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SUMMARY  The objective of this study was to explore suit-
able spatial filters for inverse estimation of cortical potentials
from the scalp electroencephalogram. The effect of incorporating
noise covariance into inverse procedures was examined by com-
puter simulations. The parametric projection filter, which allows
inverse estimation with the presence of information on the noise
covariance, was applied to an inhomogeneous three-concentric-
sphere model under various noise conditions in order to estimate
the cortical potentials from the scalp potentials. The present
simulation results suggest that incorporation of information on
the noise covariance allows better estimation of cortical poten-
tials, than inverse solutions without knowledge about the noise
covariance, when the correlation between the signal and noise is
low. The method for determining the optimum regularization pa-
rameter, which can be applied for parametric inverse techniques,
is also discussed.

key words: high resolution EEG, cortical potential imaging,
tnverse problem, parametric projection filter, non-uniform noise,
noise covariance

1. Introduction

Brain electrical activity is spatially distributed over
three dimensions of the brain and evolves in time. Elec-
troencephalography (EEG) has historically been a use-
ful modality to provide high temporal resolution re-
garding the underlying brain electrical activity. How-
ever, the spatial resolution of EEG is limited due to
the smearing effect of the head volume conductor [1].
In the past decades, much effort has been made in the
development of high-resolution EEG techniques, which
attempt to map and image spatially distributed brain
electrical activity with substantially improved spatial
resolution. In parallel to the success of dipole local-
ization methods, in which brain electrical activity is
modeled by a few point current dipoles [2]-[9], of inter-
est is the recent develop of EEG spatial enhancement
modalities without ad hoc assumption on the number
of source dipoles. The unique feature of the spatial
enhancement approach is its applicability to all kinds
of brain electrical sources, thus having the potential of
achieving our ultimate goal of imaging brain electric
activity.

Of particular interest is the recent development
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of cortical imaging approaches, in which an explicit
biophysical model of the passive conducting properties
of a head is used to deconvolve a measured scalp po-
tential distribution into a distribution of electrical po-
tential or current source on the cortical surface. In
the cortical current source imaging, an equivalent cur-
rent source distribution is directly estimated from the
scalp potentials [10]-[15]. Such cortical current source
imaging approach provides information that may be
directly related to the cortical sources [10]. Another
approach is to estimate and image the cortical poten-
tials from the scalp recorded potentials [16]-[27]. Be-
cause the cortical-potential distribution can be experi-
mentally measured [20], [28], [29] and compared to the
inverse imaging results, the cortical-potential imaging
approach is also of physiologic importance.

