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In recent years the numerical renormalization group method �NRG� has been extended
to the calculation of dynamic response functions and transport properties of magnetic
impurity models� The approach can now be applied more widely to lattice models of
strongly correlated electron systems by the use of dynamical mean �eld theory �DMFT��
in which the lattice problem is transformed into one for an e�ective impurity with an
additional self	consistency constraint� We review these developments and assess the
potential for further applications of this approach�

We also discuss an alternative approach to renormalization� renormalized perturba	
tion theory� in which the leading asymptotically exact results for the low temperature
regime for a number of magnetic impurity models can be obtained within �nite order
perturbation theory�
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�� Introduction

Since their successful application to critical phenomena in the early ����s� renor�

malization group methods have been applied to many areas of condensed matter

physics� The pioneering work in developing this technique was largely due to Ken�

neth Wilson and one of the high points of his achievements was the formulation

and application of the numerical renormalization group 	NRG
� to provide a fully

quantitative understanding of the Kondo problem���� Wilson�s calculations were

extended to other magnetic impurity models soon afterwards�� These were calcu�

lations for the thermodynamic behavior of these models and it is only relatively

recently that this approach has been extended to enable the dynamic response
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functions and transport properties of magnetic impurities to be calculated���� The

generic model in this context is the single site Anderson impurity model 	SIAM
�

and our discussion of the NRG approach will be based on this model� It describes

localized d or f states� associated with the partially �lled 
d or �f shells of a transi�

tion metal or rare earth impurity ion� hybridized with the conduction band states

of a host metal�
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where �f is the energy of the localized state� �k is the energy of the Bloch states of

the host metal and Vk the hybridization matrix element between the localized state

and the conduction electrons� The localized state is taken to be non�degenerate but

can be occupied by a spin up or spin down electron� or one of each� When this state

is occupied by two electrons there is a large Coulomb interaction between them and

this term is included in the Hamiltonian with a matrix element U � In the �atomic

limit� Vk � �� there is a local moment regime when �f lies below the Fermi�level of

the host metal and is occupied by a single electron 	� or �
� and the energy level
�f � U for a second electron is empty as it lies above the Fermi�level� When weak

hybridization is included� the model in this regime can be mapped into a Kondo

model of a localized spin interacting via an antiferromagnetic exchange interaction

with the spins of the conduction electrons�

The one�electron Green�s function for the localized f�electron G
�	

� 	�
 in the

non�interacting limit U � � takes the form�

G�	

� 	�
 �

�

� � �f ��	�
 � 	�


where �	�
 �
P

k
jVkj��	� � �k
� In the case of a wide �at conduction band�

�	� � i�
 � �i�� and the spectral density corresponding to this Green�s function
�		�
 takes the form of a Lorentzian resonance centered at �f

�		�
 �
���

	� � �f 
� ���
	 	



When the interaction term is taken into account and a self�energy term �	�
 is

included the local Green�s function takes the form�

G�	�
 �
�

� � �f ��	�
� �	�
 	 	�


The basic idea of the Wilson style renormalization group method is to eliminate

the degrees of freedom associated with the higher energy excitations by taking the

virtual interactions they induce into account and projecting onto an e�ective model

for the lower energy states� This is done progressively in a sequence of steps to

reach the very low energy states which lie within the thermal energy range� If

these e�ective models are appropriately rescaled then a meaningful comparison can
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be made between the e�ective models at consecutive steps� It is expected that

in a model which has continuous excitations down to the ground state that the

renormalization group transformation relating consecutive e�ective models should

have a stable �xed point in the low energy limit� The e�ective model in this limit

with its leading correction terms determines the low temperature thermodynamics

of the system�

To set up such a procedure for impurity models� such as the Anderson model�

Wilson divided the interval of the conduction band� �D 
 � 
 D� into a sequence

of sub�intervals� The logarithmic integrations that arise in the Kondo problem

indicate that all energy scales contribute to the low energy behavior� so the sub�

intervals were chosen such that each of the intervals give equal contributions to such

logarithmic integration�

��n�� 
 � 
 ��n or � ��n 
 � 
 ���n��	 n � �� �� �			 	�


Within each sub�interval� only one state was retained� the one directly hybridized

with the impurity� so that the continuous spectrum of conduction states is approxi�

mated by a discrete which has limit point at the Fermi�level� The parameter � � �

controls the discretization and in practice is chosen to be in the range �	� 
 � 
 
�

These conduction states are then transformed into a tight�binding chain with the

states of the impurity coupled at one end� With these transformations the Anderson

model takes the form�

H �
X
�

�ff
y
�f� � Ufy�f�f

y
�f� � V

X
�

	fy�c	� � cy	�f�
 �
i��X
i�	��

	ti�i��c
y
i�ci��� � h	c	
�

	�


where the hopping matrix elements decrease exponentially along the chain and

limi�� ti�i�� � ��

With the Hamiltonian in the form 	�
 a renormalization group procedure� which

takes account of excitations on a sequence of reducing energy scales� can be set up�

