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On Eccentric Sets of Edges in Graphs

Masakazu SENGOKUT, Shoji SHINODAT! and Takeo ABE!, Members

SUMMARY We introduce the distance between two edges
in a graph (nondirected graph) as the minimum number of edges
in a tieset with the two edges. Using the distance between edges
we define the eccentricity &, (g;) of an edge ¢;. A finite non-
empty set J of positive integers (no repetitions) is an eccentric
set if there exists a graph G with edge set E such that e, (g)E
J for all e; & E and each positive integer in J is & (e;) for some
e;& E. In this paper, we give necessary and sufficient conditions
for a set J to be eccentric.

1. Introduction

By a graph we mean a finite nondirected and
connected graph which may include multiple edges.
The eccentricity of a vertex which is defined using the
distance between two vertices is well known as a basic
concept of graphs”), and some properties of eccentric
sets in graphs has been examined®. Edges are also
important elements as well as vertices in graphs. We
propose the concept of the eccentricity e.(e;) of an
edge e; in a graph which is defined using the distance
between two edges in a graph, where the distance
between two edges is the minimum number of edges in
a tieset with the two edges. We call a finite non-empty
set J of positive integers (no repetitions) an eccentric
set if there exists a graph G with edge set E such that
e.(e;)&J for all e, E and each positive integer in J
is e.(e;) for some e;=FE. We give necessary and
sufficient conditions for a set J to be eccentric.

2. Preliminaries

In this section, we introduce a quantity corre-
sponding to the distance between two edges. Let G=
(V, E) be a nondirected and connected graph, where
V' and E are the sets of vertices and edges in G
respectively. A path in G is a subgraph and the set
P;S E of edges in the subgraph is called a pathset. An
elementary circuit (or tie) is a subgraph and the set of
edges in the subgraph is called an elementary tieset,
which is called simply a tieset. The number of edges in
a path or the pathset is called its length and the number
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of edges in a tie or the tieset is called its length. That
is, the length of a pathset p; is |p;| and the length of a
tieset 7. is |ze|, where | 4| denotes the cardinality of the
set 4. The subscript e of z. means elementary tieset.
For simplicity, we use r for z., hereafter.

In general, the distance between two vertices of G
is often defined as the length of the shortest path
between the two vertices. In this letter, we define the
distance between two edges of G using a tieset with the
two edges. Let rx(e; e;) be a tieset containing both e;
and e; of G and let R(e; ¢;) be the set of these tiesets.
That is,

R(e; ) ={tu(es &)} (1)

The length of 7.(e; ;) is |r(e; €;)|. We define the
distance d (e;, e;) between two edges e; and e; as fol-
lows.

(a) d(eye)= min |Tk(ez‘y &), (2)

hlene)ER (€165)
if R(e; ¢;) +¢ for e, e;EF
(b) dle,e)=co,if R(e, e;)=¢ for e;, e, EF
(3)
For an edge ;& F, let
(c) de;e)=0 (4)

In the definition (a)-(c) of the distance between
edges, (¢) is optional. We may define the distance
d (e, e;) by (a) and (b) instead of by (c¢), where
d(e; e;)=  min )|rk(ez-, e;)| for R(e; e;) == ¢ and

Tx(€i,e:)ER (€i,e,
d (e, e;) =00 for R(e, e;)=¢. In this case, d (e, e;)
has the minimum value among the distances d (e, e;)
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Fig.1 A graph.
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for e;£F. In this paper, we use the above definition
(a)-(c). We show an example. In a graph of Fig.
1,

ni (e, e2) :{31, €, 63}, z (e, e) :{31, €, €, &, es},
(e, &) ={e, &, e, &, ).

R(e, &) ={n(e, &), nle, &), nle, &)}

R (e, e) = ¢

From the definition (a)-(c), d (e, es) =3 and
d (61, es) =00,
[Lemma 1] If there are elementary circuits L,
containing both e; and e; and L, containing both e;
and e, in G, then there exists an elementary circuit
containing both e; and e, in a subgraph L;U L. []
Using Lemma I, we obtain Theorem 1.
[Theorem 1]  d (e, ¢) is a metric.
(Proof) In order to prove that d(e; e;) satisfies the
distance axiom, it suffices to show that the following
equations hold.

(1) d(eye)=0=e;=¢
(II) d(ese)=d(e; e)
()  d(e;, er) <d(e; ;) +d (e ex).

From Eq. (4), d(e; ¢;) =0 and from the defini-
tion of d(e; e;), d(e, e;) =0 for e;=e;, that is, (1)
holds.

In G, a tieset containing e; and ¢; is also a tieset
containing e; and e; and thus we have R (e, e;) =
R(e;, e;). Hence, from Egs. (2) and (3), (II) holds.

