, α ≤ β for α, β ∈ [0, 1] implies [Ã]α ⊃ [Ã]β. We refer, for convenience, to

the set-valued mapping

[0, 1] 3 α 7→ [Ã]α ∈ P(Z)

as the cut mapping of Ã. The translation Ã+z for z ∈ Z and the scalar multiplication

λÃ for λ 6= 0 are defined by

µÃ+z(z
′) := µÃ(z

′ − z), µλÃ(z
′) := µÃ

(
1

λ
z′
)
, z′ ∈ Z.

Then [Ã+ z]α = [Ã]α + z and [λÃ]α = λ[Ã]α hold for every α ∈ [0, 1].

Moreover, a fuzzy set Ã in Z is said to be

(i) normal if there exists z ∈ Z such that µÃ(z) = 1.

(ii) closed if its α-cut is closed for every α ∈ [0, 1].

(iii) compact if its α-cut is compact for every α ∈ [0, 1].

(iv) convex if its α-cut is convex for every α ∈ [0, 1].

(v) strictly convex if

min {µÃ(z), µÃ(z
′)} ∈ (0, 1) =⇒ µÃ(λz + (1− λ)z′) > min {µÃ(z), µÃ(z

′)} ,

min {µÃ(z), µÃ(z
′)} = 1 =⇒ µÃ(λz + (1− λ)z′) = 1

for every z, z′ ∈ Z with z 6= z′ and λ ∈ (0, 1).
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We easily notice that the normality of a fuzzy set is equivalent to the nonemptiness

of all its α-cuts. It is known that a fuzzy set Ã is convex if and only if its membership

function is quasiconcave, i.e.,

µÃ(λz + (1− λ)z′) ≥ min {µÃ(z), µÃ(z
′)}

for every z, z′ ∈ Z and λ ∈ (0, 1). Consequently, the strict convexity of a fuzzy set is

a stronger condition than its convexity. Normal, convex, and compact fuzzy sets in

R can be viewed as a generalization of real numbers and are called fuzzy numbers.

We remark that the definition of a fuzzy number differs a little depending on the

literature.

The following two propositions reveal sufficient conditions for the cut mapping

of a fuzzy set satisfying each continuity of a set-valued mapping (cf. [10, Proposi-

tions 2.2 and 2.3]).

Proposition 2.5. If Ã ∈ F(Z) is compact, then the cut mapping of Ã is upper

continuous.

Proof. Fix any α ∈ [0, 1] and open set O in Z with [Ã]α ⊂ O. If [Ã]0 ⊂ O, then we

have [Ã]β ⊂ [Ã]0 ⊂ O for all β ∈ [0, 1].

Assume that [Ã]0 6⊂ O. Now, the membership function µÃ is upper semicontin-

uous because the compactness of Ã requires its closedness (by the Hausdorffness of

the space), and [Ã]0\O is a nonempty compact set. We can hence take z̄ maximizing

µÃ on [Ã]0 \O. Since z̄ /∈ O ⊃ [Ã]α, U := (µÃ(z̄), 1] is a neighborhood of α. For any

β ∈ U , it follows from the maximality of µÃ(z̄) that [Ã]β \O = ∅ and thus [Ã]β ⊂ O.

Therefore, the cut mapping of Ã is upper continuous at α.

Proposition 2.6. If Ã ∈ F(Z) is normal and strictly convex, then the cut mapping

of Ã is lower continuous.

Proof. It is easily verified that the cut mapping of Ã is lower continuous at 1 by

the inclusion [Ã]1 ⊂ [Ã]β for all β ∈ [0, 1]. Let α ∈ [0, 1) and O be any open set in

Z with [Ã]α ∩ O 6= ∅. Then it suffices to prove that there exists z̄ ∈ O satisfying

µÃ(z̄) > α. In fact, for such a z̄, putting U := [0, µÃ(z̄)) as a neighborhood of α we

have z̄ ∈ [Ã]β ∩ O for all β ∈ U . This directly means the lower continuity of the

mapping at α.

When α = 0, from [Ã]0 ∩ O 6= ∅ and the definition of the 0-cut we obtain the

desirable z̄. When α ∈ (0, 1), take z ∈ [Ã]α∩O. If µÃ(z) > α, let z̄ := z. Otherwise,

µÃ(z) = α holds. Choose z′ ∈ Z with µÃ(z
′) = 1 (by the normality of Ã) and a
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sufficiently small λ ∈ (0, 1) with z̄ := λz′ + (1− λ)z ∈ O. Since Ã is strictly convex,

we deduce µÃ(z̄) > min {µÃ(z
′), µÃ(z)} = α, which completes the proof.

In Zadeh’s paper [38], the concept of fuzzy relations is proposed as well as that

of fuzzy sets. A (binary) fuzzy relation on Z is defined to be a fuzzy set in the

Cartesian product Z×Z. Given a fuzzy relation R̃ on Z and elements z, z′ ∈ Z, the

value µR̃(z, z
′) ∈ [0, 1] represents the degree to which the relation between z and z′

holds. Since an ordinary relation (called a crisp relation in fuzzy set theory) either

holds or does not hold, fuzzy relations are a generalization of ordinary relations. In

dealing with fuzzy relations, a parameter α ∈ [0, 1] is often used. The α-cut of any

fuzzy relation R̃ on Z naturally defines a crisp relation on Z, setting

zR̃αz
′ :⇐⇒ (z, z′) ∈ [R̃]α ⇐⇒ µR̃(z, z

′) ≥ α

for z, z′ ∈ Z. Note that in the next chapter, we will mainly consider some fuzzy

relations on F(Z) instead of Z.

2.4 Cone-notions

This section deals with some notions prefixed by a convex cone K in Z with

0Z ∈ K. The convex cone K will later be substituted with C and −C.

We say that

(i) a set A in Z is K-compact if its every open cover of the form {Oi +K}i∈I
where Oi, i ∈ I are open sets has a finite subcover.

