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SUMMARY In location problems, the outtransmission and
intransmission numbers are important indices to evaluate a
directed network. We formulate and consider a new problem of
fault diagnosis in a system modeled by a directed network in
which to each edge a positive real number called the length of
edge is assigned and to each vertex a positive real number called
the weight of vertex is assigned. By a fault in a directed network,
we mean any increase in the length of an edge with respect to its
nominal length. A theory and an algorithm for detecting a fault
edge in a directed network in which the above indices, i.e.
outtransmission and/or intransmission numbers, are measurable,
are presented.

1. Introduction

The outtransmission and intransmission numbers
are used in location problems as important indices of
evaluating the centrality of vertices in a directed
network™ @, In location theory on networks, there are
two problems which have been studied. One is to
obtain the indices such as transmission number or
eccentricities for a given network. This is called an
analysis problem. The other is to obtain a network
from a given set of transmission number or a given set
of eccentricities. This is called a synthesis problem. In
this paper, we propose a new problem called a diagno-
sis problem. In the problem, a network is given and the
transmission numbers of all vertices of the graph are
measurable. The problem is to detect a fault edge in a
network from the measurement of the transmission
numbers.

We consider a directed network in which to each
edge a positive real number called the length of the
edge is assigned and to each vertex a positive real
number called the weight of the vertex is assigned. By
a fault in a directed network, we mean any increase in
the length of an edge with respect to its nominal length
which can cause any increase of the outtransmission or
intransmission number of at least one vertex in the
network under the assumption that the weight of any
vertex in the network does not change in any situa-
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tions. We give a theory and an algorithm for detecting
a fault edge in a directed network from measurements
of outtransmission and/or intransmission numbers of
all vertices of the network.

The objective of this paper is to propose a diagno-
sis problem in the location theory. At present we do
not have any concrete idea of applying this problem to
practical problems but we hope that some practical
applications will be motivated by this paper.

2. OQuttransmission and Intransmission Numbers

Let N=(G, I, w) be a connected and directed
network whose underlying graph is denoted by G=
(V, E) where V and E represent the vertex set and the
edge set, respectively, of G. To each edge, a positive
real number called the length of the edge is assigned
and to each vertex, a positive real number called the
weight of the vertex is assigned. The length of e, & F is
denoted by /(e) and the weight of v, ¥ is denoted by
w(v;), where [ . E—>R,, w . V—R,, (R.=(0, )).

Now, for »,& ¥V, let us consider the outtransmis-
sion number f,(v;) and the intransmission number
t:(v;) which are defined by

fo(Vj):kaEv d(v, ve)w(ve) (1)
fi(Vj):kaE‘.V d(vi, vi)w(ve) (2)

where d(v;, v;) is the length of the shortest path
from vertex v; to v; which is called the distance from
v; to v;. Let |V'|=n and let D=[d;] be an nX n matrix
whose i-th row and j-th column element is d;; where
d;=d(v;, v;) and |A| denotes the cardinal number of
the set A. D is called the distance matrix of N.
Let

to( 1) t:(v1) w(wn)

Zo V; ) ti V: WLV

= ( 2) , ;= ( 2 and W= ( 2)
to(Vn) t(vn) w(¥a)

Then, Egs. (1) and (2) are rewrited as follows.
To=DW (3)
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(a) N (b) N
Fig. 1 Networks & and N'.

T;=D'W (4)

where D’ is the transpose of D.

For example, matrices D, T, and T; of a network
N of Fig. 1(a), in which the weight given to each
edge indicates the edge length of the edge, and w(w)=
1, w(v)=2, w(vs)=3, w(v)=4 and w(vs)=5, are given
below

(012 3 4]
10123
D=[32012 (5)
21201
43120]
(17 [40]
2| |27
T,=DW=D|3|=|21 (6)
41 |15
5] |21
(17 [39]
2| |26
T,=D'W=D!3|=|17 (7)
4| {20
5] [20]

3. Assumptions and a Fault of an Edge

The outtransmission and intransmission numbers
are used in the so-called minisum location problem.
An edge in a network corresponds to a communication
link in a communication system or a road in a road
distribution network. The length of an edge in the
network represents the transmission or transportation
time between the two vertices. A fault of a link or a
road in these systems generally causes the increase of
the transmission or transportation time.