The cortical potential imaging approach has been
explored by several investigators. In 1990 Sidman et al.
reported an early work on cortical potential imaging, in
which they used a hemisphere equivalent dipole layer,
to generate an inward harmonic potential function in
a homogeneous sphere head volume conductor model,
and then reconstruct the potential at an image surface,
including the cortical surface [16],[17]. This approach,
in which an intermediate dipole layer is used to equiv-
alently represent brain electric sources, has been later
extended by He and co-workers to a three-concentric-
spheres inhomogeneous head model [22], [24],[30], and
shown to be useful in analyzing cognitive activities in
a group of subjects without measuring exact head ge-
ometry through MRI [27]. Babiloni et al. further ex-
tended this approach to a realistically shaped inhomo-
geneous boundary element head model based subjects’
MRI images in which a dipole layer of 364 radially-
oriented equivalent current dipoles is embedded. They
demonstrated the excellent performance of their tech-
nique in both computer simulation studies and in imag-
ing cortical sources of human movement-related and
somatosensory-evoked potentials [23]. Gevins and co-
workers [19], [20] have been successful in their early
work on the brain deblurring, in which potentials at
the superficial cerebral cortical surface are estimated
from EEG recordings on the scalp using a finite element
model of each subject’s scalp, skull and cortical surface
constructed from their magnetic resonance images. In
this method, Poisson’s equation is applied to a conduct-
ing volume between the scalp and the cortical surface,
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and finite element method is used to handle the com-
plex geometry and varying conductivity of the head.
Reported predictions of cortical potentials are quite ac-
curate in the cases shown and dramatic improvement
in spatial resolution is achieved. Srebro et al. linked
the evoked potential field on the scalp with the brain
surface field by Green’s second identity [18]. The vol-
ume conductivity between the surfaces is assumed to be
homogeneous and detailed anatomical information for
each subject is obtained from MR images. Regularized
inversion is applied to get the cortical surface poten-
tial estimation. Their physical and human experiments
demonstrate that the estimated cortical potential fields
are more focused than their scalp field counterparts and
could also provide useful information for localizing cor-
tical activity from VEP scalp fields. He and co-workers
recently developed a boundary element method based
cortical potential imaging technique, in which both the
realistic geometry and the inhomogeneity of the head
can be taken into account [26], and validated it by com-
paring with directly-recorded cortical potentials [29].
In parallel to the development of physical mod-
els for cortical potential imaging described above, the
inverse regularization algorithm plays an important
role in cortical imaging. As inherited in any inverse
problems, the cortical potential imaging inverse prob-
lem is ill-posed, that small perturbation would cause
large error in the inverse solutions. Therefore, reg-
ularization strategies, such as general inverse with
truncated singular value decomposition (TSVD), con-
strained least square method, and Tikhonov regular-
ization method (TKNV), have been used to solve the
ill-conditioned cortical imaging inverse problem. Fur-
thermore, weighted minimum norm solutions have been
explored to improve the accuracy of the minimum norm
solution [31]-[34]. Of representative is the work of
Pascual-Marqui on LORETA [33], [34], which is essen-
tially a Laplacian-weighted minimum norm solution.
Several investigators have further explored the use
of advanced regularization methods to improve the cor-
tical imaging inverse results. Dale and Sereno solved
the brain inverse problem of estimating the distribu-
tion of dipole strengths over the cortical surface by
combining EEG and MEG with MRI cortical surface
reconstruction [10]. They developed a framework of us-
ing source and sensor covariance in order to constraint
the underdetermined inverse problem in addition to
anatomical constraints extracted from MRI informa-
tion. However, they did not consider non-white sensor
noise in their simulation studies. Sekihara and Scholz
proposed the use of Wiener reconstruction of bioelectric
current distribution using signal and noise covariance
but also assumed uncorrelated Gaussian noise in their
model studies [35]. Philips et al. developed a Bayesian
framework for image estimation from MEG and a MAP
(maximum a posteriori) reconstruction algorithm [11],
to estimate focal neural sources. They introduced a
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priori distribution on the source, which was used to
resolve the ambiguities inherent in the inverse prob-
lem. While Philips et al. derived a unified framework
on the inverse solution including the signal and noise
covariance, no investigation was made on evaluating the
effect of noise covariance for various source-noise distri-
butions. A comprehensive review was given by Grave
de Peralta Menendez and Gonzalez on brain electro-
magnetic inverse methods using the metrics associated
with the measurement space and the source space [12].
The metric for the solution space was discussed in detail
comparing with previously proposed methods such as
LORETA [33]. We have recently developed a paramet-
ric projection filter based algorithm for cortical current
dipole imaging [14], and demonstrated the advantages
of taking the noise covariance into consideration. These
works demonstrate the importance of taking into ac-
count the statistical characteristics of signal and noise,
in estimating brain electric activity.

In the present study, we hypothesize that a regular-
ization approach incorporating information about noise
covariance alone would improve the restorability of cor-
tical potentials from scalp potentials, meanwhile elim-
inating the difficulty of estimating signal covariance.
Since the noise covariance is not difficult to obtain from
pre-stimulus evoked potentials, the noise-covariance ap-
proach would provide an easy-to-implement yet taking
into consideration of the statistical properties of mea-
surement noise. We have tested this approach in the
present study through a series of computer simulations.

2. Method
2.1 Principles of Cortical Potential Imaging

The physical model of the cortical potential imaging
used in the present study was initially proposed by
Sidman et al. [16],[17] and improved by He and Co-
workers [22],[24],[30]. A brief description on the ap-
proach we used in this study follows. The head vol-
ume conductor is approximated by the inhomogeneous
three-concentric-sphere model. This head model takes
the variation in conductivity of different tissues, such
as the scalp, the skull and the brain, into considera-
tion. A hypothetical dipole layer is assumed within
the brain sphere being concentric to the cortical sur-
face. Radial current dipoles are uniformly distributed
over the spherical dipole layer to simulate brain elec-
trical sources accounting for the scalp potentials. The
transfer function from the dipole layer to the scalp po-
tentials is obtained by considering the geometry of the
model and physical relationship between the quanti-
ties involved. The strength of the dipole layer is es-
timated from the scalp potentials. The potential field
at the surface of the brain (cortical surface) is then re-
constructed by solving the forward problem from the
equivalent dipole layer to cortical potentials.
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The observation system of brain electrical activity
on the scalp shall be defined by the following equation:

g=Af+n (1)

where f is the vector of the equivalent source distribu-
tion of a dipole layer, n is the vector of the additive
noise and -y is the vector of scalp-recorded potentials.
A represents the transfer matrix from the equivalent
source to the scalp potentials. In the present approach,
f is the strength of the dipole layer. It is important to
infer the origins from the scalp-recorded EEG, and to
localize the sources that generate the observed EEG on
the scalp. The inverse process shall be defined by

fo= Bg (2)

where B is the restoration filter and fy is the estimated
source distribution of the dipole layer. As the num-
ber of measurement electrodes is always smaller than
the dimension of the unknown vector f, this problem
is an underdetermined inverse problem. The details of
the restoration filter B are shown in Sect.2.2. Once
the dipole moments are estimated, the potential dis-
tribution, hg, on the cortical surface can be calculated
through forward solution:

ho = Cfo (3)

where C is the transfer matrix from the equivalent
dipole layer to the cortical potentials. Thus, the corti-
cal potential is reconstructed from the scalp measure-
ments, through an intermediate dipole layer. In the
next section, we consider how to decide the optimum
restoration filter, B for cortical potential imaging.