Starting at the impurity site the Hamiltonian for a �nite section of the chain� as

indicated in �gure �� is diagonalized numerically and all the many�body states and

energy levels are calculated� The length of the chain is increased in the next step

by including the next site along the chain� and the states of this longer chain are

again calculated numerically� These steps are repeated to explore lower and lower

energy scales of the system� If all the states could be retained at each stage there

would be no point in this iterative procedure but� when the chain length has about

six of seven sites� the matrices become too large to retain all the states� so only

the lowest �������� states are retained in subsequent steps� It was demonstrated

by Wilson in his calculations for the Kondo problem� that� with a suitable choice

for �� this is quite su�cient to be able to obtain accurate predictions for the low

energy behavior of the model�
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Figure �� The linear chain form of the Anderson model corresponding to the Hamilto�

nian ����

In extending the approach to the calculation of dynamic properties of the impu�

rity� such as the spectral density of the localized electrons ��	�
� matrix elements

of the local operators have also to be calculated iteratively� The spectral density at

a particular energy scale � is evaluated directly from the de�nition�

��	�
 �
�

Z

X
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	e
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� 	�


using the results from the diagonalization of the chain appropriate to this energy

scale� where jni is a many�body eigenstate with a corresponding energy level En� Z

is the partition function� and 
 � ��T � where T is the temperature� Due to the use

of a discrete set of states for the conduction states� the calculated spectral density

consists of a set of delta functions� which are then broadened on a logarithmic scale

to give a continuous spectrum� Most of the calculations for the dynamics have been

for T � �� and give a very precise resolution of the spectra on the very low energy

scales� Sum rules� such as the requirement that the integral of the spectral density

��	�
 should be unity� are not automatically satis�ed and provide some estimate of

the level of approximation involved in these calculations� they are usually satis�ed

to within a few percent� Calculations of the dynamics at �nite temperatures have

also been performed�� In this case there are two energy scales� that corresponding

to � and that corresponding to T � and the results used in the evaluation of 	�
 are

taken to be those on an energy scale corresponding to whichever is the largest of �

and T �

These types of calculations have now been applied to the calculation of thermo�

dynamics� dynamics and transport properties of a range of impurity models which

include degeneracy�� magnetic �eld
� crystal �elds�� models in which the conduc�

tion electrons are superconducting�	� or have a pseudogap at the Fermi�level������

two�channel Kondo models������ and an impurity model with a low energy marginal

�xed point������ Some recent applications have been to mesoscopic systems and

quantum dots�������
� In applications to mesoscopic systems it is possible to change

the parameter regime of the model by changing a gate voltage� This should make

possible a more detailed comparison between theory and experiment than is possible

for a magnetic impurity system� where the parameters cannot easily be modi�ed in

a controlled way� The approach has also been applied to two level systems� to re�

solve some controversial problems regarding the behavior in the intermediate regime
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when the quantum tunnelling becomes suppressed by dissipation��� and to models

with anisotropic interactions�	�
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Figure �� The spectral density �d ��� of the local Green	s function for the SIAM with

V 
 ������� �
 
 �������

To illustrate the results we show in �gure � the spectral density �	�
 of the

local Green�s function for the particle�hole symmetric Anderson model for a range

of values of the interaction U � The peak at the Fermi�level for U � � corresponds

to the virtual bound state resonance given by equation 	

� As U is increased

new peaks appear at � � �U��� corresponding to the broadened �atomic� levels�
The very narrow resonance seen at the Fermi�level in the large U regime is the