In this paper, therefore, by a fault in a directed
network, we mean any increase in the length of an edge
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with respect to its nominal length which can cause any
increase of the outtransmission or intransmission num-
ber of at least one vertex in the network under the
assumption that the weight of any vertex in the net-
work does not change in any situations.

It should be noted that an increase in the length of
an edge in a directed network can not be considered to
be a fault in the network if it does not cause any
increase of any outtransmission or intransmission
number in the network.

Now, we say that a directed network is k-edge

fault detectable if one will be able to determine a set of

k edges containing at least one fault edge from mea-
surements of outtransmission and/or intransmission
numbers of the network. We say vertices # and v of a
fault edge fault vertices. And we say that a directed
network is k-vertex fault detectable if one will be able
to determine a set of k vertices containing at least one
fault vertex from measurements of outtransmission
and/or intransmission numbers of the network.

In this paper, we assume that a fault occurs at an
edge only. And our purpose is to detect a fault edge in
a network from measurements of outtransmission and/
or intransmission numbers.

4. Increment of Distance by Increase of the Length
of an Edge

Let N'=(G, I’, w) be a network obtaining from N
=(G, I, w) after increase of the length of an edge e,=
(vp, vq) from [(en) to I’(en) by 8. That is,

Ilen)=I(en)+ 3, (6>0, l(em)>0)}
I'(e)=1(e;), (j=m, eEE)

Let d’(v;, v;) be the distance from vertex v; to vertex
y; in N'.

Then, we get the following lemmas.
[Lemma 1] For any vertices v;, v;, &V

d (v, vi) = d (v, v;)+ d(vs, v) (9)
d (v, vi)=d (v, v;)+d"(v;, v) (10) ]
[Lemma 2] For any vertices v;, v;, E ¥V,

d(vs, vi)=min{d'(v;, v:), d’(vs, vp)+d'(vq, v:)

(8)

+1"(en)— 6}
=min{d" (v, v:), d’(v;, vp)+d'(vq, v:)
+d'(vp, vq)— 6’} (11)
where §= 9" 20. L]

From Lemma 1 and Lemma 2, we get the follow-
ing theorem.
[Theorem 1] If for any two distinct vertices v; and
V; of V

d’'(v;, v:) > d(v;, v:) (12)
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then

d(v;, vi)>d(vp, v), (p=j) (13)
and

d'(vp, vi) —d(vp, vi)=d'(v;, vi)—d(v;, v;)  (14)

(proof) Since the distance between any two vertices
does not decrease by the modification (8) of N, for
any v,V

d'(vp, vi) = d(vp, v:) (15)
Assume that
d'(vp, vi)=d(vp, v:) (16)

Then, from Eq. (11)
d(vp, vi)=d'(vp, )< d'(vq, vi)+1'(en)— 8 (17)
Using Eqgs. (11) and (12) for any vertex v; (j=i, j=+

>

d’'(v;, vi) > d(v;, vi)=d’(v;, vp)+ d’(vq, v:)
+1'(en)— 38 (18)
From Egs. (17) and (18),
d’(vj, vi)>d (v, vi)=d'(v;, vo) +d'(vp, v:;) (19)

This is cotradictory to (10). Hence, d'(vy, v:)= d(vp,
;) and in Eq. (15)

d’(vp, vi)>d(vp, v:) (20)
Then, from Eqgs. (11) and (20),

d(vp, vi)=d'(vg, v:;)+1'(en)— & (21)
Using Egs. (11), (12), and (21),

d(v;, v)=d'(v;, vo)+ d(vp, v:) (22)
Since d'(v;, v)>0, (p=j),

d(v;, v:) > d(vp, v:) (23)

Hence we get Eq. (13).
Using Eq. (10),

d'(vj, vi)— d(v;, v) {d’ (v, vo) +d'(vp, ¥)}
—d(v;, v;) (24)
From Eqs. (22) and (24),
d'(v;, vi)—d(v;, viy < d'(vp, vi) — d(vp, v:)  (25)
Hence we get Eq. (14). ]