2.2 Inverse Techniques

The pseudoinverse filter, denoted by A™, minimizes the
norm of restored dipole layer distribution f; under the
constraint

g=Afo (4)

in the absence of noise. In practice, singular value de-
composition (SVD) can be used to calculate A* [36],
[37]. In the presence of noise, the truncated SVD is
implemented in order to reduce the effect of noise [38].
Moreover, Tikhonov regularization method [39] is also
used, which leads to

B=(A"A+~I) 1A (5)

with v a small positive number known as the regular-
ization parameter, I the identity matrix and A* the
transpose matrix of A. The constrained least-squares
filter minimizes some quadratic functional of f;, defined
by ||Dfo]|?, under the constraint

lg — Afoll* = Elln]]® (6)
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with || - || the norm in the Hilbert space and E the
expectation [40]. This leads to the restoration filter

B = (A*A+~D*D)™t A% (7)

If D = I, then Eq.(7) is reduced to the regularized
pseudoinverse filter (Eq. (5)). If D = R~Y/2Q'/?with
R and @ the signal and noise covariance, respectively,
then Eq. (7) is reduced to the parametric Wiener fil-
ter (PWF) [41], [42]. However, it is difficult to obtain
the signal covariance and even if the signal covariance is
obtained, the filter may not provide satisfactory perfor-
mance for abnormal signals, which is obviously different
from the expectation of signals.

In order to overcome this problem, the projection
filter has been introduced to solve the inverse problem
[41],[42]. The projection filter is a method, which al-
lows to estimate solutions in presence of information on
noise covariance structure. In the present study, we use
the projection filter to achieve the inverse estimation for
cortical imaging.

Let P be the orthogonal projection operator onto
the range of A*. The projection filter criterion becomes:
find out all operators B, which minimize the noise com-
ponent

E|lfo = Pf|* = E||B||* = tr(BQB") )
subject to
BA=P (9)

where E in Eq. (8) is the expectation over the noise {n}
ensemble and ¢r(-) is the trace of an operator. In the
case of a nonsingular noise covariance @), the projection
filter is derived by

B=(A"Q ‘A A Q. (10)

Of all operators satisfying Eq. (9), this is the one that
minimize Eq.(8). The projection filter has following
advantages: (i) the characteristics of noise is consid-
ered; (ii) the error is directly evaluated in the original
dipole layer space; (iii) the optimum approximation to
each dipole layer distribution is obtained; (iv) a pri-
ori information of the dipole layer distribution is not
required.

Although the projection filter criterion is natural,
it seems that the condition Eq. (9) is too severe. If a
small derivation of BA from P suppresses strongly the
noise component in the restored signal, then it is pos-
sible to obtain a better restoration filter. A combined
criterion, giving the parametric projection filter (PPF)
[43], is

Minimize J(B) = ||P — BA||*> + vE||B,|* (11)

The first term is the squared Schmidt norm. The scalar
parameter v > 0 in Eq. (11) controls the mutual weights
of two error terms. The determination of the value of
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parameter gamma is left to the subjective judgment
of the user. The optimum choice for 7 is described in
the next section. The PPF, that satisfying Eq. (11), is
given by [43]

B = A"(AA* ++Q) . (12)

We have applied the parametric projection filter to the
inverse problem described by Eq.(2). The paramet-
ric projection filter only uses the noise covariance, @,
while the parametric Wiener filter uses both the sig-
nal covariance, R, and the noise covariance, ¢. In a
clinical and experimental setting, the noise covariance
(Q may be estimated from data that is known to be
source free, such as pre-stimulus data in evoked poten-
tials [35]. The restoration filters and their evaluation
functions are summarized in Table 1.

2.3 Parameter Estimation

The restoration filters have a free parameter that de-
termines the restorative ability. The optimum parame-
ters for each restoration filter should be determined by
minimizing the relative error (RE) between the actual
dipole layer distribution and the estimated dipole layer
distribution as

RE = ||f = foll/IlfI]. (13)

Unfortunately, the original dipole layer distribution, f,
could not be obtained in actual situation. We have
developed a criterion for determining the optimum pa-
rameter. The square error between f and fy is rewrit-
ten by following equation.

