Japan. J. Math.
Vol. 20, No. 2, 1994

The Hasse norm principle modulo m of finite
Galois extensions of algebraic number fields and
a generalization of a theorem of Frohlich on the
£-divisibility of the class numbers of £-abelian fields*

By Teruo TAKEUCHI

(Received September 29, 1992)
(Revised May 31, 1993)

Introduction

Let ¢ be a prime number. About forty years ago A. Frohlich [1] determined
the Galois group of the narrow central field of an abelian £-extension over Q which
coincides with it’s narrow genus field, by generators and relations. As an application
of this result he [2] also determined the abelian {-extensions over Q whose narrow
class numbers are prime to £. These results appear in his recent book [3] in a more
modern fashion. Recently S. V. Ullom and S. B. Watt [19] determined the abelian
fl-extensions over imaginary quadratic fields whose class numbers are prime to ¢,
which is considered as a generalization of the Frohlich’s result. The proof by Ullom
and Watt is based on properties of number knots, and is more direct than that of
Frohlich.

The purpose of this paper is to generalize the argument used by Ullom and
Watt to that over an arbitrary algebraic number field of finite degree. Since the
Frohlich’s results depend essentially on the triviality of units of base fields, it is no
longer possible to generalize the results as they are. We treat this problem as the
Ray class number problem modulo suitable m. Since the narrow class number is the
Ray class number modulo infinite primes, this approach may be a natural one. For
this purpose we study the genus theory and central extensions modulo m somewhat
generally from our point of view.

Section 1 studies the genus group modulo m generally. The purpose of this
section is to prove Theorem 1.1. This is a rank formula for the genus group modulo
m from which the ordinary genus number formula is obtained as a corollary.

Section 2 concerns with a theorem of Leopoldt on the genus theory over Q.

*This research was partially supported by Grant-in-Aid for Scientific Research (03640026),
Ministry of Education, Science and Culture.
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This theorem of Leopoldt asserts that the narrow genus field of an abelian extension
of Q is a composite field of abelian fields with prime power conductors. Since the
Frohlich’s result is based on this theorem, we need to provide a similar result over
an algebraic number field of finite degree. Theorem 2.1 gives a generalization of the
result of Leopoldt using a modulus m which satisfies suitable conditions. Theorem
2.2 assures the existence of such an m.

Section 3 is devoted to central extensions modulo m. The goal of this section
is Theorem 3.3. Ullom and Watt [19] used some properties on number knots as a
key fact. Theorem 3.3 provides a key fact to our case with certain modulus m.

The final section 4 deals with the Hasse norm principle modulo m and a
generalization of the Frohlich’s result. From a general viewpoint the result of Ullom
and Watt is naturally considered as a result on the Hasse norm principle rather
than that on /-divisibility of the class numbers. From Theorem 3.3 we first deduce
Theorem 4.1, which states a condition for the Hasse norm principle modulo m to
hold for fields of certain type. Using Theorem 4.1 with the results of Section 2 we
finally prove the main theorem of this paper, Theorem 4.2, which gives a desired
generalization of the Frohlich’s result over an algebraic number field.

1. The Genus group modulo m

In this section we study the genus group modulo m. The main result is Theorem
1.1. This gives a rank formula for the genus group from which the ordinary genus
number formula follows as a corollary. This generalizes the result of [14] for the
genus group modulo m, and also gives a refinement of results of Horie [11] from our
view point.

1.1. Preliminaries from local fields. Let p be a prime of an algebraic
number field. Let k be the completion of the field with respect to p. We first consider
the case where p is finite. Let K/k be a Galois extension of finite degree and let
K'/k denote the maximal abelian subextension of K/k. Let P (resp. ') be the
prime divisor of p in K (resp. in K'). Using the Hasse’s function 9 of B with respect
to K/k, we define a function vk, by

(D1.1) vk(z) =Y~ 1)+ 1.

Hence in particular, we have vk, (0) = 0 and v k(1) = 1. (For the properties of
the Hasse’s function, we refer to Iyanaga [12] and Serre [17].) Furthermore from the
convexity of the Hasse’s function we also have

(1.1) v/ () < Y(x).

Moreover from the transitivity of the Hasse’s functions, the transitivity of vk,
follows, i.e., for a tower of Galois extensions £ C L C K we see

(1.2) VK/k = UK/L © VL/k-




Hasse norm principle 233
In what follows for simplicity we also use the notation v(z), v'(z), v"/(z) instead
of v/k(z), v /k(x), vk K (), Tespectively.

Let m = p® be a modulus of k, i.e., a finite product of p. Then we define the
lifting modulus my. of m from k to K by

(D1.2) m* =mj, = P

Since v is transitive, this lifting is also transitive, namely, for a tower of Galois
extensions k C L C K we have

(1.3) Mk = (M7 /e)k/L
Let
(D1.3) U(K) = U(K)©
denote the group of units of K, and for j = 1 put
(D1.4) UKD ={zecUK)|z=1 mod P’}

Then we have

(1.4) Nisi(UE) ) C U k),

(1.5) Ng/e(U(K)) = Ny (K*) N U (K),
(1.6) Ni/i(U(E)D) = Ny (K*)nU (k)W
(1.7) Ne i (UEDN ) = Ny (K N U ().
(1.8) U (k) [N pe(U (K ED) 2 VI (0 (),

where V'(5) denotes the j-th ramification group of B’ with respect to K "Ik, ie.,

V'(j) = {o € Gal (K'/k) | o(a) = @ mod P7*! for all « € D'},

where 9’ denotes the valuation ring of K.

Indeed, (1.4), (1.5), (1.7), and (1.8) are well known (e.g., see [12] and [17]).
Furthermore (1.6) follows from (1.5) and the fact U(K)©® = W - U(K)™ (di-
rect), where W denotes the group of those roots of unity in K whose orders divide
N(B) -1

Now we make the following assumption:

(AL1) Nisu(U(E)E) = Ny (K*) N U (k).
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Under the assumption (A1.1) we obtain from (1.7)
(1.9) Nisr(U(K)®E) = N (K™) 0 U (k)
because Ny, (K*) = Nk, (K'*); therefore from (1.8) we also have
(1.10) U (k) /N (U(E)D) 2 V! (0 (e)).
The following lemma gives sufficient conditions of the assumption (Al.1).

LeMMA 1.1.  Each one of the following conditions (1), (2), (3), and (4) implies
(A1.1).

(1) 2'(e) 2 min{j | V"(v"(j)) = {1}}, where V" (i) denotes the i-th ramifi-
cation group of P with respect to K/K'.

(2) K/k is an abelian eztension.

(3) e=0orl

(4) K/k is tamely ramified or unramified.

Proor. (1) Let Ky be the inertia field of K/K’ with respect to B, and
K; the i-th ramification field of K/K' for ¢ = 1,2,--- . Then each K;/K;_ is an
abelian extension and K, = K for some integer r. Let v; = vk, x and v; = vk,
be the functions defined by (D1.1). Take an integer jo such that

(1.11) jo 2 min{j | V"' (v"(5)) = {1}}.
Now the Herbrand’s theorem asserts that the v](jo)-th ramification group of
Ki/K;_y is V"(v"(jo))V"(i)/V"(i). However by the choice of jo in (1.11), this
group is trivial. Hence by [17, Chap. V, Cor. 3 of Proposition 9] we have
NK,»/Kg_.l(U(Ki)(vg(jO))) = U(K;_y)Wi-100)
for i = 1 to r, and therefore
NK/KO(U(K)(v"(jo))) = U(Ko)volo)),

On the other hand, clearly

NKO/K,(U(KO)(vé(J'o))) = U(K')0o)
because Ko/K’ is unramified. Hence

NK/Kr(U(K)(””UO))) = U(K")Uo),
In particular, for the case jo = v’(e), we have

Niyser(U(K)PED) = U (KD,
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Thus using (1.7) we see

N (U(K)PEN) = Ny o (K™) N U (k)
= Nk/u(K*) 0 U (k).

This proves that (1) implies (Al.1).

The assertion about (2) is trivial by (1.7). For (3) the assertion follows from
(1.5) and (1.6). Finally, assume that (4) is satisfied. Then K/K' is also tamely
ramified or unramified, so that V”(v”(1)) = {1}. Hence if ¢ 2 1 then the assertion
follows from (1), and if e = 0 then the assertion follows from (3). This completes
the proof.

We next consider the the case where p is infinite. If p is infinite, then a modulus
m of k means a product p¢ with e = 0 or 1. Furthermore we define the function
v by v(e) = e for e = 0,1. Then the lifting modulus m* of m = p° is defined
as P, Finally we set V(0) = inertia group, V(1) = {1}, U(k)® = k*, and
U (k)M = k* or the group of positives of k according as p is complex or real. Under
these interpretations, all of (1.2) ~ (1.10) clearly hold.

1.2. The Genus fields modulo m. Hereafter in this paper we deal with
global number fields. Let k be an algebraic number field of finite degree. Let m =
Hp p¢(®) be a modulus of k, i.e., a finite product of primes p of k such that e(p) = 0
in the case when p is finite, and e(p) = 0 or 1 in the case when p is infinite. Denote
the p-component of m by m, = p°(?) and call e(p) the p-exponent of m. Let K/k be
a finite Galois extension. For a prime p of k and for a prime divisor ‘B of p of K,
let Ky and k, denote the completions of K and of k by 8 and by p, respectively.
Let my, be the lifting modulus of m, from k, to Ky defined locally in (D1.2). Then
the global lifting modulus of m from k to K is defined by

(D1.5) m* = [ mp,
e(p)>0

where the product is taken over all of prime divisors 8 of p in K for all of primes
p of k with e(p) > 0. Then m* is a Galois modulus, i.e., for o € Gal (K/k) we have

(1.12) m* = m*.

Using this m*, we define the genus field of K /k modulo m.