Kondo resonance� and has a width of the order of the Kondo temperature TK �
Ue�U���� It re�ects the residual scattering from the impurity surrounded by a

cloud of conduction electrons which screen out the impurity magnetic moment such

that the ground state of the system is a singlet with a �nite magnetic susceptibility

at T � �� This low temperature �xed point corresponds to a Fermi�liquid� but one

in which the power�laws 	T�TK
n� 	integer n
� have enhanced coe�cients due to the

narrowness of the Kondo peak 	TK
�

We contrast this case with the results for the O	

 Anderson model� which

corresponds to the particle�hole symmetric Anderson model expressed in terms of

four Majorana fermions� with one of the local Majorana modes uncoupled from the

conduction electrons������ In the Kondo or large U limit it can be mapped into

the Hamiltonian which describes the spin excitations of the linear dispersion two

channel Kondo model� The O	

 model has a marginal Fermi�liquid �xed point

due to scattering with the singular unhybridized Majorana mode� and the linear �

dependence of the spectral densities of the Majorana fermions in the vicinity of the

Fermi�level can be clearly seen in the NRG results shown in �gure 
�
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Figure �� The spectral density � ��� of the Majorana fermion impurity Green	s function

in the marginal Fermi liquid situation with the hybridization� V 
 ������� for all the local

Majorana modes except the uncoupled one for which V 
 �� taken from reference��

The success of the application of the numerical renormalization group to Ander�

son� and other impurity models� in the large U or strong correlation regime� leads

naturally to the question as to whether the approach can be developed or extended

to deal with lattice models� such as the Hubbard model� in which there is a local

interaction U at every lattice point� The Hamiltonian for the Hubbard model is

H � �
X

�i�j���

ti�j	c
y
i�cj� � h	c	
 � U

X
i

cyi�ci�c
y

i�ci�� 	�


which describes conduction electrons hopping between orbitals located at lattice

sites and a local Coulomb interaction U � In the one dimensional case� with near�

est neighbour hopping� the similarity of this model with the linear chain form for

the Anderson model� as used in the NRG calculation 	�
� would suggest that the

NRG technique could be applied directly to this situation� However� the similarity

is deceptive� the hopping matrix elements� ti�i�� of the impurity model decrease

with i� and this form is possible because it is a calculation purely for the impurity

contribution� For a real one�dimensional lattice with translational invariance the

nearest neighbour hopping term will be independent of the site index� As a result

serious problems arise in the NRG when the higher energy states are discarded

in working along the chain as there is a complete mismatch between the energy

scale of the states retained� which decreases with each site that is added� and the

scale of the hopping matrix element to the extra site which remains the same� The

impurity problem can be set up such that these energy scales decrease in parallel�

The successful generalization of the numerical renormalization group technique to

one�dimensional systems has proved to be a di�cult problem but Steve White has

devised a modi�ed form such that the problem of the boundary condition with the
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extra site is overcome by adding the new sites to the centre of the chain��� A pre�

liminary calculation is then carried out to calculate a reduced density matrix for

the states which are retained for the subsequent steps� This approach� the density

matrix renormalization group 	DMRG
� has proved to be a very e�ective way of

calculating the ground state and low energy excitations for many one�dimensional

models� and has been applied widely� Based on the transfer matrix approach� the

method has also been extended to the calculation of the thermodynamic and dynam�

ical response functions for some one�dimensional models� The technique� though

similar in its philosophy� is quite a di�erent in practice from the NRG as applied to

impurity models� Details of the DMRG approach and its application can be found

in reference�� � There is� however� a direct way of applying the impurity NRG to

lattice models based on dynamical mean �eld theory 	DMFT
��� which we describe

brie�y in the next section�

�� Dynamical Mean Field Theory

In dynamical mean �eld theory the lattice problem is mapped into an impurity

one with an additional constraint� This is only possible if the interaction terms

are on�site and the self�energy is local so that it depends on the frequency � only�

independent of the wavevector k� The �rst condition is satis�ed for the Hubbard

model 	�
� but the second condition is not� in general� but can be satis�ed for

certain lattice models in the limit of in�nite dimensionality��� if the hopping matrix

elements are scaled appropriately with the dimensionality d� If one particular site is

regarded as an impurity� the e�ective Lagrangian obtained by formally integrating

out the states on other sites� has the same form as that for an impurity and the

electron self�energy �	�
 is given by the same set of diagrams as for the impurity�

The propagator in these diagrams� the non�interacting Green�s function G		�
 for
the e�ective impurity� is not known as it depends on how the electron propagates

when it leaves the impurity site and interacts with the electrons on the other sites�

However� there is nothing special about the site which is singled out to be regarded

as an impurity� and so using this fact� a self�consistency condition can be derived

which is su�cient for its determination� This self�consistency condition is typical

of mean �eld theories� but it is usually a time�independent �eld and not� as here�

a dynamic function that is determined self�consistently� For a Bethe lattice with a

nearest neighbour hopping matrix element t�
p
d the self�consistency condition is