If = fol > = |If — B(Af +n)]||?
=||f — BAf|[> + ||Bul? + 2(Bn, f — BAf). (14)

By expectation for noise,
lf — BAS|[® + E||Byl* + 2E(Bn, f — BAf). (15)

The last term in Eq. (15) can be approximated by zero
because E(n) = 0. The first term in Eq. (15) represents
the restorative error while the second term in Eq. (15)
represents the amplitude of noise in the restored plane.
Without knowing the original dipole layer distribution
f, it is possible to directly evaluate the first term in
Eq. (15). One possibility is to use the following proce-
dure.
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1. Compute the restoration fy using an initial value
for +, which should be relatively large to reduce
the effect of additive noise on the coefficients.

2. Replace f by fy in Eq. (15) and calculate the fol-
lowing function:

J(7) = |lfo = BAfol[> + E||Bal? (16)

3. Obtain new optimum parameter -y; by minimizing
Ea. (16).

4. Repeat 1.— 3. using new ~y; until ||y —~1||/|17]| < e
(e: the condition of convergence)

Then at least the order of magnitude of the function in
Eq. (15) should be correct. Concretely, the initial value
for v can be selected when the second term of Eq. (16),
which represents the amplitude of noise in the restored
plane, is sufficiently small. The following computer sim-
ulation indicates that this procedure also provides the
unique solution of v despite of varying the initial value.
This method is also applicable for other parametric in-
verse techniques such as the TSVD, the TKNV and the
PPF.

2.4 Simulation Method

In our simulation, two dipole sources were used to rep-
resent two well-localized areas of brain electrical activ-
ity. The dipoles were oriented radially or tangentially
to the sphere with varying distance between them and
with varying eccentricity. For the radial dipole, the di-
rection of the dipole moment is along the radius of the
sphere. For the tangential dipole, the direction of the
dipole is perpendicular to the radial dipole.

In the present study, due to the important cause of
the smearing effect by the low conductivity of the skull,
the head volume conductor was approximated using the
inhomogeneous three-concentric-sphere model [44], as
shown in Fig.1. In this model, the radii of the brain,
71, the skull, ro, and the scalp, R, spheres were taken as
0.87, 0.92, and 1.0, respectively [24], [44]. The normal-
ized conductivity of the scalp and the brain was taken
as 0 = 1.0, and that of the skull as o, = 0.0125. The
potentials on the scalp and cortical surface, generated
by current dipoles inside the brain, can be calculated
by solving the forward problem from the dipole source
to the scalp/cortical surface potential [24].

Various noises, such as uniform distribution of
Gaussian white noise and edge-, center- and one side-
concentrated non-uniform noise were added to the cal-

Table 1  Restoration filters and evaluation functions. V., U,: matrices composed of
v singular vectors; Sy: the diagonal matrix with « singular values; I: the unit matrix;
Q = E[nn*].

I Inverse filter H Evaluation function in original image space I Evaluation function in observed image space | Restoration filter, B I
TSVD Joll® 1450 — 7 Vi STU;
TRKNV foll? [Afo — I AF(AA* + D)7

PPF [BA — P|I” +vE||Bnl[ A*(AA" + Q)T
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Cortical surface

ra=075 \l

Skull ©, = 0.0125) co=10

Fig.1 Schematic illustration of the conductor-source model.
The head is represented by an inhomogeneous concentric three-
sphere volume conductor model with radii r1, r2, and R be-
ing 0.87, 0.92, and 1.0, respectively. Dipoles are uniformly dis-
tributed over a sphere. The potential distribution over the corti-
cal surface at the radius of 0.87 is reconstructed from the dipole
layer.

(@)

(©)

Fig.2 Distributions of the diagonal of noise covariance over
the space domain. Uniform distribution of (a) GWN and (b)
edge-, (c) center- and (d) side-concentrated non-uniform distri-
bution were used in the present computer simulation studies. The
color scale corresponds to the absolute amplitude of the noise over
the upper hemisphere.

culated scalp potential to simulate noise-contaminated
measurements in the present computer simulation stud-
ies. Figure 2 shows the distributions of the diagonal of
noise covariance over the space domain. The color scale
corresponds to the absolute amplitude of the noise over
the upper hemisphere. The dynamic range of three non-
uniform noises was set to from 0.1 to 1.9 while that of
Gaussian white noise was 1.0. The noise level (NL) is
defined as the ratio between the norm of noise and that
of the simulated scalp potential distribution as

NL = |[n|/||g]] (17)

The performance of the proposed method was com-
pared with that of TSVD and TKNYV in the same con-
ditions. Seven trials of each noise distributions were
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simulated and inverse estimations performed for each of
seven sets of noise-contaminated scalp potential data.
The results presented in Sect. 3 are averaged values over
the ten sets of inverse solution. In each simulation, the
standard deviation of the relative error was also evalu-
ated over ten trials of data.