DeriniTION 1.1, Let K’(m) be the maximal abelian extension of k contained
in the ray class field over K modulo m*. Then we call K - K'(m) the genus field
K*(m) of K/k modulo m, Gal (K*(m)/K) the genus group of K/k modulo m, and
[K*(m) : K] the genus number of K/k modulo m, respectively.
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This definition is due to S. Shirai [18].
Let J denote the idele group of k. For a modulus m = Hp pe®) of k, we put

(D1.6) Wim =[] Ulkp)® T Ulks)
e(p)>0 e(p)=0
and
I3
(D1.7) Jem =[] U T &
e(p)>0 e(p)=0

where []' denotes the restricted product. Using these notations we can describe
the class group of K’'(m) over k. We start with the following lemma, which is well
known; we omit the proof of it (for the proof, e.g., see Y. Furuta [4]).

LemMA 1.2.  Let the notation be as above. Then K’'(m) is the class field over
k corresponding to

i/ Ngje(Wkme ),
where m* denotes the lifting modulus of m from k to K.

Let k(n) denote the ray number group modulo m of £, i.e.,
(D1.8) kmy={z €k |z=1 mod m}.

Then by the approximation theorem we know Jy C k™ Jim, and thus
(1.13) Jk/k* Nic e (Wieme) = Jkm /k(m)yNic/e(Wikm=)-

We often use the expression on the right hand side hereafter rather than the one
on the left.
The group structure of the genus group is determined by its £-parts for each
prime number £. Therefore we study the structure of the ¢-part of the genus group.
Let £ be a fixed prime number. For a finite abelian group A written multiplica-
tively, let rank ;(A) denote the #-rank of A, i.e., the Fo-dimension of A*~ /A, For
fi-rank we have the following:

LEmMMA 1.3. Let
1—wN-—M-—L-—1

be an ezact sequence of finite abelian groups (N C M). For an integer i 2 0, put
N; = N0 M¥. Then

rank ;(M) = rank ;(L) + rank ; (N;_; /N;)
: = rank ;(L) + log, {#(N;_1/N;)}.
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Proor. By the definition of £i-rank , we see rank ;(L) = rank,(L* /L) =
rank ; (M€ N/MY N). We also have
#(MYTN/MEN)Y = #(MET /MY A N)#(ME /MY A N)
= #(M M) [#(Nima/N:).
Since N;_;/N; is an elementary abelian ¢-group, this proves the lemma.

To apply the above lemma we need some notations. For each non negative
integer ¢, put

(D1.9) Ni = W N (W)
and
(D1.10) Fi = Wi 0 T km)-

PRrROPOSITION 1.1. Let the notation be as above. Then for each positive integer
i we have

rank ;(Gal (K'(m)/k)) = rank ;(Jkm /K (m)Wim )
+ rank ;(Wim /Ng /e (Wi« )

#(Fio1/(Fi-1 NN;21))
*“&{ HFFOND) }'

Proor. We apply Lemma 1.3 to the exact sequence

1 — k(m)yWem /K@) Nijg(Wime) —
Jim /()N /e (Wime) = Jkm /K (m) Wim — 1.

Let N; be as in Lemma 1.3, i.e.,
N;i = (k(m)Wim / k)N /e (Wi« ))
A (T km) Nic sk (Wicm=) /() Nic/s(Wiem= ).
Then from the definition of F; it follows that

(1.14) N; 2 FiNkjt(Wrm=)/ Exm) N /e (Wime ),



238 TERUO TAKEUCHI

where Ejm) denotes the ray subgroup of units Ej of k modulo m, i.e., Eym) =
{e € Ex |e =1 mod m}. Hence we have

Ni1/N; 2 Fi 1 Ng (Wi« )/ FiNg je(Wiem ),

and consequently

(FieiNg oW+ ) /Ni-1)

#
#(N;_1/N;) = FF N ) (Wrem ) N2) H#(Ni—1/N5)
_H#(Fior/(FioinNiy)) : ,
= T aE FaNy) TN A

Furthermore, since
Nia/Ni = Why N eWiem=) /Wi Nic sk (Wi )

we see
logo{#(Ni-1/N;)} = rank ;(Wem /Nic/x (Wim+))-

Thus it follows that

+ rank i(ka/NK/k(ka‘))‘

Hence the assertion follows from Lemma 1.3 and Lemma 1.2 with (1.13).

Now, let m = [], pe®) be a modulus of k, and let K/k be a finite Galois
extension. For a prime p of k ramified in K, choose a prime divisor g of p in K. Let
(Ky)'/K, be the maximal abelian subextension of Kg /k,. Let fy, Vi (5), and vy
denote the conductor of (Kg)'/kp, j-th ramification group of B’ = PN (Kgp)', and
the function vy, defined by (D1.1) , respectively. Since K/k is a Galois extension, it
follows that fy, Vi3 (5), and vy do not depend on the choice of a prime divisor P of
p in K. Therefore we denote them by f,, V'(j), and v;, respectively. Furthermore,
we denote the product of local abelian conductors of K/k by f = fxx, i.e.,

(D1.11) F=fem= [ S

p:ramified

If K/k is abelian, then fg /i is just the conductor of K/k.
We give an £i-rank formula for the genus group of K/k mod m.
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THEOREM 1.1. Let the notation be as above. Assume that Kg/k, satisfies
(A1.1) for each prime divisor p of m and each prime divisor P of p in K. Then
for each positive integer i, we have

rank ;(Gal (K'(m)/k)) = rank ; (Jim /k(m) Wam)

+ Z rank i(V;,’(U; (e(p))))

pif

[ H#(Fimr [(Fioi NNG-1)
“"g‘{ FFJ(FON) }

Proor. By Lemma 1.1 we see that for each prime p not dividing m, and each
prime divisor P of p in K, K/k satisfies (A1.1). Therefore, by the above assumption
we see that (A1.1) holds for every prime p of k, and every prime divisor P of p in
K. Hence from (D1.6) and (1.10) it follows that

ka/ATK/k(WKm‘) = H(U(kp)(e(p))/NKg Ik (U(kw)(v(e(p)))))
p

= [TV (;(ep)))
p

where we put e(p) = 0 if p does not divide m. Since V;/(e(p)) = {0} for a prime p
of k which is unramified in K, we have

JIRACACONES | RACACONE
b

plf

Thus we have

Wi /N je(Wim+) H Vy (v, (e(p)))-
plf

Hence Proposition 1.1 implies the assertion.
The genus number formula of modulo m is a direct consequence of the theorem.

CoroLLARY 1 (Genus number formula of modulo m, cf. M. Horie [11]). Let
the notations and the assumptions be as in Theorem 1.1. Then

(ko W) - Ty 2V 0 (e(0)))

o) = K= e (Bk(m) : Ergm) N Nicr/k(Jrerme )]

where K' denote the mazimal abelian subextension of K/k and Eywmy = {¢ € Ex |
£=1 mod m}.
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Proor. Since we know N; = 1 for sufficiently large 7 and j (independent of
¢) with the notation of (1.14), we have

Fi)(Fi ONG) 2 Ex(my/(Erm) ONG) = Ergm)y/ (Epm) O N;).
Moreover taking a product for all £, we have

Ep(my/ (Exgmy " Ni i (Tome)) = [ [ Ergmy/ (Bigmy NN;),
¢

where j is a sufficiently large number independent of £. Thus by the formulae in
the above theorem for all £ and j, we obtain

#(ka/k(m)wkm) np[f #(V (vp (e(p)))) .

[K"(m) : K] [Ek(m Ek(m) N NKr/k(JK'm )]

Therefore from the obvious equality
[K*(m): K] = [K'(m): K'] = [K'(m) : k]/[K" : k],
the corollary follows.

In general, the genus group modulo m is not determined only by Gal (K'(m)/k)
and Gal (K /k). However if K/k does not contain unramified subextension, then the
genus group modulo m is completely determined.

CoOROLLARY 2. Let the notations and the assumptions be as in Theorem 1.1.
Furthermore suppose that there exists a finite set T of primes p of k relatively prime
to m such that Gal (K'/k) = [ [, Ty (direct product), where T, denotes the inertia
group of p in K'/k. Then

rank ;(Gal (K*(m)/K))

= ranki(‘]km/k(m)wkm) + Zfallkz’("g(ﬂ; (e(®))))
pif

#(Fie1/(Fiei NN1))

* 1°gf{ HF/F NN

} — rank ;(Gal (K'/k)).

Proor. For each p € T, choose a prime divisor P of p in K'(m); and let Ty
denote the inertia group of B in K'(m)/k. Since *P is unramified in K'(m)/K’, it
follows that Ty is isomorphic to T, by the restriction from K’(m) to K’. Therefore
we obtain an isomorphism:

Il 7o = ][ T = Gal (K" /k);

peT peT




Hasse norm principle 241
in particular, we see #([ ], T) = [K' : k]. Thus we have

Gal (K'(m)/k) = Gal (K'(m)/K’) - [ Ty = Gal (K'(m)/K') @ Gal (K'/k).
peT

From this and Theorem 1.1 the corollary follows.

2. A generalization of a theorem of Leopoldt on the genus theory
over Q

H. W. Leopoldt [13] proved that the character group of the narrow genus field
of a finite abelian extension K/Q is decomposed as a direct product of the groups
of local components of the character group of K/Q. Several authors attempted to
generalize this theory over a finite algebraic number field k as the base field. In the
general situation, however, we can only obtain weaker results than those over Q
because the result of Leopoldt is based on the triviality of the positive units of Q.

In this section we choose a modulus m which satisfies certain conditions and
generalize Leopoldt’s theory to the genus theory modulo such an m in precise form
for an arbitrary algebraic number field k and its finite abelian extension K.