G		�
�� � � � �� t�G	�
� 	�


in the limit d � �� The Green�s function G		�
 for the e�ective impurity can be
taken to be of the form 	�
 for the Anderson model� with the function �	�
 to be

determined from the self�consistency condition� The self�consistency equation 	�


then simpli�es to

�	�
 � t�G	�
	 	��


The non�interacting Green�s function for the e�ective impurity G		�
 should not be
confused with the non�interacting Green�s function for real lattice G		k� �
 which
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has a k dependence� The non�interacting density of states D		�
 corresponding to

k�integrated Green�s function G		�
� for a Bethe lattice is given by

D		�
 �
�

�t

r
��
� �
�t

��
	 	��


In the DMFT the density of states for the interacting model� D	�
� is given by

D	�
 � D		� � �	�

�
The DMFT approach is only approximate for systems with a �nite dimension�

ality d� There is experimental evidence� however� in strongly correlated systems

in three dimensions� such as in heavy fermion materials� that the � dependence of

the self�energy is much greater than the k dependence� so that this approximation

should be a good starting point for a theory of these materials�

To realize the DMFT scheme in practice some method is required for calculating

the self�energy �	�
 of the e�ective impurity� and many techniques have been used�

quantum Monte Carlo��� iterated second order perturbation theory 	IPT
��� exact

diagonalization 	ED
�
� and the numerical renormalization group 	NRG
����	����

The quantum Monte Carlo method is the one that has been used most extensively

but� due to the restriction on the number of mesh points that can be used in practice

for the imaginary time parameter � � � 
 � 
 
� it cannot be extended to arbitrarily

low temperatures� The NRG approach has two distinct advantages� it can resolve

very low energy scales and is applicable at T � �� For this reason it has been

particularly useful in clarifying the nature of the Mott metal�insulator transition in

the single band Hubbard model� and whether� or not� there is a hysterisis region

at very low temperatures� In IPT at T � � two co�existing mean �eld solutions��

were found for U in a range Uc� 
 U 
 Uc�� The second order perturbation theory

on which the IPT is based is known to work well for the particle�hole Anderson

impurity model at moderately large values of U and a constant �� but there is

some uncertainty about its applicability in the DMFT because the self�consistency

condition imposes a strong ��dependence on the �	�
 for the e�ective impurity�

The Monte Carlo method� on the other hand� is a well�controlled approximation

though not applicable at very low temperatures� The lowest temperature Monte

Carlo results�� showed no evidence of a hysterisis region� and the compatibility of

the iterated second order perturbation 	IPT
 results at T � � with some Fermi�

liquid relations was also questioned��� The picture that has emerged from the T � �

NRG calculations����	��� is qualitatively similar to that of the second order iterated

perturbation theory 	IPT
� and has two co�existing solutions� though the range of U

over which this occurs is somewhat smaller than that found using IPT� The actual

metal�insulator transition at T � � to a paramagnetic state for a Bethe lattice� with

antiferromagnetism arising from kinetic exchange frustrated� takes place at Uc� 	the

metallic solution when it exists always gives the lowest energy at T � �
� at a value

Uc� � �	��t��� which is lower than the IPT result� Uc� � �	�t��� The narrowing

of the quasi�particle peak with increasing U � and its eventual disappearence at a

critical value Uc� and the �nite gap for U � Uc can be seen clearly in the NRG results
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shown in �gure �� for the case of a Bethe lattice� Further NRG results for the Mott

transition at T � � can be found in reference�� � Recently NRG results�� have been

extended to a temperature range which overlaps with recent Monte Carlo results�

and the results of the two methods are in complete agreement� the revised Monte

Carlo calculations now also see evidence of hysterisis below a critical temperature

Tc
���
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Figure �� Spectral functions for the Hubbard model on a Bethe lattice for various

values of U � A narrow quasi�particle peak develops at the Fermi level which vanishes at

the critical Uc � ����W � where the bandwidth W 
 �t

Very close to the Mott transition the quasi�particle peak becomes so narrow

that it becomes reasonable to approximate it by a delta�function� In this almost

localized limit� Bulla�� has shown that a good estimate of the critical value Uc�
can be obtained from the zero band�width limit� which corresponds to the �rst step

of the NRG calculation� The solution is required for this two�site problem in the

weak hybridization limit� which can be handled analytically� The approximation

gives a value of Uc� � �	�t� very close to the estimate from the full NRG calculation