After the dipole layer strength was determined, the
potential distribution over the cortical surface was re-
constructed from the dipole layer by Eq.(3). On the
other hand, the actual cortical potential can be directly
calculated from the dipole sources [24]. The recon-
structed cortical potential was then computed with the
actual cortical potential to evaluate the performance of
the inverse procedure. The RE, defined by

RE = ||h = holl/| ]}, (18)

is used to measure the similarity between the patterns
of the cortical potential distribution and its estimated
counterpart.

2.5 Human Experimentation

Human VEP experiments were carried out to examine
the performance of the proposed restoration method.
A healthy subject was studied in accordance with a
protocol approved by the Institutional Review Board
of the University of Illinois at Chicago. Visual stimuli
were generated by the STIM system (Neuro Scan Labs,
Inc.). 96-channel VEP signals referenced to right ear-
lobe were amplified with a gain of 500 and band-pass
filtered from 1Hz to 200 Hz by Synamps (Neuro Scan
Labs, Inc.), and were acquired at a sampling rate of
1kHz by using SCAN 4.1 software (Neuro Scan Labs,
Inc.). The electrode locations were measured using Pol-
hemus Fastrack (Polhemus, Inc.) and best fitted on
the spherical surface with unit radius. Half visual field
pattern reversal check boards (black and white) with
reversal interval of 0.5 sec served as visual stimuli and
400 reversals were recorded to obtain averaged VEP
signals. The display had a total viewing angle of 14.3
degree by 11.1 degree, and the check size was set to be
175 by 135’ expressed in arc minutes.

3. Results
3.1 Effects of Source Eccentricity

The following parameters were used in the present sim-
ulation studies: 1) the upper hemispherical dipole layer
at the radius of 0.75, 2) 1280 radial dipoles uniformly
distributed over this dipole layer, 3) 256 points of re-
construction over the cortical surface, and 4) the pa-
rameters of the three restoration filters were estimated
by the method in Sect. 2.3.

Figure 3 shows an example of the cortical and scalp
potentials calculated directly from two radial dipoles.
The scalp potentials measured with 128 electrodes were
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contaminated with 10% edge-concentrated noise. The
color scale corresponds to the amplitude of the poten-
tial. The positions of two dipole sources, which repre-
sent two localized brain electrical activities, are given
as follows:

(£rsin(n/12),0, r cos(w/12)) (19)

where r is the eccentricity of the two dipoles, and was
set to 0.75. Note that the two poles in the cortical
potential distribution (Fig.3 (a)) are indistinguishable
in the scalp potential distribution (Fig.3 (b)).

Figure 4 shows the RE versus the eccentricity of
dipoles in three inverse techniques. Two dipoles, lo-
cated at the positions given by Eq. (19) with varying
eccentricity r, were used as the sources. The number
of electrodes on the scalp was set to 128. Four noise

Fig.3 One example of the cortical and scalp potentials. Two
radial dipoles were located at Eq.(19) with the eccentricity of
0.75 and the angle of two dipoles was 7/6. (a) The cortical po-
tential map was constructed from 256 potential values over the
cortical surface. (b) 128 electrodes were used for the scalp po-
tential, which is contaminated with 10% edge-concentrated noise.
The color scale corresponds to the amplitude of the potential.
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distributions as shown in Fig.2 were added to the cal-
culated scalp potential with 10% NL. Figure 4 indicates
that the relative errors for superficial sources are larger
than those for deep sources in every noise distribution.
This is due to the effect of noise in the scalp potential,
which was discussed in [24]. Especially, the relative er-
rors were exponentially proportion to the eccentricity of
sources, because high spatial resolution was required to
reconstruct the cortical potential distribution for su-
perficial sources. In the case of center-concentrated
distribution of dipole as shown in Fig. 3, the proposed
method was very effective for edge-concentrated non-
uniform noise as shown in Fig. 2 (b). The results of the
proposed method was better than that of the TSVD
and the TKNV in the cases of the Gaussian white noise
and one-side concentrated non-uniform noise and was
similar to that of the TSVD and the TKNV in the case
of center-concentrated distribution of noise covariance.
The mean and maximum value of the standard devi-
ation of ten trials was 0.016 and 0.045, respectively.
The following simulations had the similar range of the
values of the standard deviation of ten trials.