Next we prove (IlI). From Eq. (2), d(e; ¢;) is
the minimum among lengths of tiesets containing both
e; and e;. Let ni(e, e;) be one of tiesets of the
minimum length in R{e, e;). Similarly, let n:(e; ex)
be one of tiesets of the minimum length in R(e;, ex). If
both of ri(e;, e;) and z(e;, ex) exist, then from Lemma
1 there is an elementary circuit containing both e; and
e, in the edge-induced subgraph of ri(e; e;) Uznl(e,
e.). Let 7z(e, e,) be the set of edges in this circuit.
Then,

(e, en) Smiles €) Uneles, ex) (5)
s (es, en) | <|n(es )|+ (e en)] (6)

From Eq. (2) we have

d(e; e =|ms(es en)] (7)
From the assumption

d (e, e;)=|n(e; &)|

d(e; ex) =|(e; )|
and therefore from Egs. (6) and (7)

d(e, ex) =d (e, ) +d (e, ex) (8)
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Next we consider the case where one of 7 (e;, €;) and
(e; ex) does not exist. Without loss of generality we
assume that (e, e,) does not exist. Then G is a
separable graph and e;(e;) and e, belong to different
nonseparable components. Therefore from the Eq.
(3) we have

d(ej: ek):d(eiJ ek):OOJ (9)
d(e; ex) =d (e, €) +d (e ex) (10)

Further in the case where neither z;(e; €;) nor (e,
e.) exist, we have

d (e; ;) =d (e;, er) = 0. (11)
It follows from d (e;, e,) < oo that
d(e;, ex) =d (e, ;) +d (e, ex) (12)

(I follows from the Egs. (8), (10), and (12).[]
3. Eccentric Sets with Respect to Edges

The concept of eccentricity with respect to vertices
is defined using shortest path between vertices™. Here,
we define the concept of eccentricity with respect to
edges using the distance between edges. Let

5r(ei):ma§ d(e; e;) (13)

we call e;(e;) the ecceniricity of e, The radius
rad; (G) concerning edges of G is defined as

mine; (e;) while the diameter diam, (G) is maxe. (e;).
e;ck e;€E

An edge e is a central edge if &:(e) =rad.(G).

Let us show a simple example to explain the
eccentricity of an edge and a central edge. Let us
consider a road network where the length of each road
is 1 and each road has a police station at the middle
point of the road. A patrol car of a police station have
to patrol his edge(road) and other edges besides. In
order to avoid the repetition point of the patrol, we
assume that a patrol car of a police station have to
patrol some other edges from his station to his station
passing once and only once through some vertices and
some edges except for his edge. If a patrol car is
ordered the patrol that have to make a round via a
specific police station, the patrol car have to include
the edge of the specific police station in the patrol.
d (e;, e;) represents the shortest patrol tour length from
the police station of e; going through that of e; which
is the specific station in the patrol. Note that the
shortest patrol tour from the police station of e; going
through that of ¢, may not include the shortest path
between the two police stations. The above assump-
tion of the patrol tour is only used for the patrol. Of
course, in case of emergency at e;, the patrol car of e;
can use the shortest path between the two police sta-
tions. The maximum value of the shortest patrol tour

length of e; in any specific police stations to make a
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Fig.2 A graph G.

round via is the eccentricity of e;. The central edge
er of G means that a patrol car of e, can have minimum
patrol tour length in any specific stations to make a
round via.

A finite non-empty set J positive integer (no
repetition) is called eccentric set if there exists a graph
G with edge sets E such that &,(e;) &J for all edges
e, E .and each positive integer in J is & (e;) for some
e;EE. We show an example. In a graph G in Fig. 2,
ez () =4, e: (&) =e:(e3) =€ (@) =€ (&) =5 and e
(es) =er(er) =er(es) =€ (e) = (e10) =6. Thus,
rad. (G) =4, and diam.(G)=6. J={4, 5, 6} is an
eccentric set.

The radius and diameter are related by the follow-
ing inequalities.
[Theorem 2]

rad. (G) =diam. (G) =2rad.(G) —2 (14)

(Proof) The inequality rad, (G) <diam.(G) follows
from the definition of radius and diameter.

Next we show diam;(G) <2rad, (G) —2.
(1) The case where G is a separable graph.
When edges e; and e; belong to different non-separable
components, there is no elementary circuit containing
both e; and e;. Thus, R(e; e;) =¢. By the definition
(3) of distance between edges,

d (e e;) =00, (15)
rad; (G) =diam,(G) =0 (16)

From Eq. (16) the inequality (14) follows.

(2) The case where G is a non-separable graph.
(i) The case E={e; ¢;}{(|E|=2).

Clearly, rad; (G) =diam,(G) =2. Then, we have Eq.
(14).

(ii) The case where the cardinality of E is greater
than 3 (|E|=3). Consider edges e;, e; and e, such that
d(e; e;) =diam.(G) and & (ex) =rad; (G) hold. Ife
;=€ Or e;=ep,, diam,(G) =rad, (G) =2 holds. Thus,
the inequality (14) holds. Next we consider the case
(e;#+e;)e;Fe, and e;=e,. Let L, be a circuit of the
minimum length among elementary circuits containing
both e; and e, and let 1y (e;, ex) be the set of edges in
it. Also, let L, be a circuit of the minimum length
among elementary circuits containing both e; and e,
and let rz(e;, e,) be a set of edges in it. From Lemma
1, there is an elementary circuit containing both e; and
e; on the subgraph of G consisting of L; and L,. Let

For any graph G,
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s(e; ;) be a set of edges in the elementary circuit.
Then,

ms(es ) Siles, en) Un(e; en) (17)
We define a subset E; of edges as
E:=1(e; ex) — (nie; e) Nsle; e)) (18)

(a) The case E,=¢.

