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Abstract. The time-domain boundary element method using the Haar wavelets is developed for reducing
the computational cost of the BE wave propagation analysis. The Haar wavelets are used for the
discretization of the boundary integral equation. The time variation of the unknown potential and flux
is approximated using the conventional scheme. The small matrix entries of the coefficient matrix are
truncated with the Beylkin-type matrix compression scheme at before and after calculation of double
boundary integral. The present BEM has the numerical stability comparable to the piecewise constant
Galerkin BEM. The sparsity of the coefficient matrix generated at an each time step rises as the time
step proceeds; the memory requirement of the present method can be reduced in comparison with the
conventional BEM. The reduction of the computational work from the conventional BE analysis is difficult
because of the sparse system of the conventional time-domain BEM.

1. Introduction
Nowadays, the fast solutions for the boundary element method (BEM), e.g. the fast multipole expansion
method [1] and the wavelet method (wavelet BEM) [2-4], have been developed for reducing the
computational work and the memory requirements. In the wavelet method, the wavelets have the
following two roles: (i) the basis functions for approximating the unknowns of the boundary integral
equation, and (ii) the weighting functions for the Galerkin discretization. The coefficient matrices
generated by the wavelet method have small matrix entries due to the vanishing moment property of
the wavelets. The truncation of the small matrix entries enables us to replace the dense system for the
conventional BEM into the sparse one. The sparse system of the discretized equation corresponding
to the boundary integral equation leads to the reduction of the computational work and the memory
requirements [5-16]0 The similar sparse matrix can be generated also by applying the fast wavelet
transform (FWT) to the coefficient matrix and truncating the resulting small matrix entries [5-12].
Many researchers on the wavelet BEM have discussed on the performance in Laplace problems and
Helmholtz problems. For the BE analysis of these problems, a sparse coeffient matrix enables us to
not only memory reduction but also the reduction of the O(NN*) computational work for solving the
discretized equations. Ravnik et al have applied the wavelet BEM to the incompressible viscous flow
problems [9-12]; the wavelet method is used for the BE analysis of the Poisson’s equation in the vorticity-
velocity formulation. The BEM is however, applied to the unsteady state problems e.g. the unsteady heat
transfer problems, the diffusion problems and the wave propagation problems [13]. For wave propagation
problems, the BE solutions satisfy the Sommerfelt radiation condition, which is a main advantage of the
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BEM. The unsteady BE analysis of the wave equation is based on either the following two formulations:
(i) the superposion of the frequency-domain solutions using the fast Fourier transform (FFT), and (ii) the
discretization of the time-domain boundary integral equation [13]. The time-domain BE formulation,
in particular, enables us easily to deal with the nonlinearity in a part of domain or boundary using
e.g. the BE-FE coupling methods. In the time-domain BE analysis, the time convolution is calculated
by the matrix-vector multiplication of the order O(M N?) (N: the degree of freedom (DOF)) at an
arbitrary time step M. The discretized time convolution thus needs to large computational work and
memory requirements. Soares et al [14, 15] have attempted the computational cost reduction of time
convolution in the time-domain BEM. The wavelet method is effective also for the reduction of this
computational cost. Ravnik et al [9] have used the wavelet method for reducing the computational cost
for the incompressible viscous flow simulation using the time-dependent fundamental solutions. Koro et
al [16] have investigated on the performance of the time-domain wavelet BEM for the diffusion problems.
However, the application of the wavelet method to the time-domain BE wave propagation analysis has
never been attempted.

In the present paper, we develop the time-domain BEM using the Haar wavelets for 2-D scalar wave
equation. The Haar wavelets will be used as the basis functions of the approximations of the potential
and the flux on the boundary and the weighting functions for the Galerkin discretization. The resulting
algebraic equations have the sparse coefficient matrices generated by the truncation of the small matrix
entries. The validity of our formulation, the numerical stability and the computational performance of
the present method will be investigated through numerical results.