(ii) a fuzzy set Ã in Z is K-compact if its α-cut is K-compact for every α ∈ [0, 1].

We also say that a set-valued mapping F : X → P(Z), where X is a topological

space, is

(i) K-upper continuous at x0 ∈ X if for any open set O in Z with F (x0) ⊂ O,

there exists a neighborhood U of x0 such that F (x) ⊂ O +K for all x ∈ U .

(ii) K-lower continuous at x0 ∈ X if for any open set O in Z with F (x0)∩O 6= ∅,
there exists a neighborhood U of x0 such that F (x) ∩ (O − K) 6= ∅ for all

x ∈ U .

(iii) K-upper continuous (or K-lower continuous) if it is so at every x0 ∈ X.
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The above definitions of cone-compactness of a set and cone-continuities of a set-

valued mapping are based on [27, Definition 3.1] and [5, Definition 2.5.16], respec-

tively.

Roughly speaking, each K-notion leaves the directions of K out of consideration

as compared with the corresponding unprefixed notion. The following proposition

reflects this aspect.

Proposition 2.7. Let K be a convex cone in Z with 0Z ∈ K.

(i) Every compact set in Z is K-compact.

(ii) Every compact fuzzy set in Z is K-compact.

(iii) Every upper continuous (resp., lower continuous) set-valued mapping from a

topological space to P(Z) is K-upper continuous (resp., K-lower continuous).

Proof. Comparing the definitions of K-notions and the corresponding unprefixed

notions, we can easily check that these statements are valid.

The classes of fuzzy sets whose cut mappings satisfy each cone-continuity will

play a significant role in stating a theorem in the next chapter. We give an example

to help our understanding of them.

Example 2.1 ([10]). Consider the fuzzy sets Ã1, Ã2, Ã3, Ã4 in R whose membership

functions are illustrated in Figure 2.1 and the set of all nonnegative real numbers

R+ as a convex cone in R. Then one can see that

(i) the cut mappings of Ã1 and Ã2 are not R+-upper continuous at 0.5, while they

are R+-lower continuous (and even lower continuous).

(ii) the cut mappings of Ã3 and Ã4 are not R+-lower continuous at 0.5, while they

are R+-upper continuous (and even upper continuous).

In addition, the fuzzy sets Ã1 and Ã2 are not compact, Ã3 is not strictly convex,

and Ã4 is not normal. These are consistent with Propositions 2.5–2.7.

2.5 Possibility and necessity measures

First introduced by Zadeh [40], possibility theory has been developed especially

by the contribution of Dubois and Prade (e.g., [2, 4]). The key ideas in this theory

are possibility and necessity.
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Figure 2.1: The membership functions of four fuzzy sets in R whose cut mappings

are not R+-upper continuous or not R+-lower continuous ([10]).

For A,B ∈ P(Z), we put

ΠA(B) :=

1 (A ∩B 6= ∅)

0 (A ∩B = ∅)
, NA(B) :=

1 (A ⊂ B)

0 (A 6⊂ B)
.

The quantity ΠA(B) indicates whether z ∈ B possibly holds or not when z ∈ A

holds, and hence ΠA : P(Z) → {0, 1} is called a possibility measure. The quantity

NA(B) indicates whether z ∈ B necessarily holds or not when z ∈ A holds, and

hence NA : P(Z) → {0, 1} is called a necessity measure. We have another expression

of these quantities

ΠA(B) = sup
z∈Z

min {χA(z), χB(z)} ,

NA(B) = inf
z∈Z

max {1− χA(z), χB(z)} .

By replacing the characteristic functions χA and χB with the membership functions

of fuzzy sets, we extend the above two measures to the case of fuzzy sets.

Definition 2.3 ([3]). Let Ã ∈ F(Z). A possibility measure ΠÃ : F(Z) → [0, 1] and

a necessity measure NÃ : F(Z) → [0, 1] are defined by

ΠÃ(B̃) := sup
z∈Z

min {µÃ(z), µB̃(z)} , NÃ(B̃) := inf
z∈Z

max {1− µÃ(z), µB̃(z)}
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for B̃ ∈ F(Z).

From this definition, we easily find the duality

ΠÃ(B̃) = 1−NÃ(B̃
c), NÃ(B̃) = 1− ΠÃ(B̃

c)

and the monotonicity

B̃ ⊂ B̃′ =⇒ ΠÃ(B̃) ≤ ΠÃ(B̃
′), NÃ(B̃) ≤ NÃ(B̃

′)

for Ã, B̃, B̃′ ∈ F(Z).

Proposition 2.8 ([3]). Let Ã, B̃ ∈ F(Z). If Ã is normal, then

NÃ(B̃) ≤ ΠÃ(B̃).

Proof. By the above duality, it is sufficient to prove

ΠÃ(B̃) + ΠÃ(B̃
c) ≥ 1.

We have

ΠÃ(B̃) + ΠÃ(B̃
c) = sup

z∈Z
min {µÃ(z), µB̃(z)}+ sup

z∈Z
min {µÃ(z), 1− µB̃(z)}

≥ sup
z∈Z

(min {µÃ(z), µB̃(z)}+min {µÃ(z), 1− µB̃(z)})

= sup
z∈Z

min {2µÃ(z), µÃ(z) + µB̃(z), µÃ(z) + 1− µB̃(z), 1}

≥ sup
z∈Z

µÃ(z).

Since Ã is normal, supz∈Z µÃ(z) = 1 holds. The proof is thus completed.

Using the possibility and necessity measures, we can extend the order intervals

[z,+∞)C and (−∞, z]C for z ∈ Z to obtain four kinds of interval-like fuzzy sets.

For Ã, B̃ ∈ F(Z), we define

(i) a fuzzy set consisting of elements possibly greater than Ã

[Ã,+∞)ΠC ∈ F(Z), µ[Ã,+∞)ΠC
(z) := ΠÃ((−∞, z]C) = sup

z′∈Z
z′≤Cz

µÃ(z
′).

