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1. Introduction

According to Knuth[6], the history of selection problem goes back to
Rev.C.L.Dodgson[2] who pointed out in 1883 that the second best player
often loses the second prize in lawn-tennis tournaments; about 1930 Hugo
Steinhaus posed the problem of finding the minimum number of tennis matches
required to select the first- and second-best players from n contestants,
assuming a transitive ranking; and now the Steinhaus problem is generalized
to our selection problem of finding the worst-case minimum number of
cdmparisons V{(n) required to select the i-th largest from n distinct
numbers. By symmetry, we have

Vi(rL)=T‘/n_,7:+1 (n).
Thus we may assume that 15;5{%‘. Throughout this paper 1092 is denoted
by 1g.

Many people have made efforts to give good upper/lower bounds for
the problem. As for lower bounds, Kirkpatrick[5] unified the theory;
he showed that
[3n~£71+1 if %<t_<_n—;l- 0

n-1+2 e o N
i_ ?j— if ’Li?

v, (n)>
n+z-3+205j§¢_2

and that the result surpasses other results. See Kirkpatrick[5] for a
detailed account of lower bound theory.
As for upper bounds, the classical paper Hadian and Sobe1[3] showed
that
Vi(n)in—i+(i-’l)ﬁg(n-i+2)] . (2)
Several refinements(e.g. Hyafil[4], Yap[8]) were done by constructing
variants of the Hadian-Sobel algorithm, but these are all essentially

small improvements on (2); the Hadian-Sobel algorithm and its variants
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need 0(nlgn) comparisons when im%; Until 1972 it was not known whether
the selection problem inherently needs 0(nlgn) comparisons; finally,
Blum et al.[1] obtained the 0(n) upper bound; and further study, due to
Schonhage et al.[7], led to a much sharper upper bound for i=[%\, i.e.
Vrn/z-‘(n)f_3n+o(n) .
Since Schdnhage et al.’s scheme can be easily generalized for general
values of ©, we obtain
Vi(n)§3n+o(n) for every 7. (3)

Let us now consider a question: For what values of < (3) can be
asymptotically surpassed ? Blum et al.[1] considered the similar question
for their (%%ln +o(n))-algorithm and obtained a result

i SupVLq(n—Lll+1(n <1+ ;%g.g.+,%%11}g§1q for O<g<p  (4)
where p=0.203688 . Thus their (%%ln +o(n))-algorithm can be surpassed

for i<pn. How about the case of Schonhage et al.’s ? After a rough
comparison of (2) and (3), the Hadian-Sobel algorithm is seen to give
a better upper bound than Schénhage et al.’s only for very small values

.. . 2n
Oft,Le.ﬁrzﬁE?

But considering the blum et al.’s result, this
ought to be considerably improved.

In this note, we generalize (4) by applying the Blum et al.’s scheme
to a general (ento(n))-algorithm, and show that the generalized result
can be surpassed when we apply the scheme to the generalized Schinhage
et al.’s (3nto(n))-algorithm. In addition, we show that there exists

an asymptotically optimal selection algorithm provided that Z=o(n).

Explicitly speaking, our results are:



(i) If there exists a (ento(n))-algorithm for selection,

) .
() 1 l_ _‘ if ¢g=0
|74 n e-1
. T lg(n-1)3+1 _ 1g— deg iy -1 . e-1
Jim sup " 541+(c 1)/2" Z4eq’ + c_]‘;g4cq if 0<q<z
c it ey
(ii) (1 if ¢=0
1% (n) r 1
. -1)1+1 1- 11gg— 1 : ]
1im sup—al n“ <142 gSq] +5qﬂg§;l if 0<q<p
3 if g<qy

(iii) If Z=0(n), V%(n)=n+o(n).

2. Algorithm

In this section, we introduce an algorithm, due to Blum et al.[1],
which asymptotically surpasses Schonhage et al.’s for i<%n. The contestants
really constitute a total ordered set; but the order is initially not known,
and at any stage the algorithm’s knowledge of inequality relations between
contestants is given by a partial order or equivalently a Hasse diagram;
for example

a o
e
bN (o]
indicates that b<a, d<a and d<c.

The following is an algorithm obtained from Blum et al.’s by

interchanging step 1 and step 2.

Algorithm SELECT[A,p] (This algorithm selects the i-th largest from

n distinct elements. This contains two parameters p and A which will
be chosen later; p is any positive constant and A is any algorithm
solving the selection problem.)

1. If 2>pn, then select the ¢-th largest by using algorithm A.
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2. Partition n elements into‘_%l.pairs and possibly one leftover, and

compare each pair.

e

3. Select the Z-th largest m from L%J larger elements of step 2 by using
(recursively) SELECT[A,p].

discard

4. Discard all elements known to be larger than m, since these cannot
be the Z-th largest.
5. Select the Z-th largest from the remaining elements by using algorithm

A.