Since r3(e;, e;) is an elementary tieset, its subset does
not contain any other elementary tieset. Thus we have
ni(e;, e,) =w(e;, ;). Hence, e; is contained in (e,
er). Therefore from Eq. (17) we have

|Z‘3(6’i, ej)|
§|Z'1(€i, €k> U Tz(ej; ek)l
=|ules, ex) |+ |w2(e;, en) | — e} —[{es}]  (19)

By the definition of distance between edges, d (e;, e;) <
|z3(e;, €;)|. From the assumption,

d (e, e;) =diam. (G),

|z (es ex) | <rad.(G), and

|72 (5, ex) |<rad. (G). (20)
Thus, from the inequarity (19)

diam,(G) =2rad.(G) —2 21

(b) The case E;+¢.
Let e, be an edge which belongs to £,. From Eq.
(17),

73 (e ej) Srle, en)U Z'z(ej; ek) —{ea}- (22)
Thus we have
|3 (es €)|<|nules ex) U(e; ex)|—[{eall

§|2'1(ei, ex) |+|Z'z(€j, ek)l_l{ekH

— Heal| (23)
Therefore, from Eq. (20)
diam.(G) £2rad.(G) —2. (24)
From Egs. (21) and (24), the inequality (14) follows.
J

Next, we characterize eccentric sets.
[Theorem 3] A non-empty set J ={b, b, ***, by} of
positive integers, listed in increasing order, is an eccen-
tric set if and only if

b, =2(b—1) (25)

(Proof) The necessity of the inequality (25) follows
from Theorem 2. Next, we consider the sufficiency.
We show a method to construct a graph G with a set
J which satisfies (25). Let P(m) be a path of order m
where the order is the number of vertices. We first
introduce a notation of combining two graphs to
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produce a new graph.

Let G(H)V P(m) be a graph in which a path P
(m) connects adjacent vertices in the subgraph H of G
(see Fig. 3). Note that G(H)V P(m) is not always
unique because the subgraph H may have more adja-
cent vertices than two. Let

m=b,—b+2 (26)

————— e
V-1

Fig.3 The Combining Graph G(H)\/P(m) of G and P(m).

c(9)
(1) 6,

G,=G,(C(9))V P(3)
(2) G,

G3=6,(P)) V B(5)
(3) 6,
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my=by—by+2 (27)

m,,flzbn—bn_1+2 (28)

At first, construct a graph G,=G,(C (b)) V p(m)
where Gi=C (b)) and C (b;) is a circuit of order b.
Let the subgraph consisting of P(m) in G: be P, and
let the edge in G whose end vertices are connected by
P(m;) be e;. Next, construct a graph Go= G (P,)\V/
P(mp) where the subgraph consisting of P(my) is P,
and the edge in G, whose end vertices are connected by
P (mg) is e;.. Proceed the construction of G;(i=1, 2,
++) t0 Gp= Gn1(Pm-3) \/ P(m,_;) where the subgraph
consisting of P(m,_1) in G, is P,_; and the edge in
Gn-1 whose end vertices are connected by P(m,_1) is
en-1. Let an edge of the subgraph P,_; of G, be e,.
From the method of the construction of G,, G, has
the eccentric set J, where e (e;) =b;, (1Zi<n), and
e-(e;) EJ for any edge e; of G,, since J holds the

G,4=G3(Py) VP4
(4) G4

Gg=G4(P3) V P(3)
(5) Gg

Fig. 4 Graphs G, G, G;, G; and Gs.
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inequality (25). (]
We show examples.

[Examples]

(1) J={4,6,7) ,

This set J is not an eccentric set because 5, =4 and
b,=7, (n=3) do not satisfy Eq. (25).

(2) J={9,10, 13,15, 16}

This set J is an eccentric set because b;=9 and
b,=16, (n=5) satisfy Eq. (25). Let us show the
construction of a graph G with J. From Egs. (26),
(27) and (28),

m1=3, mz=5, m3:4, m4:3

Figure 4 shows the procedure of the construction of G
from G, to Gs. G = G5 is a graph with J where
er(e) =9, e:(e) =10, &; (e5) =13, - (es) =15 and &,
(€5> =16.

4. Conclusion

We have introduced the concept of the distance
between edges using tiesets of a graph and we have
defined the eccentricity of an edge and examined the
properties of an eccentric set. Furthermore, we gave
necessary and sufficient conditions for a set of positive
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integer to be eccentric. We note that the similar
discussion of the eccentricity of an edge by the distance
between edges using cutsets instead of tiesets in a graph
is possible.

A sequence [I: ai, as, --, an, is said to be an
eccentric sequence if there exists a graph G whose
edges can be labelled e, e, -+, e, so that e.(e;) =a;
for each i 1=i=m. The necessary and sufficient
condition for a sequence to be an eccentric sequence
have not been obtained and this is an open problem.
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