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Some Covering Problems in Location Theory on

Flow Networks
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SUMMARY Location theory on networks is concerned
with the problem of selecting the best location in a specified
network for facilities. Many studies for the theory have been
done. However, few studies treat location problems on networks
from the standpoint of measuring the closeness between two
vertices by the capacity (maximum flow value) between two
vertices. This paper concerns location problems, called covering
problems on flow networks. We define two types of covering
problems on flow networks. We show that covering problems on
undirected flow networks and a covering problem on directed
flow networks are solved in polynomial times.
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1. Introduction

Location theory” on networks is concerned with
the problem of selecting the best location in a specified
network for facilities. Many studies for the theory have
been done. Most of these studies treat location prob-
lems on networks from the standpoint of measuring the
closeness between two vertices by the distance between
two vertices. On the other hand, few studies treat
location problems on networks from the standpoint of
measuring the closeness between two vertices by the
capacity (maximum flow value) between two vertices.

This paper concerns location problems, called
covering problems on flow networks. In Ref (2), we
defined a covering problem on flow networks and
proposed an algorithm to solve the covering problem
on undirected flow networks. In this paper, we define
another covering problem on flow networks. We
propose algorithms to solve covering problems on
undirected flow networks and a covering problem on
directed flow networks. We show that these problem
can be solved in polynomial times. These problems are
applicable to assigning files to some computers in a
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computer network. For general terminology in gfaph
theory, we refer the reader to Refs. (3) and (4).

2. Definitions

Let us consider an undirected flow network N=
(V, E, wy) such that ¥, E and wy are the vertex set,
the edge set and the function assigning a positive real
number wy (e), called edge-capacity, to each edge e
E, respectively. The maximum flow value between two
vertices # and v in N is called the capacity between u
and v, denoted by gy(u,v). Especially, we define
gy (v, v) =00,

Next, we define the capacity gy (X, Y) between
two vertex sets X and Y, as follows. If XN Y =4, we
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Fig. 1 An undirected flow network N.
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Fig.2 An undirected flow network N’
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construct an undirected flow network N’ from N. The
vertex set of N” is V' U{xo, 3o}. The edge set of N' is E
U{(x0, ) lue X} U{(v, o) |[vE Y}. For uc X, wy: (%,
u)=o0 and for vE Y, wx (v, Jo) = 0.

Let

gn (X,Y) :!]N'(xo, ,Vo)-

If XNY=+=¢, we define gy (X, Y) =00, gy(X,Y) is
called the capacity between X and Y of N. Especially,
if Y={v}, the capacity between X and Y is also
denoted by gy (X, v). Obviously, if X={u} and Y=
(v}, g (X, Y) =gn (u, v). -

In the undirected flow network N in Fig. 1, let X
={w, »} and Y={w}. The undirected flow network
N’ is shown in Fig. 2. Since gy (X0, 3o) =4, gv (X, Y)
=4,

For the vertex sets W, and W, of N, where Wi
Wo=¢, let

KW, Wor={(u, v) EEluE W), vE Wa}.
{W,, Wa) is called the cut of W) and W, Let
c(W, Wo)= 2

(u,0)ECW, Wa>

wy (u, v).

c (Wi, W,) is called the cut capacity of the cut
<Wh, Way., If Wo=V—W,, uc W, and v& W,, then
W1, Wy is also called the cut separating # and v. If
Wo=V—W, XCW, and YCW,, then <{W,, W> is
also called the cut separating X and Y. If (W, Wa) is
a cut separating v and v and ¢ (W), W,) is the mini-
mum cut capacity of all cuts separating u# and v, then
{ W1, Wa) is called the minimum cut separating » and
v. The minimum cut separating two vertex sets X and
Y is defined similarly.

The following theorems® are the fundamental
theorems concerning maximum flow.

Theorem 1: Let N be an undirected flow network
and let x, y and z be vertices. Then the following
expressions hold.

(i) gv(x, y)=gn(p, x),
(ii)  gn(x, y) Zmin{gn(x, 2), gn (z, ) }. O

The following theorem is called the max-flow
min-cut theorem.
Theorem 2: In any undirected flow network, the
capacity between two vertices x and y is equal to the
minimum cut capacity of all cuts separating x and y.