3. Analysis

In this section, we investigate how SELECT[A,p] can surpass a general

(ento(n))-algorithm. As a matter of convenience, we introduce a notation

14 (n)
V(q)= ;|1J>!Jno sup LQ(n-l)J +1] n , Oiqi]. (5)



Theorem 1 If there exists a (ento(n))-algorithm for selection, called

PICK(c), then SELECT[PICK(c),gélJ brings about a upper bound

1 if g=0
1621 4 - : -1
v(q)< ]+(0-1)/2{.g4c%1+5§%1agﬁgé] if 0<q<%z—
.. =1 ]
e if PnAL)
Proof. Let p be any positive number, and let Q(Z,n,p) be the worst-

case number of comparisons required in SELECT[PICK(c),p]. Obviously
Q(i,n,p)=cnto(n) for i>pn. (6)
For <<pn, since SELECT[PICK(e),p] is called
t=1 gg—’[\
times and for each j-th calling, 1<j<t, the number of contestants is
/297, |
Q(i,n,p)f_zjzftn/Z{]+5En/2€j+0(n/2t)+t(c(2i)+o(i))

- G
step 2 step 1 step 5

= n—n/Zt +cn/2t +2eti +o(n)

nt(e-1)n/ 2 +20ti+o(n) . (7)

By combining (6) and (7), we obtain

en+o(n) if i>pn
n

n+(c—1)n/2r19%1+20[:lg%ﬂi+o(n) if i<pn

Thus from (5), (8) and the fact Vi(n)fQ(i,n,p)

Q(Z,n,p)< (8)

1 if g=0
P
v(g)< 1+(0—])/2|_]gq]+20q 192 if O<g<p
e if O<g>p

Setting p=§él-gives the theorem. Q.E.D.



It should be noted that setting p=%él=minimizes the right hand side
of (9); thus we cannot obtain a better upper bound from (9). To see
this, let F(p,q) be the right hand side of (9), and remember that p is
an arbitrary positive number in (9). For q=0, the proposition is
obviously true. For ¢>0, since [Hggl varies over {1,2,3,...} with p’s
varying over {p|q<p}, and since O<g>p implies F(p,q)=c=1+(c-1)/20+2cq-0,
we obtain

minp>of(p,q)=min{1+(c-1)/2k+2@kq|k=0,1,2,...}.
Now by an elementary analysis,

min{1+(e-1)/2%20kq|%=0,1,2, .. . }=1+(c-1)/2%+20kq

if and only if

(1) k=0 and 2 <q

or (i1) &1 and (e-1)/(c2¥*%)<q<(e-1)/(c-2*).
Hence

c-1
c if EE_

min F(p,q)={
p>0 14(e-1)/28+20kq

k+2) k+1)

if k>1 and (e-1)/(c-2 <q<(c—1)/(e°2

{]+(c 1) /2[-g4cq +2cq[}g%é%- otherwise

‘F(4c aQ)

As a corollary of the proof of Theorem 1, we have:

Corollary 2 If 7=0(n), V{(n)=n+o(n).

Proof. Let p be any positive constant. Then for sufficient large

values of =, we obtain from (1), (9) and the fact v, (n)<Q(<,n,p),

1+ L4 Bglo o o(n) 5Z—£f1-<1+ (c-1 /2,-92_1+20[id21
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Thus
lim ~— =1. Q.E.D.

From (3) and Theorem 1, we obtain

1 . if g=0
]
v(q)< 1+21‘ﬂ96_q“ +6ﬁg;—q—1 if 0<g<t
1T
3 if ALY

Can this be surpassed ? Let us now reconsider the proof of Theorem 1.
Suppose that p is any positive number, and that GS denotes the generalized
Schonhage et al.’s algorithm. GS is roughly given in Fig.1. The initial
step of GS is a pairing step; especially for GS invoked at step 5 of

SELECT[GS,p], the initial pairing step is to form a Hasse diagram

——
i-1

But we can save Z-1 comparisons out of these % (or £-1) comparisons,
since after step 4 of SELECT[GS,p] the remaining 27 (or 27-1) elements

constitute a Hasse diagram

Thus (7) can be improved in SELECT[GS,p]:



R g

QummiZf%wﬁﬁwﬁmmmﬂﬁm%ywﬂm@n
————— ~~
step 2 step 1 step 5

1-¢

= n+2  “n+S5tito(n)

This leads to the following theorem in the same manner that (7) leads to

Theorem 1.

Theorem 3 1 if g=0
1-figd Fol]
V(q)< 1+2 5¢ " +5 19567 if O<g<g

3 if =<q<7

In conclusion, the bounds for V(gq), due to Theorem 3 and (1), are

illustrated in Fig.2. Note that for (2k+1)i—(2k+1)<n§ﬂ2k+]+1)i-1, 0<k,

[qnoitd {k+1 if 0<j<in-(2%41)3413/28
g——1=
0k if {n-(2%41)541)28<j<i-2
Thus
K(i-1)+ [{n-(2%41)5) /25 41
] [
O<j<i-2 77 4] if (2%1)5-1<n< (2K ) - (2K 41), 100
k(a-1) if (2K41)2-(21) (X410 -1, 200

This leads to a corollary of (1):

3tg i doool
)| 2 1 395

e (k-2Fyg if 1725 ) <g<1/ (2R ), e
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