Similarly, we get the following theorem.
[Theorem 2] If for any two distinct vertices v; and
v; of V

d,( V5, Vi) > d(Vj, Vz') (26)
then

d(v;, vi)>d(v;, vg), (q=1) (27)
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and
d' (v, ve)—d(vs, v9) 2 d"(v;, vi)— d(v;, v:) (28) ]

we also get the following theorem using Lemma 1
and Lemma 2.
[Theorem 3] Let v; be a vertex such that d’(v;, v») >
d’(v:, vg). Then, for any vertex v,& V,

d'(vi, v)=d(vs, v;) (29)
Let v; be a vertex such that d’(vp, v.)<d'(vq, v:).
Then, for any vertex v,;EV,
d’(vs, vi)=d(v;, ;) (30)
(Proof) We show Eq.(29). In general, since the
distance between any two vertices does not decrease by
the modification (8) of N, d'(v;, v;)=d (v, v,).
Assume that d’(v;, v;)>d(v;, v;). From Egs. (11) and
(8),
d’<vi1 vj)>d(vi; Vj)
=d'(vi, vp)+ d'(vg, v;)+1"(en) — &
>d’(vz-, Vp)‘f’d’(vq, Vj). (31)
Since d’(v;, vp)>d’(v;, v4) from the hypothesis,
d’(vi, v;) > d’(vi, vq)+ d"(vq, v;) (32)

This is contradictory to Eq. (10). Hence we get Eq.
(29). Similarly we get Eq. (30). ]

5. Detection of a Fault Edge

Let #,'(v;) and #/(v;) be outtransmission number
and intransmission number of a vertex in N’, respec-
tively.

Ato(v_/)é to,(Vj)““ fg(Vj) (33)
At(v) 2 t/(v) —t:(v;) (34)

We call 4t,(v;) and 4t(v;) the increment of outtran-
smission number and intransmission number of v,
respectively. From the definition of outtransmission
and intransmission numbers,

dlo(vj)szev(d'(Vj, ve) —d(v, vi))w(ve)  (35)
Ati(Vj):vzev(d'(Vk, ;) — d(ve, v:))w(ve)  (36)

For any vertex v;, &V, d'(v;, v;)=d(v;, v;) since the
distance between any two vertices does not decrease by
the modification ( 8) of N. Then, we get the following
lemma.

[Lemma 3] The increments of outtransmission and
intransmission numbers of any vertex of N by the
modification (8) of N are nonnegative. That is, for
any vertex €V,

At,(v,)=0 (37)
At(v;) =0 (38)1
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Then, we get the following theorem using the
theorems of previous section.
[Theorem 4] For any veriex v,EV,

Ato(vp) = At,(v;) =0 (39)
and

Ato(vq)=0. (40)
(Proof) From Egs. (35) and (36),

Ato(vp) — Ato(vy)= UkZE}V{(d'( Vo, V&) — d(p, V1))

—(d'(vs, vo) — d (v, v))} w(ve)
(41)
Let
Y =(d'(vp, va)— d(vp, v)) —(d'(vs, vu)— d (v, %))
(42)

Since the distance between any two vertices v; and v,
does not decrease by the modification ( 8) of N,

d,(Vi, Vj);d(vi, Vj) (43)

In Eq. (42), d'(v;, va)=d(v;, va). If d’(v;, vi)=d(v;,
v.), Y is nonnegative because d’(vp, vi)=d(vp, ) in
general. If d’(v;, v.) > d(v;, v), Y is also nonnegative
from Eq. (14) of Theorem 1. Hence, At,(v,) = At,(v;) =
0 using Lemma 3.

Next, in general d’(vq, vp)>d'(vq, v4)=0. From
Eq. (29) of Theorem 3, d’(vq, v»)=d(vq, v.) for any
vertex v,E V. Hence At,(v4)=0. J

Similary we get the following theorem.
[Theorem 5] For any vertex &V,

At(vg) 2 At(v;) 20 (44)
and
At:(vp)=0. (45)1
Next let us define the following subsets of vertices.
Vio={ve| Ato(v) = Ato(v;), vs, ;EV} (46)
Ve ={va|dt:(ve) 2 41v;), va, vEV} (47)
Vio={vldtos(v:)=0, vV} (48)
V= {ne|dt:(ve)=0, wEV} (49)

First, let us consider a network in which only
outtransmission number is measurable. We show an
example. Fig. 1( b)) is a network N’ obtaining from N
of Fig. 1(a) by increasing the length of an edge e,=
(vs, ) by 1. The weight of every vertex of N’ is the
same as that of N. The distance matrix D" and the
outtransmission number matrix 7,” of N’ are given
bellow :
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(a) N (b) N
Fig. 2 Networks N and N
(01245]
10134
D=|43023 (50)
21201
54 130]
49
36
T, =D W=|33 (51)
15
128 ]
Then,
‘Ato(vl)} [ 9]
. 9
AT, T/ —To=| « |=|12 (52)
. 0
| At,(vs)] L 7.