]

Obviously, the similar result holds in the case of
the capacity between two vertex sets.
Theorem 3: In any undirected flow network, the
capacity between two vertex sets X and Y where X' N
Y =¢ is equal to the minimum cut capacity of all cuts
separating X and Y. ]

In a communication network, a vertex represents a
terminal computer and an edge represents a link
between computers. We assign a file to computers of
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the network. The file is copied and assigned to some
computers. How do we assign these files ? We assume
that the delay time to transport the data of a file can be
ignored in this network. In this case, for each terminal
computer pair, the number of links between the two
computers is the measure representing the closeness
between the two computers. Location theory on flow
networks is applicable to the above case.

There exist various conditions to assign the files.
Therefore various assignment problems are considered.
Here, we consider the following two cases in this
paper.

(a) For each computer, the file which can be used
by the computer is only one.

(b) For each computer, the computer can use any
file.

The assignment problem in the case (a) is the

following.
Definition 1: Let N be an undirected flow network
and r be a positive real number. A subset U of V is
called a single cover with 7 if for any v& V', there exists
ue U such that gy (u, v)=r. If U is a single cover
with 7 and | U| is the minimum cardinal number of all
single covers with #, then U is called an r-single cover.
We simply call the problem of finding an r-single cover
the r-single cover problem. ]

The single cover problem was defined in Ref. (2).

The assignment problem in the case (b) is the follow-
ing.
Definition 2: Let N be an undirected flow network
and 7 be a positive real number. A subset U of V is
called a plural cover with 7 if gy (U, v) 2 r for any v&
V. If U is a plural cover with » and |U| is the
minimum cardinal number of all plural covers with #,
then U is called an r-plural cover. We simply call the
problem of finding an r-plural cover the r-plural cover
problem. ]

3. Covering Problems on Undirected Flow Net-
works

3.1 Single Cover Problem

Definition 3: Let N be an undirected flow network.
If W is a nonempty subset of ¥ where W=7V or gy (v,
w) <rfor any v& V — W, w&E W, then W is called an
r-insufficient set with single cover. If W is an #-
insufficient set with single cover and there does not
exist a proper subset W’ of W such that W’ is an
r-insufficient set with single cover, then W is called a
minimal r-insufficient set with single cover. [l
In Fig. 3, Let r=5. W={w, s, w} is an r-
insufficient set with single cover. However, W is not
minimal. {1} and {v, ¥} are minimal r-insufficient sets
with single cover included in W.
Lemma 1: Let N be an undirected flow network and
wE V. Let
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Fig.3 An undirected flow network N illustrating an »-
insufficient set with single cover.

Vo={u& V|gy(u, v) 2 r},

Then, ¥, is a minimal r-insufficient set with single
cover.

Proof: First, we show that V; is an r-insuflicient set
with single cover. If Vy=V, then ¥V} is an r-insufficient
set with single cover from the definition. If Vo=V,
then gy (v, v")<r for any vEV -V, v'EV, The
reason is the following. We assume that gy (v, v*') = r.
Since gv(V', w)=r, gv(V, w)=r from Theorem 1.
This contradicts the fact that v& V' — V. Therefore Vj
is an r-insufficient set with single cover.

Next, we show that ¥, is minimal. Since gn (v,
w) =7 and gy (V, W) =7 for any vertex v, vVE V,, gn (,
V) =r from Theorem 1. Let ¥’ be a proper subset of
Vo, and let '€V’ and u& Vo— V'. Since gy (u, u') =
r, V' is not an r-insufficient set with single cover.
Therefore, V, is a minimal #-insufficient set with single
cover. Ol

From Lemma 1, we obtain a necessary and
sufficient condition for U to be a single cover with 7.
Lemma 2: Let N be an undirected flow network and
U be a subset of V. A necessary and sufficient condi-
tion for U to be a single cover with # is the following.

For any r-insufficient set with single cover W,

there holds W N U=+ ¢.
Proof: Let U be a single cover with » and W be an
r-insufficient set with single cover. We assume that W
NU=¢. Let weW. For any uc U, ucV-w.
Since W is an r-insufficient set with single cover, gy (1,
w) <r. Therefore U is not a single cover with ». This
is a contradiction. Thus W N U=+ ¢.

Conversely, we assume that for any r-insufficient
set with single cover W, there holds WN U=+¢. Let
wE V and Vo={u< V|gy (u, w) =r}. From Lemma 1,
Vs is an r-insufficient set with single cover. From the
above assumption, VoN U=+=¢. Let ucVoNU. gn(u,
W) =r from the definition of V;. Therefore, U is a
single cover with r. OJ

From Lemma 2, we obtain the following corol-
lary, immediately.