2.1. A generalization of a theorem of Leopoldt on the genus theory
over Q. Let k be an algebraic number field. Let N be a positive integer and fix
it throughout this section. For each positive integer n denote

(D2.1) F,={zek*|(z) e I},

where I is the ideal group of k.
Let m be a modulus of k that satisfies the following three conditions:

(A2.1) mis prime to N.
(A2.2) mis a product of distinct primes of k.
(A2.3) For each positive integer n dividing N it holds that

Frmy C E*7,

where Fiym) = Fy N k(m)-

In the next subsection 2.2 we prove that such a modulus m exists under cer-
tain conditions. In the case where k = Q, of course, m = oo satisfies the above
assumptions for any N.

For such an m we can show that the genus theory modulo m also has some
good properties in the same way as the narrow genus theory over Q does.

Let K/k be a finite abelian extension of exponent n dividing N. Let f be the
conductor of K/k and S = Sk denote the set of primes that divide f and are prime
tom, ie.,

(D2.2) S = S = {p | p divides f, and p is prime to m}.
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Let ¢ be a prime number. By Theorem 1.1 we can calculate the ¢-part of
Gal (K*(m)/k) = Gal (K'(m)/k). First, since m is prime to N the prime divisors of
m are at most tamely ramified in K/k. Hence we see for each prime divisor p of §

{1} if p¢s,
(2.1) Vo (v (e(p))) = { V,(0) if pes.

Furthermore we can prove the following.

Lemma 2.1.  Let K/k be a finite abelian extension of exponent n dividing N.
Let £ be a prime number and let the notations be as in (D1.9) and (D1.10). Then
we have

Fi C N,

i.e.,

Wim N Jonk(m) C Win Nig/k(Wicm+)

for every non negative integer t.

Proor. We know by (1.8) that the exponent of Wim /Nk /i (Wkm+) divides
n. Therefore, if £ does not divide n, then the assertion of the lemma is clear. Now
we assume that £ divides n.

First we consider the case where £ divides n. Let « € Wy N J ,ﬁ; K(m)- Then
we can write @ = 3%z for 8 € Jym and T € k(m); s0 T = a[)’“” € Fi(m). Therefore
by (A2.3) we see z =y for some y € k. Hence o = (By)'. Since m is a product
of distinct primes of k and o € Wy, it follows that « € W,f; This completes the
proof of the first case.

Next consider the case where £ divides n but #* dose not divides n. Let j
denote the maximal integer such that £/ divides n. Let a € Wi N Jﬁ:“ k(m)- Then
by the result of the first case we have a € Wf‘: On the other hand, the exponent
of Wim /Nic/k(Wim+) divides n, and F;N;/N; is a £-group. Since # is the {-part of
n, we have o € N;. This completes the proof.

By this lemma we see the last term of the formula in Theorem 1.1 vanishes.
Since this holds for every prime number £, we have

Gal (K*(m)/k) = (Jgm/km)Wim) @ Z V5 (0)
pES

by (2.1). This isomorphism is expressed more explicitly using character groups as
follows:
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ProrosiTion 2.1. Let 8 = Sg denote the set of primes that divide the con-
ductor f of K/k, and are prime to m. Put

U(K/k)s =[] Ulky),

pES

U(K/k)s = [] Uky)/Nicy s, (U(Kyp)),
pes

where P denotes a prime divisor of p in K. Let
7 : U(K/k)s e ka/k(m)Nf(/k(WKmW)
be the natural homomorphism induced from the inclusion map
f:UK/k)s — Jgm.

Then we have the following.

(1) f is injective.

(2) 7(—67(1(/19)3) is a pure subgroup of ka/k(m)NK/k(WKm-).

Proor. (1) Let o € U(K/k)s and assume f(a) = z - 3 with = € k() and
B € Ng/kx(Wgw+). Since z = f(a)B~! is a unit idele, we see that z is a unit of
k. Therefore, for any positive integer m, it holds that £ € F,,(m); in particular,
z € Fr(m). Hence by (A2.3) we have z = yN for some y € k*. Since z is a unit, y
is also a unit. Moreover the exponent of Gal (K/k) divides N. Hence by (1.8) and

(1.6) we can write z = Ny /i (7) with v € Wk and so f(a) € Nk x(Wkm-). This
shows a € [[,cs Niy /k, (U(Kp)), which proves (1).

(2) Since the exponent of Jim /k(m)Nk/s(Wkm+) divides N, it suffices to

prove, for each prime factor £ of N and each positive integer i with £ | N, that
Tim NV (FUK/R)) - k) Nics(Wicm )
C f(UK/k)s)" - kim)yNic/s(Wicm).
Assume qrﬁ = f(a)-z-Blory € Jim,a € U(K/k)s, x € kim) agdﬁ € Ni/w(Wkme)-
Since f(a)- B is a unit idele, we see that z = f(a™')-B~' ¢ € Fu Nk(m). Hence
by (A2.3) = ¥ for some y € k*. Therefore we have
(v = fe)-B,

and yy~! is a unit idele. Let v’ and 3’ be the S-component of vy~
tively. Then v/, 3 € U(K/k)s, and

Y =a B, ie, () =fl) f(B).

1 1

and 3, respec-
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Thus we have

= fE ST fe) e B = f() e ST B
€ FUK/K)s)" - km Nic/s(Wiem+).

This completes the proof of (2).

By this proposition we see that there exists a subgroup H, of
ka/k(m)NK/k(WKm') such that

(22) ka/k(m)NK/k(WKm‘) = Hn @7(U(K/k)5)
~ H, @ U(K/k)s.

Now we fix such Hy. Then using (1.10) we have

H, = ka/k(m)NK/k(WKm‘)f(U(K/k)S)
o ka/k(m)wfkm,

because the prime divisors of m are at most tamely ramified in K/k.

DeriNiTION 2.1.  For a finite abelian extension L/k, let X(L/k) denote the
character group of Jix/k* Ny /x(JL).

Let L/L;/k be a tower of finite abelian extensions, then it holds that
X(Ly/k) C 2(L/k)

because Ny /,(Jr) € Np,jk(J1,). Therefore if k(™) and L*(m) denote the ray class
field of £ modulo m and the genus field of L/k, respectively, then we have

E(k™ /&) - £(L/k) © X(L*(m)/k).

Now let K/k be a finite abelian extension whose exponent divides N as above.
Let x € X(K*(m)/k). By (1.13) X(K*(m)/k) is considered as the character group of
Jkm /E(m)Nk /i (Wim+ ). Hence using the direct decomposition (2.2) x is decomposed
uniquely as follows:

X =XH" H Xps
peS

where x g is the Hy-component of x, and x; is the U(ky)/Nky /k, (U(Kgp))-compo-
nent of x for each p € S.

Then x g is considered as a character of Jim/k(m)Wim = Hm; hence if Ky
denotes the class field over k corresponding to the kernel of xy, then K, is a
subfield of the ray class field of k modulo m. Similarly, for each p € S, x; is a
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character of U(ky)/Nky sk, (U(Kgq)). Hence if K,  denotes the class field over k
corresponding to the kernel of x,, then, at the most, only prime divisors of m are
ramified in K, outside p, and p is totally ramified in K, .

DeriNiTION 2.2, Let

X(K/k)p = {xp | x € X(K"(m)/k)}.
Then X(K/k), is a subgroup of X(K*(m)/k).

Now we can prove the following theorem, which gives a generalization of
Leopoldt’s theorem on the genus theory over Q in a precise form.

THEOREM 2.1. Let N and m be a positive integer and a modulus of k which
satisfy (A2.1) ~ (A2.3). Let K/k be a finite abelian extension such that the exponent
of Gal(K/k) divides N. Then

X(K*(m)/k) = x(k™ k) & [ 2(K/k),.
pes

Proor. By the definition of X(K/k),, it is clear that

(2.3) X(K*(m)/k) > (K™ /Ky @ T 2(5/k),.

pes
Furthermore, by the direct decomposition (2.2) we know that X(K/k), is the char-
acter group of U(ky)/Ngy /i, (U(Ky)); in particular, #(X(K/k)p) = #(U(ky)/
Ny sk, (U(Kg))). On the other hand by (1.10) we have #(U (ky)/Niy, sk, (U(Kg)))
= #(V,(0)). Hence

#X(E™ k) [] 2(K/k)y)

pES

= #(X(K™ [k)) - [T #U (ky) [ Nicy i, (U(K3p)))

peS
= #X(E™ k) - ] #Ve (0)).

peS

Thus from Corollary 1 of Theorem 1.1 with (2.3) the assertion follows. This com-
pletes the proof.

Finally hereafter in this subsection suppose that m satisfies the following as-
sumption (A2.4) in addition to (A2.1) ~ (A2.3).
(A2.4) For each prime number £ dividing N it holds that

Pi(m) C I (m) Py,
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where Pi(m), Ir(m) and Py(y) denote the group of principal ideals of k prime to
m, the group of ideals of k prime to m, and the ray ideal group of k modulo m,
respectively.

LEMMA 2.2, Suppose that k, N, and m satisfy (A2.1) ~ (A2.4). Let £ be a
prime factor of N. If the class number h(k) of k is prime to £, then the ray class
number h(k,m) of k modulo m is also prime to L.

Proor. Since h(k) is prime to ¢, we have It Py = Iy, where I} and Py denote
the ideal group of k and the principal ideal group of k. Hence I (m)¢Pi(m) = Ix(m),
where Ij(m) and Py(m) denote the group of ideals of k prime to m and the group
of principal ideals of k prime to m, respectively. Furthermore (A2.4) implies that
Ii(m)¢Py(m) = Ix(m)*Py(m). Therefore we see that Ii(m)* Py(m)y = Ix(m), which
gives £ 1 #(Ix(m)/Pi(m)). This completes the proof.

By this lemma we have the following corollary of Theorem 2.1.