Uc� � �	��t� This approach� which has been termed a �linearized dynamical mean

�eld theory�� has been extended to the d�p model���

H �
tpdp
d

X
�i�j���

	dyi�pj� � h	c	
 � U
X
i

dyi�di�d
y
i�di��

tdd
d

X
i�i���

	dyi�di���h	c	
��d
X
i��

dyi�di��
tpp
d

X
j�j���

	pyj�pj���h	c	
��p
X
j��

pyj�pj� 	��


This model is essentially a two�band Hubbard type model with an on�site interaction

U in a d�band� which is hybridized with a non�interacting p�band� It has been
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used to describe the copper d�holes and oxygen p�holes in the CuO� planes of the

cuprate superconductors� The phase diagram for the metal�insulator transition is

much more complex in this case than in the single band Hubbard model� as there

are many more parameters tdd� tpp tpd� �p � �d� U and the chemical potential �� In

di�erent parameter regimes the insulating state varies from a Mott�Hubbard type

insulator� as shown in �gure � for the single band case� to a charge�transfer type

insulator where a gap develops between lower Hubbard band and the p�band�

The two�site calculations of the �linearized dynamical mean �eld theory� are

analytically tractable in the weak hybridization limit and equations can be derived

that generate the complete metal�insulator phase diagram��� An example� taken

from some of the results� is shown in �gure �� A comparison is made with results

of the exact diagonalization method 	ED
� The ED method gives similar estimates

for Uc� for tdd � � to those obtained using the NRG approach for the one�band

Hubbard model� The comparison indicates that the linearized DMFT results are

accurate to within ���
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Figure �� The metal�insulator phase diagram for the d�p model for tpp 
 � and various

values of tdd using the linearized DMFT approach� taken from reference��� The points

which are linked by the dotted curve are the results of DMFT calculations using the ED

method�

The full NRG approach within DMFT has also been applied to calculations for

the in�nite dimensional periodic Anderson model�
� to study the physics of heavy

fermion systems� It is currently being extended to the Holstein�Hubbard Model�

which is a generalization of the Hubbard model in which there is a coupling to the

lattice via local Einstein phonons of frequency �	�

H � �
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�i�j���
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y
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X
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y

i�ci�
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For U � � the model corresponds to the Holstein model which has been used exten�

sively to study small polaron behavior� but usually with one or two electrons only

in the system� Calculations for this model using NRG and DMFT should enable

one to study polaronic motion when the band has �nite �lling� With U �� � the in�
terplay of lattice coupling and strong correlation can be investigated� It should also

be possible to perform calculations with an added Hund�s rule exchange coupling

to a localized spin� which would be a fully quantum mechanical model applica�

ble to the study of the behavior of manganites and the phenomenon of colossal

magnetoresistance in these materials�

�� Other Approaches to Renormalization

The Wilson style renormalization techniques� in which higher energy excitations

are removed progressively to obtain a renormalized Hamiltonian for the low energy

scales or� as in the calculation of critical exponents� where the short range �uctua�

tions are integrated out to obtain an e�ective model for the long wavelength �uc�

tuations� are the ones which are most commonly used in condensed matter physics�

The original approach to renormalization� as developed to eliminate the divergences

due to a lack of an ultra�violet cut�o� in quantum electrodynamics� is not used in

condensed matter theory as these type of divergences do not occur in condensed

matter problems� so there seems to be no reason to invoke this technique� However�

this approach is simply a reorganization of perturbation theory such that the per�

turbation expansion is in powers of the e�ective interaction between fully�dressed

particles� This approach could be appropriate for strongly correlated systems in

condensed matter where there are very large renormalizations of the mass and the

interactions� such as in heavy fermion systems� It could be useful to formulate the

perturbation theory in terms of the fully dressed quasi�particles and their interac�

tions for calculations of the behavior in the low temperature regime� We illustrate

here how this technique can be applied to the Anderson model� Quite remarkably�

the exact low temperature behavior of this model can be found by working only up

to second order in terms of the renormalized interaction� We also make connections

between this approach and the Wilson style calculations�

First of all� we brie�y consider how this approach is used in �eld theory and then

apply an equivalent procedure to the Anderson model� In the �eld theory��� such

as the �� theory� we start with the Lagrangian of the system L	��m� g
 in terms of

the �eld �� the mass m of the particles and the interaction strength g� We choose

to absorb all the mass renormalization from the beginning and work with the �nal

or renormalized mass �m� and also the �nal or renormalized interaction strength �g