3.2 Effects of Noise Levels

The relative errors were calculated with varying the NL
(Fig.5). The eccentricity was set to 0.60. The other
parameters such as the positions of dipole sources, the
number of electrodes, noise distributions, inverse meth-
ods and parameter estimation were the same as Fig. 4.
The smaller the NL, the better the results. The results

E 0.6 5 0.6
=
1=
204 o4
= 2
- &
3 0.2 < 0.2
0 0
03 04 05 06 07 08 03 04 05 06 07 08
Eccentricity Eccentricity
(@ (b)
0.6 0.6 || - ® - TSVD
E § —&— Tikhonov
04 504
= B
3 0.2 <
~ 4 0.2
O L L I il O
03 04 05 06 07 08 03 04 05 06 07 08
Eccentricity Eccentricity
(© (d)
Fig.4 Eccentricity vs. relative errors. Squares: TSVD; Triangles: TKNV; Circles:

PPF. The eccentricity is defined by the distance from the center of sphere to the locations
of dipole sources as shown in Eq. (19). The 10% NL of (a) GWN, (b) edge-, (c) center-,
and (d) side-concentrated noise were added to the scalp potential. The number of scalp

electrodes was set to 128.
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Fig.5 Noise level vs. relative errors. Squares: TSVD; Triangles: TKNV; Circles: PPF.

The noise level is defined as the ratio between the norm of signal and the norm of noise.
The eccentricity of two dipole sources as shown in Eq. (19) was set to 0.60. (a) GWN, (b)
edge-, (c) center-, and (d) side-concentrated noise were added to the scalp potential. The

number of scalp electrodes was set to 128
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Fig.6 Effects of electrode numbers. The eccentricity of dipole
sources is 0.60. 10% edge-concentrated non-uniform noise was
added to the scalp potentials with 128 electrodes.

120

of Fig. 5 indicate that for the edge-concentrated colored
noise examined in this case, the proposed method pro-
vides an enhanced performance as compared with the
TSVD and TKNV methods.

3.3 Effects of Electrode Numbers

The number of electrodes is also an important factor
in cortical potential imaging because it limits the spa-
tial sampling of the scalp potential. Figure 6 shows the
effect of the number of electrode on the cortical poten-
tial imaging. The eccentricity of dipole source was set
to 0.60 and the edge-concentrated non-uniform noise
of 10% NL was added to the calculated scalp poten-
tial. 32, 64, 96, and 128 electrodes were simulated in
the present study. In all cases, the result of the pro-
posed method was better than that of the TSVD and
the TKNV. Figure 7 shows an example of the inverse
solution of the estimated cortical potential distribution.

Fig.7 Oneexample of the estimated inverse solution of cortical
potential imaging by means of the (b) TSVD, (c¢) TKNV and (d)
PPF. (a) shows the actual cortical potential. Two radial dipoles
were located at Eq. (19) with the eccentricity of 0.75 and the angle
of two dipoles was w/6. A 10% edge-concentrated non-uniform
noise was added to the scalp potential to simulate the noise-
contaminated measurements. Note the improved performance of
the PPF as compared with the TSVD and TKNYV in this case.

The color scale corresponds to the amplitude of the po-
tential. 10% edge-concentrated non-uniform noise was
added to the scalp potential. The eccentricity was 0.75.
It is shown that the proposed method (Fig.7(d)) pro-
vides an enhanced performance in reconstructing the
two radial dipole source configuration as compared to
the regular TSVD (Fig.7 (b)) and TKNV (Fig.7 (c))
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methods.
3.4 Effects of Parameter

The parametric projection filter consists of a free pa-
rameter, 7. We have proposed a new parameter esti-
mation method to determine this regularization param-
eter as shown in 2.3. In this section, we consider the
effects of the parameter v for restoration. Figure 8 (a)
shows an example of the performance of the paramet-
ric projection filter in estimating the parameter . The
relative error between the actual and the estimated
cortical potentials is plotted against the parameter ~.
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Fig.8 Effects of parameter v: (a) The RE between actual and
estimated cortical potentials was shown against the parameter .
The eccentricity of dipole sources is 0.45. 10% edge-concentrated
non-uniform noise was added to the scalp potential with 128 elec-
trodes. The circle indicates the minimum of the RE curve and
the triangle indicates the RE using the estimated parameter by
the method of Section 2.3. (b) The functions J(v) in Eq. (16) and
their minimum (cross) are plotted against the parameter v. (c)
The estimated parameter v in repetition. Three plots correspond
to the initial value of 104, 10°, and 108, respectively.