COROLLARY OF THEOREM 2.1. Let the notations and the assumptions be as
in Theorem 2.1. Furthermore, assume that m satisfies (A2.4) and N is prime to the
class number h(k) of k. Let ¥'(K*(m)/k) denote the N-part of X(K*(m)/k). Then
we have

X' (K*(m)/k) = [[ 2(K/k),-

peS

2.2. Existence of a modulus with (A2.1) ~ (A2.4). In this subsection
we prove that there exists a modulus which satisfies (A2.1) ~ (A2.4) under certain
conditions.

Let k be an algebraic number field of finite degree, and let N be an odd positive
integer. Let N* denote the product of distinct prime factors of N. Let (x5 denote a
primitive N-th root of unity, and put kny = k({n).

Now we consider the following condition:

(A2.5) [kn- : k] is prime to N.
If N is a power of a prime number, then (A2.5) always holds.

LEMMA 2.3. Assume k and N satisfy (A2.5). Then we have

kX kN = <N,

Proor. It suffices to show k* N kf,:,N C kXN, Furthermore we note that if
k and N satisfy (A2.5), then for any finite extension k/k, k and N satisfy (A2.5).
Let N = [[i~, p$* denote the prime decomposition of N with distinct odd prime
numbers p;. We prove the assertion by induction on the number m of prime factors
of N. If m = 1, then the assertion is true by Hasse (8, Satz 1].
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Assume that the assertion is valid for N; and N - M is prime to [ky«p : k],
where M = p® is a power of an odd prime number p prime to N. Then we must
prove

¥
kX nk])s.?\«dM — kXNM‘

Let z € kX NkXAM. Then = oMM for some a € kY, Put y = oM. Then
z = yN. Let o be a generator of a cyclic group Gal (kna/knp). Since o(a¥M) =
o(z) = z = oM we can write o(a) = (- a for some NM-th root of unity
¢, ie., (NM = 1. Therefore, o(y) = o(aM) = (M - aM = (M . y. Furthermore,
o (¢M) = ¢M since (M € ky. Hence for every positive integer j, we see that ol (y) =
aI=1((My) = (Moi~1(y) = --- = (!My. In particular, if p' is the order of o, then
y = o' (y) = (,“'PiMy, i.e., (P"M = 1. On the other hand we know that (V™ =1 and
N is prime to p. Hence we have (M = 1, so that o(y) = y. Thus y € kn,. Since
z =y, by the induction assumption we can write = wl = yN for some w € k.

Next put z = o¥. Then z = 2. Let 7 be any element of Gal (kxar/kpn+).
Then we can write 7(a) = 1 - « for some NM-th root of unity n, i.e., VM = 1,
Therefore 7(z) = 7(aV) = 9z and 7(n™V) = 0" since "V € kps. Let t denote the
order of 7. Then z = 7i(z) = n'Vz, and 7'V = 1. Since n*"¥ = 1 and ¢ is prime to
M, we have ¥ = 1. Hence 7(z) = z. Since 7 is any element of Gal (kn/kpmn-), it
follows that z € kpn«. Therefore from ¢ = z™, using the result of the case m = 1,
we can write z = vM for some v € kpn«.

Thus we see that 2 = w™ = v for some w,v € kpy-. Since N is prime to M,
this implies that = = u™™ for some u € k,n-. Hence taking norm from kpn- to k
we have z¢ = Y™ where 7o = N,y /k(u) and ¢ = [kpn- : k]. Since ¢ is prime to
NM by (A2.5), it follows that = = M for some ; € k. This completes the proof.

The purpose of this subsection is to prove the following theorem.

THEOREM 2.2 (1) Suppose that k and N satisfy (A2.5). Then there exist
infinitely many ideals of k that satisfy (A2.1) ~ (A2.3).

(2) Let? be an odd prime and let N be a power of £. Then there ezist infinitely
many ideals of k that satisfy (A2.1) ~ (A2.4).

(3) Letk and N satisfy (A2.5). Assume that the class number of k is prime
to N. Then there ezist infinitely many ideals of k that satisfy (A2.1) ~ (A2.4).

Proor. (1) Let (I/Py) denote the N-part of I;/Py, i.e., the subgroup of
the ideal class group Ix/Py of k that consists of all of the elements whose order
divide N. Choose prime ideals ay,... ,a; of k such that ay,...,a; are prime to N
and represent a basis of (I/P;)’. For j = 1,...,t let C; denote the order of a; in
I/ Py. Then afj = (a;) for some a; € k*. Let Ej be the group of units of k, and
let gyq,... ,044r be a system of fundamental units of k, i.e., a basis of the free
part of Ej. Let W = W}, denote the torsion part of Ejy and o441 be a generator
of W.
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Put F' = (ay,@9,... ,04,41), to be the subgroup of k* generated by
Gy Gy, e s Cpgprdt- Then

(2.4) Fe7"%"aW.
Furthermore, we have
(2.5) F, C F'k*™ for every factor n of N.

In fact, let @ € F,, then we can write (a) = a™ for an ideal a of k. Since
the order of a in I/ Py divides N, a represents an element of (Iz/Py)’. Hence a is
written in the form

i
a=()]]
=1

for integers e; and some b € k. Thus

t
(2.6) (@) =a™ = (b") H ajjn.
Jj=1
Since ay,...,a; represent a basis of N-part of I/P; and Cjy,...,C; denote the

orders of them, it follows that C; divides e;n for j = 1,... ,t. Put f; = e;n/C;.
Then by (2.6) we have

t t

(2.7) (@) =[] a7"(0") = H(ij)fj (™).
j=1 j=1

Hence we can write

t
a = H oe,{" b"e.
i=1

with some € € E = (g1, ,Qtqry- - »Cirp1). LThis shows (2.5).
We next prove that

(2.8) F'nk>™ = F'™ for every factor n of N.

It suffices to prove that F' Nk*™ C F'™. Let z € F' Nk*™. Then z is of the form

t+r+1
Jj=1

for some y € k* and some integers e;. Hence by the choice of «;, we obtain that

t
CAE.
wr =]

J=1
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Since ay,... ,a; are distinct prime ideals, we have
: !
) =[]ay
Jj=1

for integers f; with fjn = Cje;. Since ay,... ,a; represent a basis of (I/Py)', the
order C; of the class of a; divides f; for j = 1,... ,¢. Hence we have

() = [T/
7=1

Thus
i & t . t+r+41 '
y~1 Ha]fq/ i€ E, and y~—1 H a:{;/ i H a;{j
J=1 J=1 F=t+1

for some integers g;. This implies that y € F', and = y™ € F'", which proves
(2.8).
From (2.8) and Lemma 2.3 we can prove for every factor n of N that
(2.9) F'/F'™ = F'k>*" k" =2 F'RX" [kxT™,
which is a key fact for our proof of the theorem. Indeed, (2.8) shows that
F'JF'"™ = F'J(F nk*™) 2 F'E*™ k>
Furthermore, by Lemma 2.3 we see that F' NkX™ = F' N k*™. Thus we have
F'/(F'nk*™) = F'/(F' 0 k™) = F'ky" k3"
This proves (2.9).

Now, let N’ = GCD(N,#(W)), M = ky( ¥F'), and M’ = k( VF'). Fur-
thermore, for j = 1,2,... ,t +r let

Ly = kn(Van,. .., Ya5o1, Y Varees)
and

L' = k(NG .., Nfam).
Then (2.4) and (2.9) imply that

Gal (M/kn) = F'/F'N = (Z/NZ)'t" & (Z/N'Z).
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Hence by Cebotarev density theorem we can choose ¢ + r prime ideals qi, ... , qsir
of k, and in the case N’ > 1, another q;;,41 which satisfy the following conditions
(1), (2), and (3).

(1) All g; are prime to a,... ,a, and N.

(2) Forj=1,...,t+r, q; is unramified in M, and the decomposition field
of a prime divisor of q; in M is L;. (Since L;/k is a Galois extension, it follows
that the decomposition field of any prime divisor of q; in M coincides with L;.)

(3) In the case when N’ > 1, q¢4r41 is unramified in M’, and the decompo-
sition field of a prime divisor of qy441 in M’ is L'.

Put m = qy...q4, if NN =1, and m = q1...qs4r41 if N' > 1. We prove
that this m satisfies the condition (A2.1) ~ (A2.3). Clearly m satisfies (A2.1) and
(A2.2). Hence it suffices to prove that m satisfies (A2.3).

For this we first show the following assertion:

(2.10) Let n (> 1) be a positive integer dividing N. For each pair of indices 7 and
181 St+rand1 S5 St+r+1with i # j, a; is n-th power residue modulo
gi, i.e., there exists § € k* such that o; = f” mod q;. Furthermore «; represents
a generator of a cyclic group k(q;)/k(q:)"k(q,) of order n, where k(q;) denotes the
subgroup of k* consisting of those elements prime to g;.

In fact, gq; is completely decomposed in L;/k; in particular, so is in kn ( ¢/a5)/k.
Let £; be a prime divisor of g; in k.. Then by Hasse [9, Teil Ia, §9, IX] there exists an
element v € k, such that o;; =~™ mod ;. Moreover g; is completely decomposed
in k,. Therefore we can choose an element 8 € k> with 8 = v mod ;. Thus
we have a = ™ mod q;, which proves the first part of (2.10). Next we prove the
second part. Assume of* = 6" mod q; for § € k(q;) and m | n. Then of* = 6"
mod £,. Hence Q; is completely decomposed in k&, ( {/c?f) Since by the choice of
gi, £; is inert in k,({/a;), this implies k, ( Q/Ey_;"_) = k,. Thus we have m = n. This
proves (2.10).