(ii) a fuzzy set consisting of elements necessarily greater than Ã

[Ã,+∞)NC ∈ F(Z), µ[Ã,+∞)NC
(z) := NÃ((−∞, z]C) = inf

z′∈Z
z′ ̸≤Cz

(1− µÃ(z
′)) .
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(iii) a fuzzy set consisting of elements possibly less than B̃

(−∞, B̃]ΠC ∈ F(Z), µ(−∞,B̃]ΠC
(z) := ΠB̃([z,+∞)C) = sup

z′∈Z
z≤Cz′

µB̃(z
′).

(iv) a fuzzy set consisting of elements necessarily less than B̃

(−∞, B̃]NC ∈ F(Z), µ(−∞,B̃]NC
(z) := NB̃([z,+∞)C) = inf

z′∈Z
z ̸≤Cz′

(1− µB̃(z
′)) .

Note that the last equalities in each item are valid because ∅ 6= C 6= Z ensures

∅ 6= (−∞, z]C 6= Z and ∅ 6= [z,+∞)C 6= Z for every z ∈ Z.

17





Chapter 3

Possibility-theoretical indices for

comparing fuzzy sets

This chapter focuses on six types of order-like fuzzy relations on F(Z) associated

with possibility theory. The idea of such relations was originally proposed by Dubois

and Prade [3] to evaluate all of the relative positions of two fuzzy numbers. Inuiguchi,

Ichihashi, and Kume [14] then defined the six types of fuzzy relations in a general

setting. We here consider a vector preorder version of these relations. In [14, 16],

some properties of these kinds of relations are investigated. Adding to them, we

describe further results involving the relations newly shown in [10].

3.1 Definition and basic properties

The definition of the above-mentioned fuzzy relations given by Inuiguchi, Ichi-

hashi, and Kume is the following.

Definition 3.1 ([14]). Let R̃ be a fuzzy relation on Z. Six types of fuzzy relations

□f □l R̃, ♢f □l R̃, ♢l □f R̃, □l ♢f R̃, □f ♢l R̃, ♢f ♢l R̃ on F(Z) are defined by

µ□f □l R̃(Ã, B̃) := inf
a,b∈Z

max {1− µÃ(a), 1− µB̃(b), µR̃(a, b)} ,

µ♢f □l R̃(Ã, B̃) := sup
a∈Z

inf
b∈Z

min {µÃ(a),max {1− µB̃(b), µR̃(a, b)}} ,

µ♢l □f R̃(Ã, B̃) := sup
b∈Z

inf
a∈Z

min {max {1− µÃ(a), µR̃(a, b)} , µB̃(b)} ,

µ□l ♢f R̃(Ã, B̃) := inf
b∈Z

sup
a∈Z

max {min {µÃ(a), µR̃(a, b)} , 1− µB̃(b)} ,

µ□f ♢l R̃(Ã, B̃) := inf
a∈Z

sup
b∈Z

max {1− µÃ(a),min {µB̃(b), µR̃(a, b)}} ,
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µ♢f ♢l R̃(Ã, B̃) := sup
a,b∈Z

min {µÃ(a), µB̃(b), µR̃(a, b)}

for Ã, B̃ ∈ F(Z).

By replacing the fuzzy relation R̃ with the vector preorder ≤C , we obtain the

next definition.

Definition 3.2 ([10]). Six types of fuzzy relations ≾(∗)
C (∗ = 1, 2L, 2U, 3L, 3U, 4) on

F(Z) are defined by

µ≾(1)
C
(Ã, B̃) := inf

a,b∈Z
a≰Cb

max {1− µÃ(a), 1− µB̃(b)} ,

µ≾(2L)
C

(Ã, B̃) := sup
a∈Z

inf
b∈Z
a≰Cb

min {µÃ(a), 1− µB̃(b)} ,

µ≾(2U)
C

(Ã, B̃) := sup
b∈Z

inf
a∈Z
a≰Cb

min {1− µÃ(a), µB̃(b)} ,

µ≾(3L)
C

(Ã, B̃) := inf
b∈Z

sup
a∈Z
a≤Cb

max {µÃ(a), 1− µB̃(b)} ,

µ≾(3U)
C

(Ã, B̃) := inf
a∈Z

sup
b∈Z
a≤Cb

max {1− µÃ(a), µB̃(b)} ,

µ≾(4)
C
(Ã, B̃) := sup

a,b∈Z
a≤Cb

min {µÃ(a), µB̃(b)}

for Ã, B̃ ∈ F(Z).

Note here that by ∅ 6= C 6= Z, all of the infimums and supremums above have

definite meanings. These fuzzy relations are “possibility-theoretical” as shown in

the following proposition. For convenience, we refer to these fuzzy relations as PN

fuzzy relations, which come from the words “possibility” and “necessity.”

Proposition 3.1 ([10], cf. [14]). Let Ã, B̃ ∈ F(Z). Then the following equalities

hold:

µ≾(1)
C
(Ã, B̃) = NÃ((−∞, B̃]NC ) = NB̃([Ã,+∞)NC ),

µ≾(2L)
C

(Ã, B̃) = ΠÃ((−∞, B̃]NC ),

µ≾(2U)
C

(Ã, B̃) = ΠB̃([Ã,+∞)NC ),

µ≾(3L)
C

(Ã, B̃) = NB̃([Ã,+∞)ΠC),

µ≾(3U)
C

(Ã, B̃) = NÃ((−∞, B̃]ΠC),

µ≾(4)
C
(Ã, B̃) = ΠÃ((−∞, B̃]ΠC) = ΠB̃([Ã,+∞)ΠC).
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Proof. We first prove a general fact that

max

{
α, inf

z∈S
f(z)

}
= inf

z∈S
max {α, f(z)}

holds for every nonempty set S, function f : S → R, and α ∈ R. Let β :=

max {α, infz∈S f(z)} and γ := infz∈S max {α, f(z)}. We have β ≤ max {α, f(z)}
for all z ∈ S and hence β ≤ γ. If β < γ, then there exists z̄ ∈ S such that f(z̄) < γ.