Institute of Electronics, Infornmation, and Conmunication Engi neers

IEICE TRANS. INF. & SYST., VOL.E86-D, NO.9 SEPTEMBER 2003

The eccentricity of dipole sources was 0.45. 10% edge-
concentrated non-uniform noise was added to the scalp
potential with 128 electrodes. The optimum parameter
(circle) was calculated by the minimum of the RE curve
between the actual and the estimated cortical potential
while the estimated parameter (triangle) was calculated
by the method of Section 2.3. Figure 8 (b) shows the
evaluation functions of iterations in Eq.(16) that are
normalized by ||fo|| and their minimum (cross). In the
present simulation, the initial value of v was 10*. Fig-
ure 8 (c) shows the values of estimated parameter v in
repetition. Three plots correspond to the initial value
of 104, 10%, and 10%, respectively. Whenever the initial
value was set to any values, the estimated parameters
converge to same value. We confirmed that the iter-
ation number of 10 was enough to convergence in all
simulations conducted. Though the estimated parame-
ter was slightly different from the optimum parameter,
the RE obtained by the estimated parameter was simi-
lar to that obtained by the optimum parameter. When
the cortical potential was obtained using the estimated
parameter, the relative error became worse 0.015 in av-
erage than that obtained using the optimum one.
Figure 9 shows an example of the effect of the pa-
rameter v. The eccentricity of dipole sources was 0.75.
10% edge-concentrated non-uniform noise was added to
the scalp potential with 128 electrodes. When the pa-
rameter was set to the small value, two dipole sources
were identical while the estimated cortical potential be-
came noisy. On the other hand, when the parameter
was set to large value, we could not see the two-dipole

Fig.9 On example of the effect of the parameter, ~: (a) the
actual cortical potential, (b) the estimated cortical potential with
0.1 times of the optimum parameter, that was calculated with
the minimum RE, (c¢) the estimated cortical potential with the
optimum parameter, and (d) the estimated cortical potential with
10 times of the optimum parameter. The eccentricity of dipole
sources is 0.75. 10% edge-concentrated non-uniform noise was
added to the scalp potential with 128 electrodes.
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Fig.10 Effect of estimation error in noise covariance Q. The
noise bias, which was defined by an amplified Gaussian white
noise, was added to @ in the PPF and the parameter estimation
functions. The horizontal axis is the amplitude of the noise bias.
The vertical axis is the RE between the actual and estimated
cortical potential using the biased ). The eccentricity of dipole
sources is 0.75. 10% edge-concentrated non-uniform noise was
added to the scalp potential with 128 electrodes.

sources while the noise was suppressed. The determi-
nation of the value of parameter v depends on the ap-
plication. If high spatial resolution is required, then ~
should be set to small value.

3.5 [Effects of Estimation Error in Noise Covariance

In actual situation, the noise covariance @ should be
estimated in order to perform the parametric projec-
tion filter. The noise covariance ) can be calculated
using the set of the noise. We examined the estima-
tion error of @ (Fig.10). The spatial distribution of
noise that constructs ¢ was modified by adding the
noise bias that was defined by the amplified Gaussian
white noise. The inverse techniques using the modified
@ were applied for the scalp potential that was con-
taminated with the unmodified Q. The horizontal axis
shows the ratio between the noises and the noise bias.
The vertical axis shows the relative error between the
actual and the estimated cortical potential using the
biased ). The relative error of the proposed method
became large by increasing the bias of @ while the rel-
ative errors of the TSVD and the TKNV were nearly
constant. The relative error of the parametric projec-
tion filter was more sensitive for the @ that the TSVD
and the TKNV in estimating the parameter v because
the equation of the parametric projection filter consists
of ). This result demonstrates that if the noise co-
variance is estimated accurately, the proposed method
provides better results than the TSVD and TKNV.

3.6 Cortical Imaging of Human VEP

The pattern reversal VEP data at the P100 were an-
alyzed by the restoration filters of the TSVD, TKNV,
and PPF. Figure 11 shows an example of (a) the scalp
potential map and the estimated cortical maps by (b)
TSVD, (¢) TKNV, and (d) PPF in a healthy subject.
As shown in Fig.11(a) in response to the left visual

(©) (d)

Fig.11  Application of the restoration filters to cortical poten-
tial imaging of VEP induced by left visual stimuli in a human
subject. (a) Normalized scalp potential map at P100 in response
to the left visual stimuli. Normalized cortical potential maps es-
timated by the TSVD, TKNV, and PPF are shown in (b), (c),
and (d), respectively.

stimuli, a dominant positive potential component was
elicited with a widespread distribution on the bilateral
scalp. However, the estimated cortical potential map
reveals a dominant in the right visual cortex. Espe-
cially, the result of the PPF was much more localized
than that of the TSVD and TKNV.

4. Discussion

Research progress in the past decade has established
the high-resolution EEG methodologies for imaging
brain electrical activity. The cortical imaging ap-
proaches are virtually applicable to any kind of brain
source distribution (both localized and distributed).
This is due to the generalized nature of the equivalent
surface source models behind the cortical imaging tech-
niques. These techniques should be useful particularly
for localizing and imaging cortical sources. The cortical
current imaging approach models directly the cortical
sources using a distribution of current dipoles oriented
normal to the cortical surface [10],[13]. While such
current dipole layer modeling may correlate directly
the scalp EEG recordings with the underlying cortical
sources, the current dipole layer imaging is nonunique
since different specifications of the current dipole dis-
tribution will lead to different solutions. On the other
hand, cortical potential imaging estimates the electrical
potential over the epicortical surface from scalp poten-
tials. Since there are, in principle, no primary bioelec-
tric sources between the scalp and epicortical surfaces,
such approach is theoretically unique [30]. Cortical po-
tential imaging is also sometimes called as downward
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continuation [19], [20], [25]. While epicortical potential
is not a primary source itself, it does reflect much spa-
tial details on the underlying brain electric activity, es-
pecially cortical sources, due to the vicinity of the epi-
cortical observation surface to the cortical sources.