2. Time-domain boundary integral equation
Let us consider two-dimensional transient scalar wave propagation problems. The governing wave
equation, the boundary conditions and the initial conditions are expressed as follows:

Viu(x,t) — Clzu(m,t) =0, (in Q) (1)

0
w=1(only), q= a—Z =g, (onTy) )
U(ZB,O) = UO(a:)a U(ZB,O) = 00(33), (ln Q) 3)

where « is a material point, V is the nabla operator, ¢ is time and ~ denotes the time derivative. (2 is the
domain, I is the boundary, and has the sub-boundary I}, I'y with I', UT'y = T"and I', N I'y = 0. uwis
the potential, ¢ is the flux and c is the wave speed. n is the outward normal at a point & on the boundary
I'. 4 and ¢ in the boundary conditions (2) and vy and vy in the initial conditions (3) are the known scalar
functions.

The time-domain boundary integral equation corresponding to the initial and the boundary value
problem (1)-(3) is given by

awhutwn = [ [ [u*(w,t;w)q(w,w - q*(w,t;w)u(:c,t)] Tt 4
“)
# 5 [ [ @i - i (@ Oy o) a0,

where y € I, and the free term «(y) is 1/2 at a point on a smooth boundary. The fundamental solutions
for 2-D scalar wave problems, u* and ¢*, have the following forms:

¢ H(c(r=t)—r)

u (x, t;y,7) 1= GE/ e
- B ou* e or[ rH(c(t —t)—r) de(r—t)—r) 5)
q (33, 7y7T) = on %% |:{C2(T —t)2 —7“2}3/2 o 02(7_ —t)2 _7,,2:|7
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where r = |x — y|, H(-) is Heaviside’s step function and §(-) is Dirac’s delta function.

We now apply the regularization proposed by Mansur & Brebbia [13] to the integral equation (4).
For the initial condition u(x,0) = uy(x) = 0 and u(x,0) = v(x) = 0, the time-domain regularized
boundary intagral equation has the form

= / / u* (2, 1, 7)q(@, t)dtdl,
I'Jo

] (©)
+ / / [qr(w,t;y,ﬂu(w,t)+q;(m,t;y,7)u(w,t> dtdr,,
'Jo

where ¢, ¢] and g; are defined by

r 87“H( (r—1t)—r)

BT = o ST (T

r o or H(c(t—1t)—r) 7
2762 On (7 — 12/ (7 — O — (r/)°
q}‘(w,t;y,T) = (T - t) : ql(mat;yaT)'

qi(z, t;y,7) =

In the present paper, we discuss the computational cost reduction of the boundary element analysis based
on the equation (6). Note that our formulation using Mansur’s regularization [13] is not essential for
applying the wavelet method to the time-domain BEM for the 2-D wave equation.

3. Discretization of time-domain boundary integral equation using Haar wavelets
To derive the discretized algebraic equations from the time-domain boundary integral equation (6), we
first require to approximate the unknown boundary values  and ¢ in time and space.

The approximation in time domain are constructed by the conventional scheme. We now assume
to satisfy Eq.(6) at the time 7 = ¢y = LAt. The time integration in Eq.(6) which is then defined
on the intelval [0, 7] is divided into the L subintervals [t,_i, t,] (t, = pAt, At: time step width,

p=1,2,...,L). The unknowns u(zx,t), ¢(x,t) and @(x, t) in a subinterval [¢, 1, ¢,] are approximated
by
t, — 1t t—1tp_1 t, — 1t 1 t—1tp_1
u(x,t) ~ ”A—tu(a:,tp_l) + Az u(z,ty) = pAt u(z) PV + Tz u(z)®,

(®)

() _ (p—1)
q(z,t) = q(z,tp) = q(z)?, Wz, t) ~ u(z) Altb(w) .