It follows that max {α, f(z̄)} < γ, but this is impossible. Therefore, β = γ.

Using the above fact, we deduce

NÃ((−∞, B̃]NC ) = inf
z∈Z

max
{
1− µÃ(z), µ(−∞,B̃]NC

(z)
}

= inf
z∈Z

max

1− µÃ(z), inf
z′∈Z
z ̸≤Cz′

(1− µB̃(z
′))


= inf

z∈Z
inf
z′∈Z
z≰Cz′

max {1− µÃ(z), 1− µB̃(z
′)}

= µ≾(1)
C
(Ã, B̃).

The other desired equalities are similarly proved.

Consequently, the values µ≾(∗)
C
(Ã, B̃) (∗ = 1, 2L, 2U, 3L, 3U, 4) can be interpreted

as follows:

(i) µ≾(1)
C
(Ã, B̃) is the necessity that Ã is necessarily less than B̃ (or equivalently,

the necessity that B̃ is necessarily greater than Ã).

(ii) µ≾(2L)
C

(Ã, B̃) is the possibility that Ã is necessarily less than B̃.

(iii) µ≾(2U)
C

(Ã, B̃) is the possibility that B̃ is necessarily greater than Ã.

(iv) µ≾(3L)
C

(Ã, B̃) is the necessity that B̃ is possibly greater than Ã.

(v) µ≾(3U)
C

(Ã, B̃) is the necessity that Ã is possibly less than B̃.

(vi) µ≾(4)
C
(Ã, B̃) is the possibility that Ã is possibly less than B̃ (or equivalently,

the possibility that B̃ is possibly greater than Ã).

The propositions below show three basic properties of the PN fuzzy relations.
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Proposition 3.2 ([10], cf. [14]). Let Ã, B̃ ∈ F(Z) be normal. Then the following

inequalities hold:

µ≾(1)
C
(Ã, B̃) ≤ µ≾(2L)

C
(Ã, B̃) ≤ µ≾(3L)

C
(Ã, B̃) ≤ µ≾(4)

C
(Ã, B̃),

µ≾(1)
C
(Ã, B̃) ≤ µ≾(2U)

C
(Ã, B̃) ≤ µ≾(3U)

C
(Ã, B̃) ≤ µ≾(4)

C
(Ã, B̃).

Proof. We check the first line of the inequalities and omit the second line. Since Ã

and B̃ are normal, by Propositions 2.8 and 3.1

µ≾(1)
C
(Ã, B̃) = NÃ((−∞, B̃]NC ) ≤ ΠÃ((−∞, B̃]NC ) = µ≾(2L)

C
(Ã, B̃),

µ≾(3L)
C

(Ã, B̃) = NB̃([Ã,+∞)ΠC) ≤ ΠB̃([Ã,+∞)ΠC) = µ≾(4)
C
(Ã, B̃).

Suppose that µ≾(2L)
C

(Ã, B̃) > µ≾(3L)
C

(Ã, B̃) and let α := 1
2
µ≾(2L)

C
(Ã, B̃)+ 1

2
µ≾(3L)

C
(Ã, B̃).

Then for some ā, b̄ ∈ Z, we have

inf
b∈Z
ā≰Cb

min {µÃ(ā), 1− µB̃(b)} > α > sup
a∈Z
a≤C b̄

max
{
µÃ(a), 1− µB̃(b̄)

}
.

This implies

µÃ(ā) > sup
a∈Z
a≤C b̄

µÃ(a), inf
b∈Z
ā≰Cb

(1− µB̃(b)) > 1− µB̃(b̄).

These inequalities deny both ā ≤C b̄ and ā ≰C b̄, which is a contradiction. Therefore,

µ≾(2L)
C

(Ã, B̃) ≤ µ≾(3L)
C

(Ã, B̃).

Proposition 3.3 ([10]). Let Ã, B̃ ∈ F(Z), z ∈ Z, and λ > 0. Then the following

equalities hold for each ∗ = 1, 2L, 2U, 3L, 3U, 4:

µ≾(∗)
C
(Ã+ z, B̃ + z) = µ≾(∗)

C
(Ã, B̃), µ≾(∗)

C
(λÃ, λB̃) = µ≾(∗)

C
(Ã, B̃).

Proof. By the compatibility of ≤C with the linear structure of Z,

a′ + z ≤C b′ + z ⇐⇒ a′ ≤C b′, λa′ ≤C λb′ ⇐⇒ a′ ≤C b′

for every a′, b′ ∈ Z. Thus,

µ≾(4)
C
(Ã+ z, B̃ + z) = sup

a,b∈Z
a≤Cb

min {µÃ(a− z), µB̃(b− z)}

= sup
a′,b′∈Z

a′+z≤Cb′+z

min {µÃ(a
′), µB̃(b

′)} = µ≾(4)
C
(Ã, B̃),
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µ≾(4)
C
(λÃ, λB̃) = sup

a,b∈Z
a≤Cb

min

{
µÃ

(
1

λ
a

)
, µB̃

(
1

λ
b

)}
= sup

a′,b′∈Z
λa′≤Cλb′

min {µÃ(a
′), µB̃(b

′)} = µ≾(4)
C
(Ã, B̃).

The proofs for the other types are the same.

Proposition 3.4 (cf. [14]). Let Ã, B̃ ∈ F(Z). Then the following equalities hold:

µ≾(1)
C
(Ã, B̃) = µ≾(1)

−C
(B̃, Ã), µ≾(2L)

C
(Ã, B̃) = µ≾(2U)

−C
(B̃, Ã),

µ≾(2U)
C

(Ã, B̃) = µ≾(2L)
−C

(B̃, Ã), µ≾(3L)
C

(Ã, B̃) = µ≾(3U)
−C

(B̃, Ã),

µ≾(3U)
C

(Ã, B̃) = µ≾(3L)
−C

(B̃, Ã), µ≾(4)
C
(Ã, B̃) = µ≾(4)

−C
(B̃, Ã).