If only outtransmission number is measurable, that is,
T, and T, are given, then from 47, we can get the
subsets Vmo={vs} and Vz,={vy}. Then, from Theorem
4, we can say that a vertex v in Vg, 1s a fault vertex and
a vertex v in V, is also a fault vertex, because |vyo|=
1 and | V|=1. Thus, this fault of N is l-vertex fault
detectable and is also I-edge fault detectable because
the only edge between v and w, is e;.

[Theorem 6] Let N be a network in which only the
vertices with the maximum increments of outtransmis-
sion number are distinguishable. Then, N is k-vertex
fault detectable if min{|vnol|, |vzol} =k. I
[Theorem 7] Let N be a network in which only the
vertices with the maximum increments and the mini-
mum increments of outtransmission number are distin-
guishable. Then, for any network N, N is 1-edge fault
detectable if and only if [vz|=1.

(proof) Sufficiency ;| From Eq. (40) of Theorem 4

Veo={v4}, since | Vzo|=1.

Let



676

VS:{Vi|d(via V‘I)éd(vjy v‘?)a vi) vje VmO} (53)

Assume that | V| >1. Let v;, v,& Vs. Since N” is a fault
network of N, At(vp)>0 and d’(vp, vq)>d(vp, v4)
from the definition of a fault network in this paper and
Theorem 4. Then, since & Vs and Jt,(vp)=At,(v:),
d'(vi, vq) > d (v, v¢). Therefore, from Theorem 1, d (v,
vq) >d(vp, vo). This is contradictory to Eq. (53).
Hence, | V;|=1. That is, we obtain a fault edge e= (v,
vg). If N has more than one edge associated with a pair
of vertices v, and v, the edge with minimum length in
the edges is the fault edge.

Necessity . We show a network N including two ver-
tices with zero increment of outtransmission number,
that is, a network with |vs,|=2, which is not I-edge
fault detectable. Matrices D, D', T,, T,” and AT, of
networks N and N’ of Fig.2(a) and (b), in which
the weight given to each edge indicates the edge length
of the edge and the weight of every vertex is 1, are given
below.

0123

1032
D= (54)
3202

2320

0133
1042
D= (55)
202

2320

(98]

7
7
T, = (56)
7
7

ATo: :ra,_~ TDZ (57)

0
From Eq. (57), we get Vo and V.
Vmo:{vl, Vz}, Vzo:{V3, V4} (58)

The number of vertices with zero increment of outtran-
smission number is 2. N’ of Fig.2(b) is obtained
from N by increasing the length of e by 1. On the
other hand, if N’ is obtained from N by increasing the
legth of e, by 1, then AT, obtained from N and N’ is
clearly the same as Eq. (57). This means that the fault
of e and e, is not distinguishable by AT,. It is simple
to realize a network with | Vyo|=1 and | V| =2 that is
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not l-edge fault detectable. Therefore there are some
networks which have | V| >1 and are not l-edge fault
detectable. ]
We get similar theorems of a network in which
only intransmission number is measurable.
[Theorem 8] Let N be a network in which only
intransmission number is measurable. Then, N is
k-vertex fault detectable, if min{| V., | Val}=k. [
[Theorem 9] Let N be a network in which only the
vertices with the maximum increments and the mini-
mum increments of intransmission number are distin-
guishable. Then for any network N, N is l-edge fault
detectable, if and only if | V|=1. ]
Next, let us consider a network in which both
outtransmission number and intransmission number
are measurable.
[Theorem 10] A network N in which outtransmis-
sion number and intransmission number are all mea-
surable is l-edge fault detectable.
(proof) Let v; be an element of V... Let v; be an
element of V. Since d’(vp, vq) > d(vp, vq), Ato(vp)=4
to(v;) and At:(vq)=At(v;), increment of the distance
from v; to v; by the fault is not zero, that is d'(v;, v;) >
d(v;, v;). Let

Veai={veld (v, v;Y < d (v, v;), Vi, iE Vimo}  (59)