In the case when N’ > 1, moreover, we have similarly the following:

(211) Let N'>1landputi=1t+7+1 Let 1 £j < ¢t+r. Then o  is N'-th
power residue modulo g;. Furthermore, «; represents a generator of a cyclic group
k(as)/k(9:)V k(q,)-

Using (2.5), (2.10) and (2.11) we can prove (A2.3). Let n be a positive integer

dividing N and let = € F, (). Then by (2.5) z is written in the form:

t4r41
(2.12) z= ] oy,
=1
for some integers e; and an element y of k. Since z and «g, ... ,a4r41 are prime

to m, y is also prime to m. Furthermore, by (2.10) it follows that «; is n-th power
residue modulo q; for 1 £ i S t+7 1 < 7S t+7r+1, and i # j. On the
other hand, we have £ = 1 mod m, and in particular, we see that z is n-th power

%
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residue modulo q; for 1 £ ¢ £t + r. Hence of is also n-th power residue modulo
q; for 1 £ i <t + r. Therefore using the second part of (2.10) we obtain the fact
that n divides e; for 1 £ ¢ < t 4+ r. Next we consider the case i = ¢t +r + 1.
Let n' = GCD(n,N') = GCD(n,#(W)). Then using the second part of (2.11) we
obtain similarly the fact that n’ divides e;q,41. Since ayir41 is a generator of a

t4r+1

cyclic group W, we can write oy {'"}'} = af}, ., for some integer b. Thus we have

t+r n
= ei/n b
T = (H%J at+r+1y) )
=1

which shows (A2.3). This completes the proof of (1).

(2) We use the notations and the results in the proof of (1). Let m be the
ideal chosen in (1) in the case when N is a power of £. Then by the result of (1) it
suffices to prove (A2.4).

Let (z) € Pi(m). Then by the second part of (2.10) and (2.11), we can choose
integers a; and elements b; of k such that z = of'bf mod q; for 1 SiSt+r+ 1.
Put

t4-r+1
y= H a?j.
j=1
Then by (2.10) and (2.11) we have
tr+l thrl
ey = b ey H af =b;" H o’ =c¢f mod g
j=1 j=1,

for 1 £ i £ t+7+1. Therefore, there are elements z and w of k such that z = yz‘w
with z € k(m) and w = 1 mod m. On the other hand, by the definition, the order
C; of a; in I}/ Py, is a power of N. Hence we have

t
() = [Tt =TT a5 € Iu(m)"
j=1 j=1
Thus (z) € Ix(m)*Py(m). This proves (A2.4).

(3) Let £ be a prime dividing N. Let y be as in the proof of (2). If the class
number of k is prime to N, then in the proof of (1) the number ¢ of ideals a;, ... ,a¢
equals to 0. Hence in this case y is a unit. Thus we can prove (A2.4) similarly as
for the case (2). This completes the proof of the theorem.

3. Central extensions modulo m

In this section we study central extensions modulo m of a finite Galois exten-
sion K over a finite algebraic number field k and the ray class number modulo m
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of K in connection with the Hasse norm principle modulo m of K/k. The purpose
of this section is to prove Theorem 3.3.

3.1. Central extensions modulo m of finite Galois extensions K/k.
Let k be an algebraic number field of finite degree. Let m be a modulus of k. Let
K /k be a finite Galois extension. In this subsection we give some general results on
central extensions modulo m as preliminaries to the next subsection .

We start with the definition of the central class extension of K/k modulo m.

DeriniTION 3.1. Let K/k be a finite Galois extension. Let m be a modulus
of k. Let m* denote the lifting modulus of m from & to K defined in (D1.5). Let
K (m) be the maximal central extension of K /k contained in the ray class field over
K modulo m*. We call K(m) the central extension modulo m of K/k.

From the definition it follows that K*(m) C K (m). We study the abelian group
structure of the Galois group of K(m)/K*(m). Since the approximation theorem
implies Jyr C K*Jgm~, we have a natural isomorphism: Jg /K> = Jgp« /K (m*)-
Therefore, there is a natural correspondence between the class fields over K and
the subgroups of Jxn- which contains Ki,»).

The following lemma is well known and is proved by standard class field theory;
we omit the proof of it. For the proof, e.g., see M. Razar [15, Proposition 1].

Lemma 3.1. (1) Let Hg be the subgroup of Jxm+ corresponding to the genus
field of K/k modulo m (i.e., in particular, Jgm+/Hg = Gal (K*(m)/K)). Then we
have

He = N, (km)Nk/k(Wikw-)),

where Ny, denotes the norm map from Jgm= to Jim.
(2) Let He be the subgroup of Jyxm« corresponding to the central class field
of K/k modulo m (i.e., in particular, Jgm+/Hc = Gal (K(m)/K)). Then we have

HC = J;lgm*K(m-)WKm* .

where JR.. = (@' | a € Jgm+,0 € Gal (K/k)).

From this lemma we can prove the following theorem. A. Scholz [16] first
obtained the results of this type, and in the case m = 1 or m = oo, this theorem is
classical. S. Shirai [18] proved this theorem for some m. F. P. Heider [10] obtained
the results of this type in the general situation. Here we give a direct proof from
Lemma 3.1.

THEOREM 3.1. There is a homomorphism

¢ km) N Ngji(Jxm+) — Gal (K (m)/K*(m))

s
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such that the sequence
1 — (Brm) N Nisk(Jrm= )/ (Ermy N N (Kme+))) —
(k) 0 Nicpe (i) Nicpe(Kme)) = Gal (K (m)/ K" (m)) — 1
18 ezact.

Proor. We first define an epimorphism .

Hg — (k@m) 0 Ng/e(Tkm=))/ (Erm) N Nizk(Jrm)) N e (Kim-))

as follows. Let « € Hg . Then by Lemma 3.1 for some y € k() and w € Wi we
can write Nk (z) = yNg i(w). Since y = Ngjp(zw™) € Ngi(Jxm-), we have
Y € km) N Ng/k(Jkm+). Then we define 1(z) using y as follows:

Y(z) =y mod (Exm) N Ni/k(Jrm=))Nic/p(Km=))-

It is easy to check that 1 is well defined and an epimorphism.

Now, we prove the kernel of ¢ is He. Let © € He. Then by Lemma 3.1 we can
write z = wyv for some w € J}Qm‘, Y € K(w+), and v € Wk Since Ngp(w) =1,
we see that Ny, (x) = Ngk(y) Nk (v). Hence by the definition of ¢, we have

Y(z) = Ng/i(y) mod (Eim) N Ni/e(Jkm)) Nr/k(Km-)) = 1.

This shows Heo C kert. Conversely, assume ¢(z) = 1 for ¢ € Hg. Then there
exist z € (Ex(m) N Ni/p(Jkm+)); v € Km+), and w € Wi« such that N/ (z) =
2Nk (v) Nk i (w). Furthermore using (1.5) we can write z = Ny i(u) for some
u € Wim-«. Hence we have zu™lv " 'w™! € Jgme and N/ (zu™ v 'w™") = 1. On
the other hand by semilocal theory we know

H™YG, Jgn- [Wim-) = H UG, Y Ki/U(Kyp))

Pim*®
P:finite
= > H Gy Kg/U(Ky) = ) HGZ)=1,
pim ptm
p:finite p:finite

where G = Gal (K/k), P is a prime of K, p is the prime of k divided by B,
and Gy is the decomposition group of a prime factor P of p. Thus we can write
zu~ v~ lw™! = st for some s € J}gm, and t € Wgm-. Hence by Lemma 3.1 we have
z = uvwst € He. This proves kery = H¢ and consequently ker ¢ = H¢. Thus we

have proved that

He/He 2 (kim) N Nijk(Jrm= )/ (Ekmy 0 Niji(Jrm=)) N (K mey)-
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Now by class field theory we know Hg/He = Gal (I? (m)/K*(m)). Therefore from
the exact sequence

1 — (Bim) N Ni/i(Tgm=))/ (Egmy O N i (K (m=))) —
(kmy YNk /e (Jrm=))/Ni (K mey) —
(km) N Nig/i(Jxem=))/ (Bioqmy N Nicjr(Treme ) ) Niji(Kmey) — 1
the theorem follows. This completes the proof.

From the theorem together with Corollary 1 of Theorem 1.1 we have the
following Corollary 1, which gives a central class number formula modulo m.

CoroLLARY 1. Let the notations and the assumptions be the same as in The-
orem 1.1. Then

(B(m) : K] = #(Jkm /k(m) Wim)

y [T s #(Vy (v (e@)D ke (m)y N Nicji(Trem= )+ Nigpr(Kme)]
(K" 2 kl[Exm) : (Erm) N Nisi(Kme)))] )

This corollary generalizes the central class number formula of Y. Furuta [5,
Satz 1] to that of modulo m.

From Theorem 3.1 we can also deduce a relation between Hasse norm principle
modulo m and the central extension K (m). We define the Hasse norm principle
modulo m of K/k as follows.

DeriniTION 3.2. Let m be a modulus of k. If
km) N Ne/k(Jrm=) = Niji(Kme)),

then we say that K/k satisfies the Hasse norm principle modulo m.
Moreover, if

Eym) O Nisi(Jiem«) = Erm) N Ni /(K ),
then we say that K/k satisfies the Hasse norm principle for units modulo m.

In the case m = 1 the above definition coincides with the ordinary Hasse norm
principle. Under this definition the following corollary is immediately obtained.

CoroLLARY 2. K/k satisfies the Hasse norm principle modulo m if and only
if K(m) = K*(m) and K/k satisfies the Hasse norm principle for units modulo m.

Let £ be a prime number. In the case where the ray class number modulo m
of k is prime to £ and K /k is an f-extension, we have a relation between the Hasse
norm principle modulo m of K/k and the ray class number of K modulo m*.
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DerFiniTION 3.3. Let m be a modulus of k£ and let K/k be a finite Galois
extension. Let m* denote the lifting modulus of m from k to K. We denote the ray
class number of K modulo m* by A(K,m*), and call it the m*-class number of K.

CoROLLARY 3.  Let £ be a prime number. Let K/k be a finite Galois -
extension such that [K*(m) : K| is prime to £. Then K/k satisfies the Hasse norm
principle modulo m if and only if h(K,m*) is prime to £ and K/k satisfies the
Hasse norm principle for units modulo m.