Proof. For every a, b ∈ Z,

b ≤−C a ⇐⇒ a ≤C b, b ≰−C a ⇐⇒ a ≰C b.

Thus,

µ≾(2U)
−C

(B̃, Ã) = sup
a∈Z

inf
b∈Z

b≰−Ca

min {1− µB̃(b), µÃ(a)}

= sup
a∈Z

inf
b∈Z
a≰Cb

min {µÃ(a), 1− µB̃(b)} = µ≾(2L)
C

(Ã, B̃),

µ≾(3U)
−C

(B̃, Ã) = inf
b∈Z

sup
a∈Z

b≤−Ca

max {1− µB̃(b), µÃ(a)}

= inf
b∈Z

sup
a∈Z
a≤Cb

max {µÃ(a), 1− µB̃(b)} = µ≾(3L)
C

(Ã, B̃).

The others are proved in the same way.

3.2 Relationship to set relations

In this section, we show that the six types of PN fuzzy relations are completely

related to the six types of set relations. That is the reason why we intentionally

employ the same superscript numbering for both groups of relations.

Theorem 3.1 ([10]). Let Ã, B̃ ∈ F(Z). Then the following equalities hold:

µ≾(1)
C
(Ã, B̃) = sup

{
α ∈ [0, 1]

∣∣∣ [Ã]1−α �(1)
C [B̃]1−α

}
,
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µ≾(2L)
C

(Ã, B̃) = sup
{
α ∈ [0, 1]

∣∣∣ [Ã]α �(2L)
C [B̃]1−α

}
,

µ≾(2U)
C

(Ã, B̃) = sup
{
α ∈ [0, 1]

∣∣∣ [Ã]1−α �(2U)
C [B̃]α

}
,

µ≾(3L)
C

(Ã, B̃) = sup
{
α ∈ [0, 1]

∣∣∣ [Ã]α �(3L)
C [B̃]1−α

}
,

µ≾(3U)
C

(Ã, B̃) = sup
{
α ∈ [0, 1]

∣∣∣ [Ã]1−α �(3U)
C [B̃]α

}
,

µ≾(4)
C
(Ã, B̃) = sup

{
α ∈ [0, 1]

∣∣∣ [Ã]α �(4)
C [B̃]α

}
where sup ∅ := 0 is assumed.

Proof. All of these equalities are proved in similar manners. We check only the

fourth equality and omit the others.

Let

ᾱ := sup
{
α ∈ [0, 1]

∣∣∣ [Ã]α �(3L)
C [B̃]1−α

}
, β :=

1

2
µ≾(3L)

C
(Ã, B̃) +

1

2
ᾱ.

Suppose first that µ≾(3L)
C

(Ã, B̃) < ᾱ. Then there exists γ ∈ [0, 1] satisfying β < γ

and [Ã]γ �(3L)
C [B̃]1−γ. By Proposition 2.4, it follows from [Ã]γ ⊂ [Ã]β and [B̃]1−γ ⊃

[B̃]1−β that [Ã]β �(3L)
C [B̃]1−β. In addition, µ≾(3L)

C
(Ã, B̃) < β implies that some b̄ ∈ Z

satisfies max
{
µÃ(a), 1− µB̃(b̄)

}
< β for any a ∈ Z with a ≤C b̄. We hence deduce

b̄ ∈ [B̃]1−β and a ≰C b̄ for all a ∈ [Ã]β, which contradict [Ã]β �(3L)
C [B̃]1−β.

Suppose next that µ≾(3L)
C

(Ã, B̃) > ᾱ. Then we have [Ã]β ⪯̸(3L)
C [B̃]1−β and

max {µÃ(ab), 1− µB̃(b)} > β for any b ∈ Z and some ab ∈ Z with ab ≤C b. For any

b ∈ [B̃]1−β, it follows from 1− µB̃(b) ≤ β that ab ∈ [Ã]β. This is a contradiction to

[Ã]β ⪯̸(3L)
C [B̃]1−β. Therefore, µ≾(3L)

C
(Ã, B̃) = ᾱ.

By using this theorem, we can give another proof of each of Propositions 3.2–3.4

on the basis of the basic properties of the set relations shown in Section 2.2.

Another proof of Proposition 3.2. We check the first line of the inequalities and omit

the second line. Fix any α ∈ [0, 1]. By Proposition 2.4, we have

[Ã]1−α �(2L)
C [B̃]1−α =⇒ [Ã]α �(2L)

C [B̃]1−α,

[Ã]α �(4)
C [B̃]1−α =⇒ [Ã]α �(4)

C [B̃]α

when 0 ≤ α ≤ 0.5 and

[Ã]1−α �(1)
C [B̃]1−α =⇒ [Ã]α �(1)

C [B̃]1−α,

[Ã]α �(3L)
C [B̃]1−α =⇒ [Ã]α �(3L)

C [B̃]α
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when 0.5 ≤ α ≤ 1. It follows from these implications and Proposition 2.1 that

[Ã]1−α �(1)
C [B̃]1−α =⇒ [Ã]α �(2L)

C [B̃]1−α

=⇒ [Ã]α �(3L)
C [B̃]1−α =⇒ [Ã]α �(4)

C [B̃]α.

Thus, we obtain the desired inequalities by Theorem 3.1. Note that the normality

of Ã and B̃ is necessary for the nonemptiness of all α-cuts of them.

Another proof of Proposition 3.3. Use Proposition 2.2 and Theorem 3.1.

Another proof of Proposition 3.4. Use Proposition 2.3 and Theorem 3.1.

The following theorem requires some assumptions unlike Theorem 3.1 and pro-

vides a more practical relationship between the PN fuzzy relations and the set rela-

tions. It should be remarked that the assumption of the space being locally convex,

which is imposed in [10, Theorem 3.2], is in fact not needed. The same holds true

for the two theorems presented later.