and the fully renormalized �elds ��� We then rewrite the Lagrangian in the form�

L	��m� g
 � L	��� �m� �g
 � Lcounter	��� ��� ��
� 	��


where the terms left over are known as the counter terms� which depend upon the
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di�erences between the renormalized and bare parameters� but can be alternatively

be written in terms of three unknown parameters ��� ��� ��� The expansion is

carried out in powers of �g and the unknown counter terms� ��� ��� ��� these latter are

determined by the condition that they must cancel out the renormalizations� to the

mass� interaction strength and �eld� as we are working with the fully renormalized

parameters� To carry out the expansion we start with the Green�s function for the

bare �elds�

G	k�
 �
�

m � k� � 	k�

	��


where  	k�
 is the self�energy term� and separate out  	�
 and  �	�
�

 	k�
 �  	�
 � k� �	�
 �  rem	k�
� 	��


and substitute this back into 	��
 to give

G	k�
 �
z

�m� k� � � 	k�

� 	��


where

�m � z	m �  	�

� � 	k�
 � z rem	k�
� z � ��	��  �	�

	 	��


The �elds can be rescaled to eliminate the wavefunction renormalization factor z

so that the Green�s function for the renormalized �elds becomes

�G	k�
 �
�

�m� k� � � 	k�

� 	��


where � 	k�
 � k��

This Green�s function for � � � is taken to be the propagator for the �non�

interacting� renormalized particles� The expansion is carried out in powers of the

e�ective interaction between the renormalized particles which is taken to be the

renormalized four vertex �!	k��k��k��k�
 at a speci�c point� which we take to be

k� � k� � k� � k� � �� The perturbation expansion is carried out in powers of �g�

it is assumed that the counter�terms ��� ��� �� can also be expressed in powers of �g

so that they can be determined order by order using the conditions�

	i
 � 	�
 � �� 	ii
 � �	�
 � �� 	iii
 �!	�� �� �� �
 � �g� 	��


which express the fact that the �m� �g and �� are fully renormalized� This procedure

makes no direct reference to the problems of divegences� and is quite generally ap�

plicable� In the �eld theory context the important question� in the renormalized

expansion where �m� �g and �� are assumed to be �nite� is whether or not there are

any divergences remaining due to the lack of an ultraviolet cut�o�� If there are no

such divergences in the renormalized expansion then the �eld theory is renormal�

izable� and the renormalized perturbation expansion can be used to make physical
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predictions� For problems which have a natural ultra�violet cut�o�� such as in con�

densed matter� renormalizability is not an issue and the only question is whether

or not there is anything to be gained by reorganising the expansion in this way�

We can make a direct connection between this approach in condensed matter and

Fermi�liquid theory�

We give an outline of the equivalent procedure�	 for the Anderson Model� The

corresponding Green�s function is the local one�

G	�
 �
�

� � �f � i�� �	�
 	 	��


We choose to take into account �	�
 and ��	�
 from the beginning� as in the �eld

theory example� using

�	�
 � �	�
 � ���	�
 � �rem	�
� 	��


so that 	��
 can be written in the form�

G	�
 �
z

� � ��f � i ��� ��	�

� 	�



where

��f � z	�f ��	�

� �� � z�� ��	�
 � z�rem	�
� 	��


where have used the Luttinger result Im��	�
 � �� and z � ��	�� ��	�

�
The fermion �elds are rescaled so that

�G	�
 �
�

� � ��f � i ��� ��	�

	 	��


For �� � � this Green�s function describes quasi�particles with a renormalized reso�

nance at ��f of width ��� with a spectral density�

��		�
 �
����

	� � ��f 
� � ���
	 	��


The renormalized interaction �U between these quasi�particles we take to be the

four�vertex z�!���	��� ��� ��� ��
 evaluated at �� � �� � �� � �� � �� in analogy

with the �eld theory example� The Lagranian for the Anderson model can now be

written in a similar form to 	��
�

L	�f ��� U 
 � L	��f � ��� �U
 � Lcounter	��� ��� ��
	 	��


The expansion is carried out in powers of �U � with ��� ��� �� determined by the

renormalization conditions�

��	�
 � �� ���	�
 � �� �!���	�� �� �� �
 � �U	 	��


Note that the renormalized form of L is the same as the original so that the corre�
sponding Hamiltonian is simply a renormalized version of the Anderson model� i�e�
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�f � ��f � � � �� and U � �U � To zero order in �U we simply have the result 	��


for the spectral density for the renormalized quasi�particles� which when integrated

gives the occupation number of the localized state at T � ��

nf�� � �nf�� �
�

�
� �

�
tan��

�
��f��
��

�
	 	��


This result corresponds to the exact formula derived by Langreth��� and is a gen�

eralization of the Friedel sum rule to the Anderson model with interactions� The

corresponding result for the impurity contribution for the speci�c heat coe�cient