Proor. Since [K : k| is a power of ¢, km) N Ni/u(Jime)/Nije(Kme)) is
an f-group. Hence by our theorem, Gal (K(m)/K*(m)) is also an f-group. There-
fore, by Corollary 2, it suffices to prove that ¢ | h(K,m*) if and only if ¢ |
[}?(m) : K*(m)]. We use the notation of Lemma 3.1. Put R = Jgm+/K@m+)Wkm=,
Hg = Hg/Km-)Wkw-, and Hc = Hc/K(m-)Wkm-. Then by Lemma 3.1 R is
a finite abelian group and He = RP, where D = {En,o0 | £n, = 0} C Z[G]
and G = Gal (K/k). Moreover we have #(R) = h(K,m*), [K(m) : K*(m)] =
#(Hg/Hc), and [K*(m) : K] = #(R/Hg). Since R is a finite abelian group, it
holds that ¢ | #(R) if and only if £ | #(R/RP). On the other hand #(R/RP) =
#(R/Hg)#(Hg/He) and £4 #(R/Hg) by the assumption; therefore, we see that
2| #(R/RP) if and only if £ | {E’(m) : K*(m)]. Thus we have ¢ | h(K,m*) if and
only if £ | [K(m) : K*(m)]. This proves the corollary.

3.2. The Hasse norm principle modulo m and finite Galois exten-
sions. In this subsection we study the Hasse norm principle modulo m for finite
Galois extensions; in particular , for finite abelian extensions.

Let m be a modulus of k satisfying (A2.2), i.e., m is a product of distinct
primes of k. Let K/k be a finite Galois extension such that [K : k] is prime to m.
Then the number knot modulo m*, (km)NNg/k(Jrxm*))/Nijk(K(m+)), is expressed
by the decomposition groups G(p) of the primes p ramified in K/k.

THEOREM 3.2. Let m be a modulus of k such that m is a product of distinct
primes of k. Let K/k be a finite Galois extension such that [K : k] is prime to m.
Put G = Gal (K/k) and let S denote the set of those primes of k which are prime
to m and ramified in K/k. For every prime p € S we choose a prime divisor P of
p in K and denote the decomposition group of P in K/k by G(B). Then we have

(km) N Nic/e(Jxm*)) /Nicje(K(m+))

> Coker (Y H-(G(B),2) — H*(G,2)),

peS

where 3, s H “3(G(B),Z) — H3(G,Z) is the homomorphism induced from the

corestriction maps.
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Proor. Let Cg denote the idele class group of K, ie.,, Cx = Jg/K* =
Jrme/Km+). We start with a following exact sequence.

1 — Kmey == Jme = Cx — 1
Taking Tate cohomology groups we have the following exact sequence.
H NG, Jxm) 25 B, Cr) 25 HYG, Kiey) 5 HO(G, Txm+)
By definition we have

H(G,K(m+) = (kN Km))/Nijk(K(m+)), and
H°(G, Jkm+) = (Jk N Jxm« )/ Nic sk (Jrcme)-

Therefore we see that
Keri# = kn K(m‘) n NK/k(JKm‘)/NK/k(K(m*))n

Furthermore, since m is a product of distinct primes of k by assumption, we see
that kN Ky N Ng/k(Jxm+) = k(m) N Ng/k(Jxm=), and hence

Ker i# = (k(m) N Nic/i(Jxm=))/Nic /i (K me))-
Thus we have
(3.1) (km)y N Nic/e(Trem=))/Nicji (K me)) = Keri# = Im %
= H(G,Cx)/i*(H (G, Jxn-))-

The key part of our proof is to calculate % (H (G, Jgm«)). Let p be a prime
of k dividing m. We choose a prime divisor B of p in K, and denote its decomposition
group in K/k by G(*B).Then it holds that

(3.2) H™ N (G(P),U(Kp) M) =1.

Indeed, let T(P) and Kr denote the inertia group and the inertia field of P in
K /Ky, respectively. Since m is prime to [K : k] by assumption, we see that Ky /Kp
is at most tamely ramified, and T'() is cyclic. Therefore, by Lemma 1.1 and (1.10)
it follows that

Nicy 152 (U(Kg) V) = U(Kr)D = Kr nU(Kgq) V.
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This means, in particular, HO(T(B), U(Ky)")) = 1. Hence we have the following
exact Corestriction-Deflation sequence (see e.g., E. Weiss [20, Theorem 1]).
HH(T(R), U(Ky) V) S5 HH(GR), U(Ky) ™)

P HNGR)/TER), U(Kr)W) — 1.

On the other hand, since Kr/k, is unramified, we have
Nicr ey UET)D) = Uky)V = ky NU (K1) D,

and HY(G(P)/T(P),U(Kr)V) = 1. Since G(P)/T(P) is cyclic, we can take the
Herbrand quotient and see that H~'(G(R)/T(P),U(Kr)V) = 1. Thus we have
the following exact sequence.

(33) H Y T(P),U(Ky) D) &5 HH(G(R),U(Ky) M) — 1

Since T'(P) is a cyclic group and HO(T(P), U(Kp) M) = 1, we see that H 1 (T (),
U(Kg)®) = 1 by taking Herbrand quotient. Therefore, by (3.3) we have
H-Y(G(P),U(Ky)D) = 1. This proves (3.2).

Now for a prime p of k put

Uk,) " = [Juke)®, KX =] &5
Plp Plo

Then by semilocal theory we know

H™Y(G,K;) = H"H(G(B), Ky),
H™H(G,U(K,)D) = HH(G(B), U(Kyp) D).
If ptmand p ¢ S, then p is unramified ; hence H“I(G", K, )= H Y G(P),Kg) =
1. Furthermore, if p | m, then H~Y(G,U(K,)M) = H-YG(P),U(Kqp)P) =1 by
(3.2). Thus we obtain H~ (G, Jxm+) = Y ,cs H™1(G(P), Ky ). For simplicity we

consider H™'(G(P), Kqy3) a subgroup of H~Y(G, Jkm~). Thus from (3.1) it follows
that

(3.4) (km) 0" Ng sk (Jrme)) /N /i (K (m=))

~ H-Y(G,Ck)/i* (Z HY(G(B), K;))-

pes

Now class field theory gives the following commutative diagram.
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H3(G(P),2) = H%G,Z)

(3.5) !l !l
H-(G(P), Kg) —— H'(G,Cx),

where H™'(G (), Kg) is naturally considered as a subgroup of H~*(G, Jxm-). Let
¢ denote the homomorphism of the direct sum > o H —3(G(B),Z) to H3(G,7Z)
induced from corestriction maps. Then (3.4) with (3.5) becomes

(k(m) O Nie/e(Jrm=)) /N (K (m+))

~ H3(G, zz)/aS(Z H™*(G(P), Z))*

pes

This completes the proof.

In the case where K/k is an abelian extension, the right hand of the formula
in the theorem above is expressed more explicitly.

TueoreM 3.3.  Let the assumptions and the notations be as in Theorem 3.2.
Furthermore assume that K/k is a finite abelian extension. Then we have

(kmy V" Ni/i(Jrm+))/Nicjie(Km+))

& Coker (Z A% (G(P)) — AQ(G)),

peS
where A2(G(B)) and A?(G) denote the second exterior products of G(B) and G,
respectively.
This theorem gives a generalization of M. Razar [15, Theorem 3] .

Proor. Let the notations be as in the proof of Theorem 3.2. Let A?(G(B))
and A%(G) denote the second exterior products of G() and G, respectively. Then
by Hopf’s formula these are naturally isomorphic to Schur multiplicators Hs(G(0),
Z) = H™3(G(B),Z) and Ho(G,Z) = H3(G,Z), respectively. Let 1y denote the
natural homomorphism A%(G(B)) to A%(G). Then the following diagram commutes.

AA(G(P)) —22  A2(G)

dl dl

H=3(G(9),2) —=~ H%(G,Z)
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Let ¢ denote the homomorphism of the direct sum 3° A%(G(B)) to A%(G) in-
duced from ¥g. Then (3.4) with (3.5) becomes

(k(m) O Nre sk (Tkm+))/Nic e (Km+y)

= A2(G) /(3 AXGB)),

pes

which proves our theorem.

In the case where K/k is abelian, all of the decomposition groups of prime
divisors of a prime p of k in K coincide. In what follows, therefore, we use the
notation G(p) for the decomposition group instead of G('B).

From the definition of the Hasse norm principle modulo m the following corol-
lary follows immediately.

CoroLLARY 1. K/k satisfies the Hasse norm principle modulo m if and only
if 3 ,es A2 (G(p)) — A*(G) is surjective.

Using properties of the second exterior products we can prove the following
corollaries by arguments similar to M. Razar [15, §4].

CoroLLARY 2. If K/k is a cyclic estension, then K/k satisfies the Hasse
norm principle modulo m.

COROLLARY 3. Let M/k be a subextension of K/k. If K/k satisfies the Hasse
norm principle modulo m, then M /k also satisfies the Hasse norm principle modulo
m.

COROLLARY 4. Let Ky and Ky be the subfields of K such that K = K\ K5
and (K1 : k| is prime to (K> : k]. Then K/k satisfies the Hasse norm principle
modulo m +f and only of Ky /k and Ky/k satisfy the Hasse norm principle modulo
m.

CorOLLARY 5. Let £ be a prime number. Let K/k be a finite abelian £-
extension and let Ko/k be it’s mazimal elementary subextension. Then K/k satisfies
the Hasse norm principle modulo m if and only if Ky/k satisfies the Hasse norm
principle modulo m.