Theorem 3.2 ([10]). Let Ã, B̃ ∈ F(Z) and α ∈ (0, 1]. Assume that C is closed.

(i) If the cut mapping of Ã is (−C)-lower continuous and the cut mapping of B̃

is C-lower continuous, then

µ≾(1)
C
(Ã, B̃) ≥ α ⇐⇒ [Ã]1−α �(1)

C [B̃]1−α.

(ii) If Ã is C-compact, the cut mapping of Ã is C-upper continuous, and the cut

mapping of B̃ is C-lower continuous, then

µ≾(2L)
C

(Ã, B̃) ≥ α ⇐⇒ [Ã]α �(2L)
C [B̃]1−α,

µ≾(3L)
C

(Ã, B̃) ≥ α ⇐⇒ [Ã]α �(3L)
C [B̃]1−α.

(iii) If the cut mapping of Ã is (−C)-lower continuous, B̃ is (−C)-compact, and

the cut mapping of B̃ is (−C)-upper continuous, then

µ≾(2U)
C

(Ã, B̃) ≥ α ⇐⇒ [Ã]1−α �(2U)
C [B̃]α,

µ≾(3U)
C

(Ã, B̃) ≥ α ⇐⇒ [Ã]1−α �(3U)
C [B̃]α.

(iv) If Ã is C-compact, the cut mapping of Ã is C-upper continuous, B̃ is (−C)-

compact, and the cut mapping of B̃ is (−C)-upper continuous, then

µ≾(4)
C
(Ã, B̃) ≥ α ⇐⇒ [Ã]α �(4)

C [B̃]α.
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Proof. It is clear from Theorem 3.1 that the right-hand side of each equivalence

implies the left-hand side. The converse implications are each proved as follows.

(i) Let µ≾(1)
C
(Ã, B̃) ≥ α and suppose to the contrary that [Ã]1−α ⪯̸(1)

C [B̃]1−α.

Then we have b̄ − ā /∈ C for some ā ∈ [Ã]1−α and b̄ ∈ [B̃]1−α. It follows from

the closedness of C that there exists an open neighborhood V of 0Z such that(
b̄− ā+ V

)
∩ C = ∅. Since C is a convex cone, it holds that(

b̄− ā+ V − C
)
∩ C = ∅.

In fact, if some z ∈ V and k ∈ C satisfy b̄− ā+ z− k ∈ C, then b̄− ā+ z ∈ C + k ⊂
C + C ⊂ C. This is a contradiction to

(
b̄− ā+ V

)
∩ C = ∅.

Now, we can take a neighborhood V ′ of 0Z with V ′ + V ′ ⊂ V . If V ′ is not

open, then let V ′ := intV ′. Since ā − V ′ is open, [Ã]1−α ∩ (ā − V ′) 6= ∅, and the

cut mapping of Ã is (−C)-lower continuous at 1 − α, there exists a neighborhood

U1 of 1 − α such that [Ã]β ∩ (ā− V ′ + C) 6= ∅ for all β ∈ U1. Similarly, by the

C-lower continuity of the cut mapping of B̃, some neighborhood U2 of 1−α satisfies

[B̃]β ∩
(
b̄+ V ′ − C

)
6= ∅ for all β ∈ U2. Choose β ∈ [0, α) with 1 − β ∈ U1 ∩ U2.

From

[Ã]1−β ∩ (ā− V ′ + C) 6= ∅, [B̃]1−β ∩
(
b̄+ V ′ − C

)
6= ∅,

for some â ∈ [Ã]1−β and b̂ ∈ [B̃]1−β we obtain

b̂− â ∈
(
b̄+ V ′ − C

)
− (ā− V ′ + C) ⊂ b̄− ā+ V − C.

This requires b̂− â /∈ C and hence [Ã]1−β ⪯̸(1)
C [B̃]1−β.

However, µ≾(1)
C
(Ã, B̃) ≥ α > β together with Theorem 3.1 and Proposition 2.4

implies the opposite condition [Ã]1−β �(1)
C [B̃]1−β. Therefore, [Ã]1−α �(1)

C [B̃]1−α.

(ii) We check only the implication of type 2L because a similar argumentation

is available for that of type 3L.

Suppose that µ≾(2L)
C

(Ã, B̃) ≥ α and [Ã]α ⪯̸(2L)
C [B̃]1−α are simultaneously fulfilled.

The latter means ba − a /∈ C for any a ∈ [Ã]α and some ba ∈ [B̃]1−α depending on

a. For each a ∈ [Ã]α, let Va be an open neighborhood of 0Z satisfying

(ba − a+ Va − C) ∩ C = ∅

and take another open neighborhood V ′
a of 0Z with V ′

a + V ′
a ⊂ Va. Then the family

{a− V ′
a + C}a∈[Ã]α

is an open cover of the C-compact set [Ã]α. Hence

[Ã]α ⊂
⋃

i=1,...,m

(
ai − V ′

ai
+ C

)
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for some a1, . . . , am ∈ [Ã]α. Put V
′ :=

⋂
i=1,...,m V ′

ai
and take an open neighborhood

V ′′ of 0Z with V ′′ + V ′′ ⊂ V ′. Since the cut mapping of Ã is C-upper continuous at

α, there exists a neighborhood U of α such that

[Ã]β ⊂ [Ã]α − V ′′ + C

for all β ∈ U . Since the cut mapping of B̃ is C-lower continuous at 1− α, for each

i = 1, . . . ,m, there exists a neighborhood Ui of α such that

[B̃]1−β ∩ (bai + V ′′ − C) 6= ∅

for all β ∈ Ui.