�imp is given by

�imp �
���



��		�
 �

��




��

���d �
���

� 	
�


which can also be shown to be exact� These results are consistent with Landau

Fermi�liquid theory where the quasi�particle number is equal to the number of par�

ticles and the speci�c heat coe�cient is determined solely from the contribution of

the non�interacting quasi�particles� The non�interacting quasi�particle model must

correspond to the �xed point Hamiltonian obtained from the Wilson style of calcu�

lation� To �rst order in �U there is a contribution from the direct interaction term

between the quasi�particles� but also from the order �U terms of the counter terms

��� ��� ��� which can be determined from the three renormalization conditions� The

results for the impurity contributions to the spin and charge susceptibility are given

by

�imp �
	g�B


�

�
��		�
	� � �U ��		�

� �c�imp � ���		�
	� � �U ��		�

	 	
�


These results can also be shown to be exact as a consequence of the Ward identity

deduced from the conservation of spin and charge� When the direct second order

diagram is taken into account� and the corresponding second order contributions

from the counter�terms� the renormalized self�energy to order T � can be calculated�

an expression for the impurity contribution to the conductivity can be deduced�

�imp	T 
 � �	

�	

� � ��




�
T
��

����� � �
�
�U

� ��

��


A� O	T �


��
� 	 	
�


This result can be shown to correspond to the exact expression derived by Yamada���

So� from a simple �nite order renormalized perturbation calculation� all the exact

results in the low temperature regime for the Anderson model can be derived�

These results are� however� in terms of the renormalized parameters of the An�

derson model� ��f � �� and �U � In the Wilson style of calculation� where an explicit

renormalization group calculation is performed starting with the �bare� model in

terms �f � � and U � the renormalized parameters can be deduced by examining the

numerical results for the excitations in the neighbourhood of the low temperature

�xed point� as was done originally by Wilson for the Kondo model� However� in

the localized or Kondo regime of the Anderson model we can exploit the fact that
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there is only one energy scale� the Kondo temperature TK� The relations between

the renormalized parameters can be deduced from the condition nd � �� and that

the charge susceptibility associated with the impurity should vanish in this limit�

This implies ��f � � and �U � � �� � �TK� so that

�imp �
��

�TK
� �imp �

	g�B

�

�TK
� 	




�imp	T 
 � �	

�
� �

��

��

�
T

TK

��
�O	T �


�
	 	
�


and we have all the exact low temperature results in the Kondo regime� As we know

that exact solution for the thermodynamic behavior for the symmetric Anderson

model�� we can deduce how the renormalized parameters evolve as a function of the

bare parameter U���� This is shown in �gure �� where it can be seen that �U � U

for small values of U � and the renormalized scales merge into a single scale for large

U �

0.0 1.0 2.0 3.0 4.0
U/πΔ

0.0

1.0

U
~
/πΔ

Δ∼/Δ

4TK/πΔ

Figure �� The renormalized parameters� �U and �
 for symmetric impurity Anderson

model as a function of the bare parameter ratio U��
 taken from reference���

These arguments can be generalized to other impurity models which have a low

energy Fermi�liquid �xed point� The corresponding renormalized parameters for

the in�nite U N �fold degenerate Anderson model in the Kondo regime are

�� � TK
N�sin�	��N 


�	N � �
 � ��d � TK
N�sin	���N 


��	N � �
 � 	
�


�U � TK

�
N

N � �
��

� 	
�
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and for the n�channel Anderson Model with n � �S�

�U � � �� � �TK� �J � ��


TK� 	
�


where �J is the renormalized Hund�s rule coupling� In all cases TK is de�ned such

that at T � �� �imp � 	g�B
�S	S � �
�
TK�

Nothing has been ignored in the renormalized perturbation approach so that in

principle it can be used to look at excitations on any energy scale� It has been set

up to be appropriate for the low energy regime and� for the behavior of the model

on higher energy scales� the perturbation theory cannot be simply terminated at

second order but will involve higher order terms in the expansion in powers of �U

and the corresponding counter terms� In the Fermi�liquid regime the counter�terms

subtract o� the ground state expectation values� and the results in this regime can