In other words, the approximation in time domain consists of the linear interpolation of u, the backward
piecewise constant interpolation of ¢ and the backward difference of .
Substituting Eq.(8) into Eq.(6), we now obtain the boundary integral equation as follows:

a(y)ul) /QIL x;y)ul") (z)dT, /FUz(L)(w;y)q(L)(w)de
L—1 (9)
:le/F[Up( )(@;9)q"P) (x )—|—Q1p (z; y)u® ]df +Z/Q2p z;y)u®V (2)dl,,

where u(") (y) = u(y, t;) and ¢ (y) = ¢(y,t1). The fundamental solutions U;,k(L), QTEPL) and Q;(pL)
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are defined as
1 [ He(ty —1t) —
((L ) T) dt,

Uy (2 y) = o o s =07 = (o)

w(L), . L (L —-p+ 1)7”& t H(C(tL — t) - T)
e =S woeveree

(D) () (p— L)r@ tp Hc(tp —t) — 1)
R ) Ay e

We next show the derivation of the discretized algebraic equations from the boundary integral
equation (9). The potential uP) and the flux q(p) at t = tr are approximated by the wavelet series

using the Haar wavelets [3] as

N Ns my nw
u?(z) ~ 4®) (z) = Z Ui(p)wi(a:) = Za?’)qso,] + Z Z uk ﬂﬁkz
=1 =1 k=0 I=1 an
N Ns mr w(k
7)) = ZQZ(-p)wz'(%‘) = Z(?J(-p)%,g + Z Z ql(f:l)"é/’k,l
7j=1 k=0 [=1

¢o,; 1s the scaling function defined as the piecewise constant function, and ), ; is

where p = 0,1,....
the Haar wavelet. ug P) u,(cp l) ]( ?) and q( P) are wavelet expansion coefficients. The basis w;(x) is given
by either ¢; or 1y, ;. N is the degree of freedom (DOF).

Substituting Eq.(11) into Eq.(9), we obtain the residual r(y) as

rt) = @i ) - [ U @ya @ - [ QP @yt @ar,
L—1 (12)
- [0 @ni e + 0 @i @), —Z/sz 2:9)iD (@)L,
p=1
The residual (12) is required to satisfy the following Galerkin conditions
(13)

/Fr(y)wi(y)dfyzo, (1=1,2,...,N)

As a result, the following linear algebraic equations are obtained as

L
ZHf,I;))u(p) —i—ZHé,II’))u(p*l), (14)
p=1

L—1
HYu) - GPg =¥ GPg -
p=1 p=1
P =1,2,..., N),

where the vectors u(?) and g(®) consist of the expansion coefficients Ul(p and ();
(L) : fae L) (L) ( )
d H; ;' have matrix entries g, ;., hl,p,l] and h2 i

respectively. The coefficient matrices GIE, ) H f,p)

pir = /sz.(y) /F Uy (@; y)w;(e)dlodLy,
NG

Ipij -~
=1 [ @y, - [ww) [ Q1 @y @dr.dr,,

i /wl /Q2p ; y)w; (x)dl pdT.

2,p, l]

as:

(15)
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4. Matrix compression scheme

In the wavelet BEM, the sparse coefficient matrices in Eq.(14) can be generated by truncation (regarding
the small matrix entries as null entries), which leads to the reduction of the memory requirement
and the computational work. The truncated entries of the coefficient matrices dpL), H f{;,) and Hfg{;)

(p=1,2,..., L) are selected using the elements gI()Li} of the matrix GI(,L).

At the stage before calculation of the element (15), a priori truncation is carried out using the
following Beylkin-type criterion:

_(L
;,(;,Z'} < K * Gref, (16)

L
Psij
approximation of | gIgLZ; |. This selection of the truncated entries enables us to reduce the computational
work on the generation of the truncated matrix entries.
After the calculation of Eq.(15), we select the truncated entries again as a posteriori truncation. The
criterion of the second truncation is defined by

where £ is the threshold of the truncation, and g is the representative value of | gI(JLl;| 1. is the

Ig,(fi}l <K Gref- (17)

We now derive the concrete form of the approximation g(p,le in Eq.(16). To calculate the boundary

(L)

integrals included in gpLij of Eq.(15), we first introduce the intrinsic coordinates —1 < ¢ < 1 and
-1 < n < 1. Substituting dUy, = Ji(€)dE, dUy = Jj(n)dn, Ji(&) = Ji(§ = 0) := J; and
Jij(n) = Jj(n = 0) := J; into Eq.(15), we have

o 1 1
%%%%%/1mo/f$“@mwmmma (18)