Choose β ∈ U ∩
(⋂

i=1,...,m Ui

)
∩ [0, α) and let a′ be any element of [Ã]β. Then

we can take a ∈ [Ã]α with a′ ∈ a−V ′′+C, i with a ∈ ai−V ′
ai
+C, and b′a′ ∈ [B̃]1−β

with b′a′ ∈ bai + V ′′ − C. We deduce

b′a′ − a′ ∈ (bai + V ′′ − C)− (a− V ′′ + C) ⊂ bai −
(
ai − V ′

ai
+ C

)
+ V ′ − C

⊂ bai − ai + V ′
ai
+ V ′

ai
− C ⊂ bai − ai + Vai − C

and hence b′a′ − a′ /∈ C. This implies [Ã]β ⪯̸(2L)
C [B̃]1−β although the inequality

µ≾(2L)
C

(Ã, B̃) > β implies [Ã]β �(2L)
C [B̃]1−β. This is a contradiction.

(iii) By reversing Ã and B̃ and replacing C with −C in (ii), we have

µ≾(2L)
−C

(B̃, Ã) ≥ α ⇐⇒ [B̃]α �(2L)
−C [Ã]1−α,

µ≾(3L)
−C

(B̃, Ã) ≥ α ⇐⇒ [B̃]α �(3L)
−C [Ã]1−α.

Thus, the conclusion follows from Propositions 2.3 and 3.4.

(iv) Let µ≾(4)
C
(Ã, B̃) ≥ α. Supposing that [Ã]α ⪯̸(4)

C [B̃]α, we obtain

(b− a+ Vab − C) ∩ C = ∅

for any a ∈ [Ã]α, b ∈ [B̃]α, and some open neighborhood Vab of 0Z . Let, for each

a ∈ [Ã]α and b ∈ [B̃]α, V
′
ab be an open neighborhood of 0Z with V ′

ab + V ′
ab ⊂ Vab. Fix

any b ∈ [B̃]α. Since [Ã]α is C-compact and {a− V ′
ab + C}a∈[Ã]α

is its open cover,

[Ã]α ⊂
⋃

i=1,...,mb

(
aib − V ′

aibb
+ C

)
for some a1b, . . . , ambb ∈ [Ã]α. Put V

′
b :=

⋂
i=1,...,mb

V ′
aibb

and take an open neighbor-

hood V ′′
b of 0Z with V ′′

b +V ′′
b ⊂ V ′

b . Since [B̃]α is (−C)-compact and {b+ V ′′
b − C}b∈[B̃]α

is its open cover,

[B̃]α ⊂
⋃

j=1,...,n

(
bj + V ′′

bj
− C

)
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for some b1, . . . , bn ∈ [B̃]α. Put V ′′ :=
⋂

j=1,...,n V
′′
bj

and take an open neighborhood

V ′′′ of 0Z with V ′′′ + V ′′′ ⊂ V ′′. The C- and (−C)-upper continuities of the cut

mappings respectively of Ã and B̃ at α allow us to take some β ∈ [0, α) satisfying

[Ã]β ⊂ [Ã]α − V ′′′ + C, [B̃]β ⊂ [B̃]α + V ′′′ − C.

Fix any a′ ∈ [Ã]β and b′ ∈ [B̃]β. It then follows that, for some a ∈ [Ã]α, b ∈ [B̃]α, i,

and j,

b′ − a′ ∈ (b+ V ′′′ − C)− (a− V ′′′ + C) ⊂
(
bj + V ′′

bj
− C

)
− a+ V ′′ − C

⊂ bj − a+ V ′′
bj
+ V ′′

bj
− C ⊂ bj −

(
aibj − V ′

aibj bj
+ C

)
+ V ′

bj
− C

⊂ bj − aibj + V ′
aibj bj

+ V ′
aibj bj

− C ⊂ bj − aibj + Vaibj bj
− C.

Therefore, we have b′ − a′ /∈ C and conclude [Ã]β ⪯̸(4)
C [B̃]β, which contradicts

µ≾(4)
C
(Ã, B̃) > β.

Furthermore, the above theorem can be rewritten into the following one with a

little excessive but simple assumptions.

Theorem 3.3 ([10]). Let Ã, B̃ ∈ F(Z) and α ∈ (0, 1]. Assume that C is closed.

(i) If Ã and B̃ are normal and strictly convex, then

µ≾(1)
C
(Ã, B̃) ≥ α ⇐⇒ [Ã]1−α �(1)

C [B̃]1−α.

(ii) If Ã is compact and B̃ is normal and strictly convex, then

µ≾(2L)
C

(Ã, B̃) ≥ α ⇐⇒ [Ã]α �(2L)
C [B̃]1−α,

µ≾(3L)
C

(Ã, B̃) ≥ α ⇐⇒ [Ã]α �(3L)
C [B̃]1−α.

(iii) If Ã is normal and strictly convex and B̃ is compact, then

µ≾(2U)
C

(Ã, B̃) ≥ α ⇐⇒ [Ã]1−α �(2U)
C [B̃]α,

µ≾(3U)
C

(Ã, B̃) ≥ α ⇐⇒ [Ã]1−α �(3U)
C [B̃]α.

(iv) If Ã and B̃ are compact, then

µ≾(4)
C
(Ã, B̃) ≥ α ⇐⇒ [Ã]α �(4)

C [B̃]α.
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Proof. From Propositions 2.5–2.7, the following statements hold:

(i) Every compact fuzzy set in Z is C- and (−C)-compact.

(ii) The cut mapping of every compact fuzzy set in Z is C- and (−C)-upper

continuous.

(iii) The cut mapping of every normal and strictly convex fuzzy set in Z is C- and

(−C)-lower continuous.

By using these statements, we rewrite the assumptions of each statement in Theo-

rem 3.2 and thus conclude that this theorem is true.

We remark that (iv) of this theorem is a natural consequence of [16, Proposi-

tions 2.7 and 2.13].

3.3 Application to fuzzy optimization

In this last section, we provide a possible application of Theorem 3.3 to the area

of fuzzy optimization.