Then, Vg={vx}, since | Vs;/=1 from Theorem 1.
Similarly, let

Vsi={vk|d(vi, vk)éd(vi, Vj), Ve, VjE sz} (60)

Then we get Vs;={vq}. The fault edge is e=(vp, vy). If
N has more than one edge associated with a pair of
vertices vp and vg, the edge with minimum length in the
edges is the fault edge. ]
In Theorem 10, both V,, and V,; are used for
detecting a fault edge. However, we can detect a fault
edge without using all vertices of Vo 0T V.
[Corollary 1] A fault edge is detectable if either ¥V,
and a vertex v; with A4#(v;)>0 or ¥V, and a vertex v;
with At,(v;) >0 are given.
(Proof) Suppose that V., and a vertex v; with
Ai(v;) >0 are given. Let

Vs={vk|d(vk, Vj)éd(Vi, Vj), Ve, v, & Vmo} (61)
Since At,(v;) >0,
d’(vp, v;) > d(vp, v;) (62)

Therefore, Vs={v,} from Theorem 1.

Let Ep={ei, e, ***, en} such that e;=(vp, Vx1), &=
(b, Vr2), -+ and an edge e, E, is contained in a shor-
test path from v, to v;. Assume that m > 1. This means
that there are more than one shortest path from v, to
v;. Then, the distance d(vp, v;) does not change by
increasing the length of an edge e;E E,. This is contra-
dictory to Eq. (62). Hence, m=1 and E»,=/{ex}, that is,
e is the fault edge. ]

Then, we obtain a following algorithm detecting a
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Fig. 3 A Network M.

fault edge.

[An algorithm of detection of a fault edge] N, AT,

and AT; are given.

Step 0 : Set Viwo={v:i|4t:(v:) = Ats(v;), v, v;EV}

Step 1 : Select a vertex v; such that 4z(v;)>0.

Step 2 : Set Ve={w|ld(ve, v;) £ d (v, v;), Vi, v:E Vo)
Then, Vs={v,}.

Step 3 : Find a shortest path from v, to v;. Then, an
edge en=(vp, v4) on the shortest path is a fault
edge. ]

We show two examples for this algorithm.

[Examples|

(I) Consider the example in the proof of Theorem

7, in which the network was not 1-edge fault detectable

by the measurements of only outtransmission numbers

of all vertices.
In the network of Fig. 2(a), N and

1
1

AT,= (63)
0
0
0
0
2
0
are given.

Step 0: Vmo={m, n}
Step 1 : v;=v,, since At;(v;)=2>0
Step 2 & Vs={ve|d (v, ) < d(v;, ¥s), V&, E Vo)
={n}
SoVvp=W
Step 3 : Since the shortest path from w to v; consists of
e, vo=7v;. The fault edge is e;.
Note that in this example, we do not need Step 3
because we can see v;=1; in step 1 since Ve ={vs}=
{ledti(Vj>>o, v, E V}
(II) Consider a network of Fig. 3 in which the real
number given to each edge indicates the edge length.
Let w(v;)=1 for every vertex v;& V. D of this network
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is as follows.
(012 3 3]
10324
D=(32021 (65)
23203
1431 30]
N, AT, and AT; are given.
o

(67)

0
2
0
2]
Step 0 & Vmo={w, w}
Step 1: Let v; be s, since At:(vs)=2>0.
Step 2 1 Vs={vuld (v, v5) S d(v;, ¥5), Vi, < Vino}
={wn}

SoVp=W

Step 3 . The shortest path from v to v consists of e,

and e;. Since the initial vertex of e, is vp=
v, the fault edge is es=(vp, vq)= (1, ). []

6. Conclusion

A theory and an algorithm for fault diagnosis of a
network have been developed in relation to outtran-
smission and intransmission numbers, in the case of
regarding the increase of the length of an edge as a
fault. As similar discussions are also possible, in the
case of regarding the decrease of the length of an edge
as a fault, we can develop a theory and algorithm for
fault diagnosis in the case of regarding the increase or
decrease of the length of an edge as a fault.

At present we do not have any concrete idea of
applying our theory to practical problems, but we hope
that some practical applications will be motivated by
this paper.

Future problems to be solved include a fault
diagnosis in a directed network in which the outtran-
smission and intransmission numbers are not always
measurable in all vertices, and the number of fault
edges is more than one.
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