4. The Hasse norm principle and a generalization of a theorem of
Frohlich

D. Garbanati [6] studied the Hasse norm principle over Q and pointed out
that there is an intimate relationship between the Hasse norm principle and the
£-divisibility of the class numbers of composite fields of finite abelian f-extensions
with prime power conductors.
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The purpose of this section is to determine the fields which satisfy the Hasse
norm principle modulo m for a suitable m in some classes of finite abelian ¢-
extensions K /k. As an application of this result we also determine the fields whose
m*-class number is prime to £ in some classes of finite abelian ¢-extensions K /k.
These give generalizations of the results of Frohlich and Garbanati.

4.1. The Hasse norm principle and elementary abelian f-extensions.
By corollaries of Theorem 3.3 it suffices to study the Hasse norm principle modulo
m for elementary abelian f-extensions for every prime number £. Let m be a finite
product of primes of k and assume that the m-class number h(k, m) of k is prime
to £. The purpose of this subsection is to give a criterion for certain elementary
abelian f-extensions K/k to satisfy the Hasse norm principle modulo m.

DEeFINITION 4.1. Let K/k be a finite abelian f-extension. If the conductor of
K/k is a power p° of a prime ideal p of k up to factors of m, then we say that K/k
has a prime power conductor p¢ modulo m.

We assume that h(k,m) is prime to ¢; therefore, p is totally ramified in K/k
if K/k has a prime power conductor p® modulo m.

For the rest of this section let K/k denote a composite field of elementary
abelian f-extensions of k with a prime power conductor modulo m, i.e., let

m
(4.1) K =] K;
j=1

where K; have prime power conductors pi" modulo m, and p; are distinct prime
ideals of k prime to m.

The purpose of this subsection is to determine those extensions of this type
which satisfy the Hasse norm principle modulo m. Put S = {p1,... ,pm}; this is
the set of those primes of k£ which are prime to m and ramified in K/k. In the case
where K;/k is cyclic for 1 £ 5 £ m, we define a character

(K/k, ip;]: k(p;) — Z/CZ

as follows, where k(p;) denotes the subgroup of k* consisting of those elements
prime to p;. Let T; = T'(p;) denote the inertia group of p; in K/k. Then by
assumption Tj is cyclic and isomorphic to Gal (K;/k) by the restriction map. Choose
a generator t; of Gal (K;/k) and fix it. We also consider ¢; as a generator of T}. Let

(K /k, ;) : K = Gal (K/k)

be the norm residue symbol of K/k at p;. Then (K/k;p;) induces an epimorphism
from k(p;) to T;. Now for = € k(p;) we define [K/k,z;p;] as an integer modulo £
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such that (K/k,z;p;) = t;mk’r;MA Similarly we define [K/k,z;p;] starting from
K;. Since p; is unramified in [, Ki, [K/k,a;p;] coincides with [K;/k,z;p;].
Hence we may write (K, ] instead of [K/k,z;p;]. Then we have for = € k(p;)
(4.2) (K/k,z;p5) = (K;/k,2;p5) = 17,

i
Furthermore, for p; € S, choose an element n; € k such that

(4.3) pliem) (m) and m =1 mod m.

Since m; € k(p;) for i # j, [Kj,m;] is defined if K;/k is cyclic. Furthermore [K :
k| = T1;=, #(T}) by (4.1); hence it follows from Corollary 1 to Theorem 1.1 that
24 [K*(m) : K] and Eym) C Ngji(Jgm-). Hence for € € Eymy we have [Kj,e] = 0.
Thus [K;, m;] does not depend on the choice of 7; satisfying (4.3). Using [K, m;] for
1 £4, j £ m we can obtain a criterion for K/k to satisfy the Hasse norm principle
modulo m.

We first note that the second exterior product A?(G) of an elementary abelian
l-group G has a simple group structure, i.e., if G has rankr, then A?(G) is an
elementary abelian ¢-group of rank 7(r — 1)/2. We use additive notation for A?(G)
though G is written multiplicatively, and consider A?(G) as a vector space over
Z/¢7. We start with a simple criterion obtained from calculating the dimensions
over Z/lZ.

Let [K : k] = ¢ and [K; : k] = {% for j = 1,... ,m. Let G(p;) denote the
decomposition group of a prime divisor of p; in K. Then Z;":l u; = v. Furthermore
rank (G(p;)) < u; + 1 because G(p;)/T(p;) is cyclic. Hence

e

. - 2 uj(u; +1)
chm(j;A (Gv;))) < 2; e
]

On the other hand

dim(a2(@)) = WD oyl 2 1)

J=1

Therefore ifu;+1 Sv—1forj=1,... ,mand u;+1 < v—1forsomei (1 £i < m),
then dim(}_72, A%(G(p;))) < dim(A?(G)). Consequently 1 is not surjective, which
implies by Corollary 1 of Theorem 3.3 that K/k dose not satisfy the Hasse norm
principle modulo m. In particular we have the following.
(4.4) K/k dose not satisfy the Hasse norm principle modulo m in the cases where
i mz4,
(i) m=3andv 24,
(iii) m=2,v=u; +up Z5,andu; 22 (j=1,2).
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We next prove a relation between G(p;) and T(p;) under some conditions. Let
i be a positive integer with 1 £ < m and assume that [K ; k] = £ for each j # 1.

Then [K;,m;] and t; are defined for each j # 4. Put s; = [] thj "] Then we have
j=1
J#L

(4.5) G(pi) = (si) - T(pi)-

Indeed, since the image of k* (resp. k(p;)) by the norm residue symbol (K/ k;ps)
coincides with G(p;) (resp. T(p;)), G(p:) is generated by (K/k,m;p;) and T(p;).
Since, at most, only prime divisors of m - H;"zl p; are ramified in K/k, by the
product formula we have

[T &k, 70 - T](K/k, mi50) = 1.
j=1

qjm

Since the divisors of m are at most tamely ramified in K/k and 7; = 1 mod m,
m

it follows that Hq]m (K/k,mi;q) = 1. Hence (K/k,m;;p;) = [] (K/k,mi;p;)"; this
=1
e

with (4.2) implies (4.5).
Now we divide the problem into several cases according to the number #(S).

L The case where #(S) = 1. Then K/k satisfies the Hasse norm principle
modulo m.

Proor. Let S = {p;}. Then K = K|, and p; is totally ramified in K/k.
Therefore in this case G(py) = Ty = T(p1) = G. Hence 9 : A2G(p;) — A2G is

surjective.

Il.  The case where #(S) = 2. Let S = {p1,p2}.
(1) If[K:k| =2 ie., Ky :k|=[K,:k|=1{, then K/k satisfies the Hasse
norm principle modulo m if and only if rank ([K;, ma), [Ky,m]) 2 1.
(2) If[K : k| = 63, then K/k satisfies the Hasse norm, principle modulo m
Just in the following two cases (i) and (ii).
(i) [Ki:k] =0 and [Ky, 7] # 0.
(ii) [K2:k] =2 and [K2,m] # 0.

PrRoOF. In this case, if [K; : k] = £ for {1,5} = {1,2}, then by (4.5) we have

G(p:) = T(pi) if [Kj,m]=0,

(4.6) .
Gp:) = (t;)T(w:) =G if [K;,m)#0.

(1) Suppose rank ([Ky, ), [K2,m1]) = 0. Then [Kj, ] = [Ka,m] = 0.
Hence by (4.6) we see that G(p;) = T(p) = (1) and G(p3) = T(ps) = (ta), which
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implies 35, _; , A*(G(p;)) = 0. On the other hand we have dim A2(G) = 2(2-1)/2 =
1 because G = (t,t5) in this case. Thus we have that ' is not surjective.

Conversely, suppose rank ([Ky, 7], [K2,m]) 2 1. Then at least one of [K;, 7]
and [K3, ] is not zero. Let [Ky, ma] # 0 for instance, then by (4.6) it follows that
G(p2) = G. Thus v is surjective.

(2) Suppose [Ky : k] = £ Then [Ky : k] = ¢* with v 2 2 by assump-
tion. If [Ky,mp] # 0, then G(p2) = G by (4.6), and hence 9 is surjective. Con-
versely if [Ky,m2] = 0, then G(p2) = T(p2) by (4.6). On the other hand we have
rank (G(p1)) £ 2 because G(p;)/T(p1) is a cyclic group. Therefore,
dim(3>",_, , A2(G(py))) £ &2:}2 + “(—u{—l) Furthermore, we have dim(A?(G)) =
i—u—“‘;ﬁf = 24 3‘132:—1-)‘ Hence dim(},_, , A%(G(p:))) < dim(A%(G)) and % is not
surjective. In the case where [K : k] = ¢ similar argument holds. Hence if either
[K1: k] =£or [Ky: k] = ¢, then the assertion is valid. We next consider the case
where [K; : k] = €% withu; 2 2 for j =1,2. If u; > 2 or ug > 2, then by (4.4) ¥ is
not surjective. Finally we consider the case u; = 2 and uy = 2. If G(p;) = T'(p;) or
G(p2) = T(p2), then similarly to the above we see that v is not surjective. Hence
the remaining case is the case rank (G(p;)) = rank (G(p2)) = 3. Since rank (G) = 4,
it follows that rank (G(py) N G(p2)) = 2, so that

dim(A*(G(p1)) N A%(G(p2))) Z 1.

Hence we have

. . N 3
dim( 3 A(G(p))) < %3 + 5%?- ~1 < dim(A%(G)) = ié_. — 6,
1=1,2

which shows that 1 is not surjective.

HI.  The case where #(S) = 3 and [K : k] = 3. Then [K; : k| = { and
[Kj,m;) is defined for 4,5 = 1,2,3. Then K/k satisfies the Hasse norm principle
modulo m if and only if '

—[Ka,m), —[Ks,m], 0
rank [Kl, 71'2], O, —{Kg, 7(’2] = 3.
0, [K1,7ms],  [Ka,7s)

Proor. We use the notation in (4.5). Then G(p;) = (s;)-(t;), and A%(G(p,)) =
(s At;) for j = 1,2,3. Moreover since G = (t,ts,t3), it follows that t; Aty 1 Ats,
ta Ats form a basis of A%(G). Thus ¥ is surjective if and only if s; At; for j = 1,2,3
are lineally independent over Z/¢Z. On the other hand from (4.5) we have

suAty =ty femly Ay
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= [Ky,m|(ta At1) + [K3,m](ta Aty)  written additively
= —[Ka, mi](t; A ta) — [K3, m](t1 Ats),

82 Aty = [K1,m|(ts Ata) — [Ks,m](t2 A t3),

s3 Aty = [Ky,ms)(ty Atg) + Ko, m3](ta A ts).