Let X be a nonempty set. We consider a fuzzy optimization problem in a general

form

(FOP)

minimize F̃ (x)

subject to x ∈ X

for F̃ : X → F(Z). The objective function in this problem is a fuzzy set-valued

mapping. We have many potential options for the solution concepts for (FOP)

because they depend on what we use to compare the values of F̃ (e.g., a crisp

relation, a fuzzy relation, and a ranking function) and how we define “minimization.”

If we use a fuzzy relation on F(Z) and a parameter α, the following three solution

concepts are naturally considered.

Definition 3.3 ([10] for (i)–(ii), [35] for (iii)). Let ≾ be a fuzzy relation on F(Z)

and α ∈ (0, 1]. An element x̄ ∈ X is called

(i) an α-optimal solution of (FOP) with respect to ≾ if

∀x ∈ X :
(
µ≾(F̃ (x), F̃ (x̄)) ≥ α =⇒ µ≾(F̃ (x̄), F̃ (x)) ≥ α

)
.
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(ii) an α-strongly optimal solution of (FOP) with respect to ≾ if

∀x ∈ X \ {x̄} : µ≾(F̃ (x̄), F̃ (x)) ≥ α.

(iii) an α-strictly optimal solution of (FOP) with respect to ≾ if

∄x ∈ X \ {x̄} : µ≾(F̃ (x), F̃ (x̄)) ≥ α.

By the definition, any α-strongly optimal or α-strictly optimal solution is also an

α-optimal solution. We here focus on the case in which the fuzzy relation ≾ is each

of the PN fuzzy relations. Moreover, we introduce two kinds of set optimization

problems

(SOP)′β

minimize [F̃ (x)]β

subject to x ∈ X
,

(SOP)′′β

minimize [F̃ (x)]β × [F̃ (x)]1−β

subject to x ∈ X

for each β ∈ [0, 1] and an extension of the set relations �(∗)
C (∗ = 2L, 2U, 3L, 3U)

defined by

A1 × A2 �̂
(∗)
C B1 ×B2 :⇐⇒ A1 �(∗)

C B2

for A1, A2, B1, B2 ∈ P(Z).

The following theorem shows that solving the fuzzy optimization problem (FOP)

with respect to each PN fuzzy relation is equivalent to solving a certain set opti-

mization problem with respect to the corresponding set relation or its extension.

Theorem 3.4 ([10]). Let α ∈ (0, 1] and assume that C is closed.

(i) Assume that F̃ (x) is normal and strictly convex for every x ∈ X. Then

x̄ ∈ X is an α-optimal (resp., α-strongly optimal, α-strictly optimal) solution

of (FOP) with respect to ≾(1)
C if and only if it is an optimal (resp., strongly

optimal, strictly optimal) solution of (SOP)′1−α with respect to �(1)
C .

(ii) Assume that F̃ (x) is compact, normal, and strictly convex for every x ∈ X.

Then, for each ∗ = 2L, 3L, x̄ ∈ X is an α-optimal (resp., α-strongly optimal,

α-strictly optimal) solution of (FOP) with respect to ≾(∗)
C if and only if it is

an optimal (resp., strongly optimal, strictly optimal) solution of (SOP)′′α with

respect to �̂(∗)
C .
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(iii) Assume that F̃ (x) is compact, normal, and strictly convex for every x ∈ X.

Then, for each ∗ = 2U, 3U , x̄ ∈ X is an α-optimal (resp., α-strongly optimal,

α-strictly optimal) solution of (FOP) with respect to ≾(∗)
C if and only if it is an

optimal (resp., strongly optimal, strictly optimal) solution of (SOP)′′1−α with

respect to �̂(∗)
C .

(iv) Assume that F̃ (x) is compact for every x ∈ X. Then x̄ ∈ X is an α-optimal

(resp., α-strongly optimal, α-strictly optimal) solution of (FOP) with respect

to ≾(4)
C if and only if it is an optimal (resp., strongly optimal, strictly optimal)

solution of (SOP)′α with respect to �(4)
C .

Proof. We prove (i) and (ii) and omit the others.

(i) From Theorem 3.3, we deduce for every x, x′ ∈ X that

µ≾(1)
C
(F̃ (x), F̃ (x′)) ≥ α ⇐⇒ [F̃ (x)]1−α �(1)

C [F̃ (x′)]1−α.

The sets [F̃ (x)]1−α, x ∈ X are the values of the objective function of (SOP)′1−α.

Therefore, by comparing Definition 3.3 with Definition 2.2, we find that this state-

ment holds.

(ii) For each ∗ = 2L, 3L, it holds by Theorem 3.3 that

µ≾(∗)
C
(F̃ (x), F̃ (x′)) ≥ α ⇐⇒ [F̃ (x)]α �(∗)

C [F̃ (x′)]1−α

for every x, x′ ∈ X. The right-hand side of this is equivalent to

[F̃ (x)]α × [F̃ (x)]1−α �̂(∗)
C [F̃ (x′)]α × [F̃ (x′)]1−α.

Since the sets [F̃ (x)]α × [F̃ (x)]1−α, x ∈ X are the values of the objective function of

(SOP)′′α, the proof is completed.
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Chapter 4

Conclusion

In this thesis, we have presented a further study on the six types of possibility-

theoretical fuzzy relations between fuzzy sets (referred to as PN fuzzy relations) in

a preordered vector space. We described their relationship to the six types of set

relations in Theorems 3.1–3.3 with different assumptions. This implies that many

existing studies involving the set relations, such as scalarization techniques for sets,

have a potential to be utilized for the PN fuzzy relations. Moreover, we applied

Theorem 3.3 to fuzzy optimization, showing in Theorem 3.4 that solving a general

fuzzy optimization problem with respect to each PN fuzzy relation is equivalent to

solving a certain set optimization problem with respect to the corresponding set

relation or its extension. Theorems 3.1–3.3 can be applied to other fuzzy decision-

making areas, such as fuzzy game theory, when the PN fuzzy relations are employed.
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