1

where the basis functions w; and w; have the n;th and the n;th vanishing moments, respectively. The

(L)

absolute value of the matrix element gpLZ. j can be approximated by

7T j +n; (L) 1 1
195,351 n;ln;! (35 o | \0n _— it A 715 wi(§)d¢ L " w;(n)dn).
(19)
In consideration of the definition and the approximation as
1 1 n; n;
. , or\"™ s or\" s
o= [ ew@ie 5= [ aeman ()] = |(5)7] =
' -1 ' ’ -1 ! o€ £€=0 ' an n=0 !
(20)
we have the following approximation gz(fi; of the absolute value | gz(fi}k
71 i_1+ j . .
0]~ g o |BillB Iy T ot Uy ‘ o

5. Numerical Results

The test example for investigating the numerical stability and the computational cost of the present
wavelet BEM is shown in figure 1 with the initial conditions vy = 0 and vy = 0. The wave speed is
¢ = 1. The exact solution of this example is expressed as

u(z,t) =H(ct —x) - (ct —x) — H(ct +x —4) - (ct + 2 —4)

—H(ct—4—x)-(ct—d—z)+ H(ct + 2 —8) - (ct + =8), (22)
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5%
1 q=0
= -
L A2, 25/48)F o
— — ||
Tl |1 =
S —
q=0 2 N
a=2

Figure 1. Test problem.

where 0 <t < T (T = 8/c), and has the periodicity with period T" as
u(z,t +kT) = u(z,t), (k:integer). (23)

In the BE simulation, we use the Haar wavelet with 18 scaling functions. The iterative solver is the
GMRES method with the Jacobi preconditiong.

5.1. Numerical stability

We first investigate the numerical stability of the present wavelet BEM. In the BE analysis for the test
example, the time domain is prescribed as 0 < ¢ < 27'. The approximation for u and ¢ are constructed
with 18 scaling functions and m,. = 2. The DOFis N = 18 - 2! = 144. The truncation for matrix
compression is not carried out. The time step width is set to At = f4..¢/c (8 = 0.3, 0.5, 0.7, 1.0,
lrer = 1/24). The error e(t) of the potential w is defined as

N
e(t) = _|a(@i,t) = uprue(mi, ) |4, (24)
=1

where @ is the BE solution, w;,.. is the exact solution at the point a;, and /; is the support width in which
the BE solution shows a piecewise constant value.

Figure 2 shows the time history of the error e(¢). Figure 3 depicts the flux ¢ at the point A (2, 25/48).

In the conventional BEM, the piecewise constant collocation BEM has the numerical instability on the
time step width; for the smaller values of 3 (e.g. 8 < 0.5) the error of the BE solution increases with the
progress of the time marching. The time step width corresponding to a larger value of 5 may contribute
to stabilize the time-domain collocation BEM. The Galerkin discretization enables us to implement the
BE analysis without the above numerical instability, as pointed out in Ref.[17].

The present wavelet BEM tends to be more stable than the piecewise constant collocation BEM, as
shown in figure 2 and figure 3. The slight high frequency noises are observed in the time history of the
flux ¢; the numerical stability of the present wavelet BEM is comparable to the conventional Galerkin
BEM.

5.2. Reduction of memory requirements
We next investigate the reduction of the memory requirements. In the numerical test, the Haar wavelets
with m, = 3 and 18 scaling functions are arranged on the boundary in figure 1. The DOF is
N =18 2mr+1 = 288. The time step widthis At = 3+ b /c (B =1, by = 1/48).

Figure 4 indicates the time history of the error e(t) in the present method with truncation under several
threshold parameters . If we prescribe the threshold parameter « into a value under a threshold, the error
e(t) is comparable to the one without truncation (x = 0). The matrix compression with a larger value
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Figure 2. The time history of the error e(¢) on the potential u at the point A (2, 25/48).

than the thresholding value leads to the rise of the error of the BE solutions because of the truncation
error. We hence conclude that the truncation using a threshold « such as keeping the accuracy of the BE
analysis results in the reduction of the memory requirement for the storage of the coefficient matrices.