Hence
s1 At =Ky, m], —[K3,m], 0 ty Aty
Sog Nty | = [Kl,ﬂ'g}, 0 —~[K3,7r2] t1 Aty
53 Ay 0, [Ky,m3],  [Ka,7s) ty A3

Thus s; A t; for j =1,2,3 are linearly independent over Z/{Z if and only if

=Ky, m], —[K3,m], 0
rank [K1, 73], 0, —|K3,m] | =3,
O? {Kh 1‘-3]7 [K21 7(3]

which proves our assertion.
The following cases IV and V are contained in (4.4).

IV. The case where #(S) = 3 and [K : k| = ¢*. Then K/k does not satisfy
the Hasse norm principle modulo m.

V. The case where #(S) = 4. Then K/k does not satisfy the Hasse norm
principle modulo m.

Summarizing the cases I,... ,V we have the following theorem.

THEOREM 4.1. Let the notation be as above. Let K/k be a composite field of
elementary abelian £-extensions of k with a prime power conductor modulo m. Then
K/k satisfies the Hasse norm principle modulo m if and only if K/k is in one of
the following cases.

L #(S)=1.

. #(S)=2 and

(i) [Ky:k]=¢and [Ky,m] #0,
or

(ii) [Kz:k]={¢ and [Ks,m] #0.
III. #(S)=3,[K:k|=¢, and

““{K2,,7T1], “[K?‘n"rl]a 0
rank {Kl,’n‘g}, 0, —[Kg,ﬂ“z] = 3.
Ov {Kla 7T3]1 {Kzs 7(3]

B



Hasse norm principle 265

4.2. A generalization of a theorem of Frohlich. In this subsection we
give a generalization of Frohlich’s theorem on the ¢-divisibility of the class numbers
of f-abelian fields as an application of Theorem 2.1 and Theorem 4.1.

Let ¢ be a prime number and N a power of £. Let k be an algebraic number
field of finite degree and assume ¢ { h(k). Let m be a modulus of k satisfying (A2.1)
~ (A2.4). Then by Lemma 2.2 we see that £ { h(k,m). Let K/k be a finite abelian
l-extension whose exponent divides N. Now we give a criterion for the m*-class
number A(K,m*) of K to be prime to £.

If £ | [K*(m) : K], then £ | h(K,m*) by the definition of the genus field modulo
m. Hence it suffices to consider the case where ¢ { [K*(m) : K]. By Theorem 2.1
we can write K*(m) = k(™) . H;’;l K, where k™) denotes the ray class field of
k modulo m and K; are fields with distinct prime power conductors modulo m.
Therefore the assumptions £ { h(k,m) and £ { [K*(m) : K] imply K = [[}L, K},
i.e., K is a composite field of abelian f-extensions with prime power conductors
modulo m. Though K is not assumed to be elementary, Frohlich’s results suggests
that the essential part is in the elementary case. Indeed, similarly to the Hasse norm
principle modulo m (Corollary 5 of Theorem 3.3), the problem of the {-divisibility
of m*-class numbers is reduced to the elementary case as we now see it.

For the technical reason we state the result in a slightly more general situation.

PROPOSITION 4.1. Let £ be a prime number, k an algebraic number field of
finite degree, and m a finite product of distinct primes of k prime to £. Let F/k be a
finite abelian £-extension. Forj =1,...,m, let L;/F be a finite abelian {-eztension
which is also abelian over k, and let L;/F be the mazimal elementary subextension
of L;j/F. Assume that L; satisfies the following conditions (1), (2), and (3) for
i=1...,m;

(1) thereis a prime p; of F' such that p; is prime to m and ramified in L;/F,

(2) all primes of F which are prime to m and ramified in L;/F are totally
ramified in L;/F,

(3) all primes of F which are prime to m and ramified in L;/F are unram-
ified in L;/F for every i # j.

Then

E{h(HLj,m*) if and only if E’(h(HL'j,m*)
j=1

j=1

Proor. We first note that m* is a finite product of distinct primes in any
abelian extension over k because m is a finite product of distinct primes of k by the
assumption made. We prove by induction on m.

I. The case m = 1. (i) We first consider the case where L;/F is cyclic. If
¢ | h(L}, m*), then clearly € | h(Ly, m*) because there is a prime of F' which is prime
to m* and totally ramified in L;.
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Conversely, assume ¢ | h(L{,m*). Let L/L, be the ¢-part of the ray class field
over L, modulo m*. Since there is a prime of F which is prime to m* and totally
ramified in L;, the Galois extension L/F is not cyclic. Therefore, there is a cyclic
extension N/F' of degree ¢ such that N ¢ L and NNL, = F. If ¢ { h(Ly, m*),
then there is a prime B of L] which is prime to m and ramified in L} N/ Li. Let
p be the prime of F below . Since p is ramified in L/F and the prime divisors
of p in L are unramified in L/L,, it follows that p is ramified in L, /F; hence by
the assumption (2) p is totally ramified in L;; consequently p is totally ramified in
L}. Hence p is totally ramified in L, N/F. Let P’ be the prime divisor of p in N.
Since L1 N/N is a cyclic extension and ' is ramified in LiN/N, it follows that '
is totally ramified in Ly N/N. Thus p is totally ramified in Ly N/F; in particular,
the prime divisor of p in L, is ramified in L; N /Ly, which contradicts N ¢ L. Thus
we have £ | h(L], m*), which proves the assertion in our case.

(i) We prove the general case (for m = 1) by induction on rank (Gal (L /F)).
Assume that the assertion holds for the case rank (Gal (L, /F )) = r. We must prove
the assertion holds for the case rank (Gal (L;/F)) = r+ 1. Let rank (Gal (L /F)) =
r+1.1f £ | h(L}, m*), then similarly to (i) we have £ | A(Ly, m*). Conversely assume
¢ | h(Ly, m*). Then we can take extensions L;; and Li5 of F such that Ly = Lyy-Lqa,
LiyNLia = F,and L3/ F is cyclic. Let L', be the maximal elementary subextension
of Li3/F, i.e., the subextension of Ly2/F of degree £. Then Ly;L},/Lq, is the
maximal elementary subextension of L;/L;;. Hence by (i) (with F = Ly;) we have
€| h(L1y L}5, m*). Next let L}, be the maximal elementary subextension of L, /F.
Then by the assumption of the induction it follows that ¢ | h(L},L},, m*) since
L3, L}, is the maximal elementary subextension of L,L,/L},. Since Ly, L}, = LY,
this completes the proof in our case.

II.  Assume the proposition holds for the case m = . Let us consider the case .
m=r+1.1If £ 1 h( ;:i L;,m*), then £ { h(H;:i L}, m*) since there is a prime of
IT;—; L; prime to m* which is totally ramified in H;Zi L; by the assumption (1),
(2), and (3). Conversely suppose ¢ | h( ;2 L;,m*). Since Gal (H;:; L/ = L)
& Gal (Ly41/F) and the primes of F which are prime to m and ramified in L,y are
unramified in [];_, L; by the assumption made, we see that the primes of Il L;
which are prime to m and ramified in []7X} L; are totally ramified in H;:; L;.
Hence by the result I (with F = [T;=, L;) we have ¢ | h((ITj=; Lj) - L4y, m*). On
the other hand the extension (Il L)Ly, = [Tj=i(L;L; ) of L, satisfies the
assumption of the proposition with F' = L/, +1 and m = r. Hence by the assumption
of the induction it follows that € | h([T}_, L}L,,;,m*), ie., £ | h(IT5E] Ly, m*).
This completes the proof.

The following corollary is a special case of the above proposition.

CoroLLARY. Let ¢ be a prime number and N q power of £. Let k be an
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algebraic number field. Let m be a modulus of k satisfying (A2.1) ~ (A2.4). Let K
be o composite field of abelian £-extensions with a prime power conductor modulo m
whose exponent divides N. Let K’ be the mazimal elementary subextension of K/k.
Then £ | h{K,m*) if and only if £ | h(K',m*).

By this corollary it is sufficient to determine the elementary abelian f-exten-
sions K/k whose m*-class number A({K, m*) is prime to £.

Now by Corollary 3 of Theorem 3.1 and Theorem 4.1 we have immediately
the following result.

Tueorem 4.2, Let K/k be a composite field of elementary abelian f-exten-
sions of k with a prime power conductor modulo m.

(1) In the following cases I, I, III it holds that £4 h(K,m*).

(2) If K/k satisfies the Hasse norm principle for units modulo m, then £ {
h{K,m*) in ezactly the following cases I, II, IIL

L #(S)=1.
II.  #(S) = 2 and either

(1) {Kl k}zg and {K;,ﬂ’g}?’i{i,
or

(il [Kp:k]=1{ and [Ky,m] # 0.
HI. #(S)=3, [K k] =£, and

'-{K2y7{-1}3 _£K3:7r1§3 0
rank | [Ki,m), 0,  —[Ksm] | =3
Dv {K]47T3]7 [K21W3]

In the case when k = Q let m = oo or 1 according to £ = 2 or £ > 2. Then
2} #(Eyn); consequently, the Hasse norm principle for units modulo m is satisfied.
Hence in this case , (2) in the above theorem coincides with the Frohlich’s result in
[2]. Similarly in the case where k is an imaginary quadratic field with ¢4 h(k) and
£t #(FEk), (2) gives the result of Ullom and Watt [19].
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