Cortical potential imaging is not a non-unique in-
verse problem, but an ill-posed and underdetermined
inverse problem. Noise plays an important role in cor-
tical potential imaging, as in any other ill-posed inverse
problem. Since every cortical potential imaging tech-
nique needs to seek the inverse of a transfer matrix,
a small amount of noise existing in measurement may
result in large errors in the cortical potential inverse
solutions. So far, most cortical potential imaging tech-
niques [16]—[27] deal with the effect of noise without
considering noise covariance.

In the present study, we have investigated the per-
formance of cortical potential imaging by considering
noise covariance through the use of parametric projec-
tion filter. While sophisticated regularization methods
have previously developed including both signal covari-
ance and noise covariance [10}-[12],[14],[35], there is
no, to our knowledge, comprehensive investigation on
cortical potential imaging in the metric of noise, in
which non-white noise is considered. The present study
demonstrates that enhanced performance can be ob-
tained in cortical potential imaging by considering the
noise covariance.

Figures 4-7 show that the proposed method pro-
vides a good performance when the dipoles were lo-
cated at the center of the head model and the noise
was distributed around the edge. Moreover, the result
of the proposed method is similar to the TSVD and
TKNYV, in which the information on the noise covari-
ance is not considered, when the noise was concentrated
at the center. The correlation coefficient between the
cortical potentials in Fig. 3 (a) and the diagonal of () as
shown in Fig. 2 (a), (b), (c), and (d) was 0.026, —0.926,
0.966, and —0.092, respectively. The present results
suggest that, the proposed method is effective for im-
proving cortical potential imaging, under the condition
of low correlation between signal and noise. The pro-
posed method will have similar restorative ability to the
regularization procedures without considering the infor-
mation of noise covariance, under the condition of high
correlation between signal and noise. Theoretically, the
noise covariance @ of the Gaussian white noise is iden-
tical to the scaled unit operator I. So, the proposed
method in Eq.(12) will be as same as the TKNV in
Eq. (5), for Gaussian white noise. In the present simu-
lation, the noise in Fig. 2 (a) was not exactly the Gaus-
sian white noise because the size of noise is limited in
finite values. Since the noise covariance @ was actually
estimated from the computer-generated noise, the re-
sult of the proposed method is slightly better than that
of the TKNV.

As the parameter estimation methods for conven-
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tional regularization procedures used in cortical poten-
tial imaging, such as TSVD and TKNV, the L-curve ap-
proach [45], zero-crossing approach [46], and minimum
product approach [47] have been proposed. In these
methods the noise is assumed to be Gaussian white
noise. In the case of non-white noise, the parameter
of the proposed method should be selected by consider-
ing the relationship between the signal and noise. This
relationship means not only the signal to noise ratio but
also the relative difference between the signal distribu-
tion and the noise distribution. The present parameter
estimation method is directly derived from the aim of
this study that minimizing the error between the origi-
nal signal and the estimated signal as shown in Eq. (14).
The present method has some error because we use the
estimated signal instead of the original signal and we
ignore the third term in Eq. (15). However, the param-
eter estimation error is found to be negligible, as shown
in the present simulation results. The initial value for
~ is required in the present algorithm. We have nu-
merically tested that the proposed algorithm converges
to the same value regardless of initial values selected,
and think it is beyond the scope of the present paper
to develop a theoretical frame explaining the new algo-
rithm we proposed. Such theoretical development shall
be addressed in the future investigations. The present
algorithm for determining the regularization parameter
may be applied to other inverse estimation procedures,
such as the TSVD, TKNV, etc.

5. Conclusion

The cortical imaging method has a flexibility of im-
plementation and no ad hoc assumption about the na-
ture of the generators of the scalp potential is required.
The method may have important applications to better
our understanding of brain functions and in facilitating
clinical diagnosis of neurological diseases. The present
results suggest that the PPF is effective for the condi-
tion of low correlation between the signal and noise and
that has similar restorative ability to the TKNV for the
GWN and the condition of high correlation between
the signal and noise. The new parameter estimation
method provided appropriate generalization parameter
of PPF for high-resolution and noise-suppressed corti-
cal imaging. Further investigation using experimental
data is necessary to fully validate the performance of
PPF for cortical imaging.
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