We next show the compression rate of the coefficient matrix generated at an each time step in figure
5. The compression rate (%) is defined as

Compression rate (%) := % - 100, (25)
where N is the DOF, and Mg, is the number of stored entries of the coeffient matrix generated at the
current time step. In the present BE analysis, the compression rate at the first time step indicates the one
of the matrices in the left-hand side of Eq.(14). At the other time step, the results shown in figure 5 are
the compression rates of the coefficient matrices for calculating the time convolution in the right hand
side of Eq.(14).

In the early stage of the time marching, a number of the matrix entries have null values because of
the causality condition of the fundamental solution for the time-domain boundary integral equation. The
compression rates for the present wavelet method with every thresholding values are comparable to the
one for the conventional piecewise constant BEM. The rise of the compression rates continues to the time
when the scalar wave excited at the ¢ = 0 approaches to the right side of the example domain. In the time
range after this time, the number of the stored entries for the present wavelet method decreases with time,
while the compression rate approaches to 100 % for the conventional BEM. The matrix compression by
the present method is thus effective for the time-domain BE analysis in the long time range.

5.3. Reduction of computational work

We finally discuss the reduction of the computational work by employing the present time-domain
wavelet BEM. Figure 6 depicts the CPU time for generating the coefficient matrices, calculating the
time convolution by matrix-vector multiplications and solving the discretized equations at every time
step. In the present example, the most of the CPU time shown in figure 6 is spent on the generation of
the coefficient matrix entries and the time convolution. The computation time for solving the discretized
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Figure 3. The time history of the flux ¢ at the point A (2, 25/48).

equations using the GMRES is very short time because the system matrix of Eq.(14) is sparse for both
the conventional- and the present wavelet BEM. The iterations of the GMRES is rapidly converged by
the simple preconditioning like the Jacobi preconditioner, as shown in figure 7.

The time-domain wavelet BEM generates the sparse coefficient matrices by calculating the double
boundary integrals divided into the sub-boundaries by the spline nodes (the points with the discontinuity
of the Haar wavelets), which needs more computational work in the present wavelet BEM than the
conventional BEM. The sparse matrix of the wavelet method results in the little computational work
of the matrix-vector multiplication for the time convolution. The CPU time increasing with time in a
early stage of the time-marching due to the causality condition turns to fall as the stored matrix entries
are decreased. In the conventional time-domain BE analysis, the increase of the computational work
with time is caused by the martix-vector multiplications because of little CPU time for generating the
coefficient matrices. The CPU time at an each step for the wavelet BEM with truncation shortens finally
than that for the conventional BEM; the total CPU time from the initial time step is greater than that of
the conventional BEM. It is difficult to reduce the computational work of the time-domain BE analysis
by the wavelet method, except for the cases that the wave propagation in a long time is simulated. This
tendency on the computational work of the present method is different from the wavelet BEM for the
Laplace problems and the Helmholtz problems.
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Figure 6. CPU time at each time step. Figure 7. The number of iterations for solving the

algebraic equation using the preconditioned GM-
RES at each time step.

6. Conclusions

We have developed the wavelet method for the time-domain BEM for 2-D scalar wave equation. The
wavelet method has introduced to reduce the memory requirement and the computational work in this BE
analysis. The performance of the present method has been investigated through the simulation results
of a simple example. The present method has the numerical stability comparable to the conventional
Galerkin BEM, while the BE solutions obtained by the conventional collocation BEM is unstable for a
small time step like 3 = cAt/{,.; < 0.5. The truncation of the small matrix entries enables us to reduce
the memory requirement without the accuracy deterioration of the BE solution. The reduction of the
computational work is difficult in the practical examples. This is because for the time-domain BEM (i)
the most of the computational work is spent for generating the coefficient matrices and (ii) the CPU time
for solving the algebraic equations with a sparse system is very short.
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