also be obtained by ignoring the counter�terms and simply normal ordering the

terms in the renormalized Anderson model with respect to the interacting ground

state� The counter�terms play an increasing important role as the energy scale is

increased� and re�ect the complexity of the interaction terms which are generated in

the Wilson approach on intermediate energy scales� As the energy scale is increased

the quasi�particles discard their clothing and evolve into the �bare� or original elec�

trons� As the perturbation expansion up to second order in �U gives the leading

low temperature results exactly� it would be of interest to see� if taken to third and

fourth order in �U � whether or not it would give the corrections to the Fermi�liquid

results exactly� This question is currently being investigated��� In the Kondo regime

these corrections are known for the magnetization in powers of �BH�TK from the

Bethe ansatz results������ and for the conductivity up to sixth order in powers of

T�TK from boundary value conformal �eld theory���

The renormalized perturbation approach has been generalized to the case of an

impurity model with a marginal Fermi�liquid �xed point������ and also to transla�

tionally invariant systems ��� In the latter case� the leading order low temperature

results are equivalent to Fermi�liquid theory� The renormalized scattering vertex

depends on the wavevectors of the scattered quasi�particles and� as this dependence

is not known� it has to be parameterized as in the phemenological Landau Fermi�

liquid theory� it may be possible to exploit the simpli�cations that occur in certain

limits� such as that of in�nite dimensionality�

�� Renormalization and Model Hamiltonians

In the last section we saw that a renormalized Anderson model is su�cient to

describe the behavior of the original model in the very low energy regime� but that

further terms have to be taken into account� either as higher order contributions

from the counter�terms in the renormalized expansion� or as extra interaction terms

associated with higher order corrections to the low energy �xed point in the Wilson

approach� This leads us to the question as to what extent the original Anderson
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model� or similar simpli�ed models� such as the Hubbard model for a lattice system�

is a renormalized Hamiltonian� valid only over a limited energy scale� By including

the on�site interaction terms only� many other terms involving the Coulomb inter�

action have been ignored� They may be smaller in magnitude than the on�site term

but this does not imply that they can be ignored entirely� We can conjecture that

if such terms were to be taken into account explicitly that the results would not be

changed signi�cantly� we might just have to modify or renormalize the parameters

�f � � and U which specify the model� If this is the case� then our original or bare

model is in some sense already a renormalized model� We can examine this hypoth�

esis by looking at some of the more obvious terms which have not been included�

such as the interactions between the d� or f�electrons and the conduction electrons�

the electron�phonon interactions� or the two�body hybridization or hopping terms�

−0.2 −0.1 0 0.1 0.2
ω

0.0

10.0

20.0

30.0

ρ d
(ω

)

Ufc = Uff = 4πΔ,  εf = −U/2
Ufc = 0.0,  Δ’,  Uff’,  εf’ = −U’/2
Ufc = Uff = 4πΔ,  εf = −0.03
Ufc = 0.0,  Δ’,  Uff’,  εf’ = −0.02

Figure �� The spectral density � ��� of the of the local Green	s function for the standard

Anderson model with an additional Coulomb interaction between the f � and conduction

electrons� Ufc� in the local moment and mixed valence regimes with 
 
 ����� and a �tting

to the SIAM with the renormalized parameters� 
� 
 ������ U �

ff 
 ����
��

We have made some preliminary studies of the e�ect of explicitly including a

local interaction Ucf between the f�electron and the conduction electrons in the

Anderson model�
� In the particle�hole symmetric regime� the results for the f�

electron spectral density can be reproduced by a standard Anderson model with

renormalized parameters ��� ��f and U
�
ff � If we change the position of the f�level �f

in the model with the extra interaction Ufc such that we move into the mixed valence

regime� it is not obvious that we can reproduce the f�electron spectrum again with

the renormalized model 	no extra interaction
� simply by changing the renormalized

level position ��f � without modifying the other parameters� However the results in

�gure �� show that� if we do� we get a �t in both regimes which indicates that we

can describe the f�electron behavior on this scale with the simpli�ed model� without
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invoking the Ufc interaction explicitly�

However� if we introduce a local coupling to phonons to the SIAM as in the

Hubbard�Holstein model 	�

� then even for kBT 	 �	� we �nd that di�erent

renormalized widths have to be used to �t the spectra in the integral valent and

mixed valence regimes�
� It should be of interest to investigate to what extent other

terms� such as two�body hybridization terms� can be taken into account simply as

a renormalization of the parameters of the standard model and� if so� whether or

not these can be changed independently and over what energy scales�
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