Corollary 2: Let N be an undirected flow network
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and U be a subset of V. A necessary and sufficient
condition for U to be a single cover with 7 is the
following.

For any minimal r-insufficient set with single
cover W, there holds W N U==¢. ]
Lemma 3: Let N be an undirected flow network and
W be a minimal r-insufficient set with single cover.

Then gy (u, v) =r for any u, vE W.

Proof: We assume that there exist vertices # and w
such that up, wEW and gy (w0, w) <r. Let Vo={uEV
lgn (u, ) =r}. Since wE W and W is an r-insufficient
set with single cover, ¥, is a subset of W. Since &
W — Va, Vo is a proper subset of W. From Lemma 1,
Vo is an r-insufficient set with single cover, contradict-
ing the fact that W is minimal. Therefore gy (u, v) =
r for any u, v& W. ]
Lemma 4: Let N be an undirected flow network. If
W, and W, are minimal r-insufficient sets with single
cover where W=+ W, then W1 N We=¢.

Proof: We assume that v& W, W, Since W, is
minimal, there exists a vertex u such that u& W, — W,.
Since u, v& W, and W, is minimal, gy (u, v) =r from
Lemma 3. However, gy(u, v) <r since ucSV — W,
and v& W,. This is a contradiction. Therefore W, N
W,=¢. O

From Lemma 2, 4 and Corollary 2, we obtain the
following theorem.

Theorem 4. Let N be an undirected flow network
and U be a single cover with ». If there does not exist
a proper subset U’ of U such that U’ is a single cover
with #, then U is an r-single cover.

Proof: Let Wi, -+, and W; be all the minimal r-
insufficient sets with single cover. Let U™ be an
r-single cover. From Corollary 2 and Lemma 4, | U*|
=1¢. Since there does not exist a proper subset U’ of U
such that U’ is a single cover with #, |W;N U|=1 for
any i. Therefore |U|=¢. U is an r-single cover from
the definition. |

From Theorem 4, an r-single cover on an undirect-
ed flow network N can be obtained by the following
simple algorithm.

procedure SINGLE_COVER (7)
begin
U:=V; (% V=_{w, -, v} %)
for i=1 to n do
begin
if U—{v} is a single cover with r
then U :=U—{v;}
end
end. (% U is an r-single cover of N %)

We obtain the capacities between every vertex
pairs in O(|V[s(| V], |E|)) time®, where s(| V|, |E|) is
the time required to solve a maximum flow problem in
N (the best time bound for s(|¥], |E|) known to date
is O(V||E|log (|V?/|E]))™). Since judging whether
U —{v;} is a single cover with 7 or not can be obtained
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in O(]V|*) time, the time complexity of SINGLE
_COVER(r) is O({V|s(|V|,|E])). This algorithm is
very simple and applicable to the covering problem on
directed flow networks(see the next section). In Ref.
(2), the other algorithm to obtain an r-single cover
on an undirected flow network was proposed. For any
undirected flow network N, there exists a tree flow
network T such that gy (u, v) =gr (u, v) for any vertex
pair. The algorithm uses this property. The time
complexity of the algorithm is also O(|V|[s(|V], |E])).

3.2 Plural Cover Problem

Definition 41 Let N be an undirected flow network.
If W is a nonempty subset of ¥ where W =¥ or ¢(W,
V — W) <r, then W is called an r-insufficient set with
plural cover. If W is an r-insufficient set with plural
cover and there does not exist a proper subset W’ of W
such that W is an r-insufficient set with plural cover,
then W is called a minimal r-insufficient set with
plural cover. ]

In Fig. 4, Let r=5. W={w, w, %} is an r-
insufficient set with plural cover. However, W is not
minimal. {»} is a minimal 7-insufficient set with plural
cover included in W. There does not exist a minimal
r-insufficient set with plural cover including {}. For
any vertex v, there does not always exist a minimal
r-insufficient set with plural cover including {v}.

We obtain similar results in the case of the single
cover problem.
Lemma 5: Let N be an undirected flow network and
U be a subset of V. A necessary and sufficient condi-
tion for U to be a plural cover with 7 is the following.

For any r-insufficient set with plural cover W,
there holds W U=+ ¢.
Proof: Let U be a plural cover with » and W be an
r-insufficient set with plural cover. We assume that W
NU=¢. Since c(W,V—W)<rand WNU=4¢, gn
(U, W)<r. Then gy(U, v)<r where v W. U is
not a plural cover with ». This is a contradiction.
Therefore W N U =+ ¢.

Conversely, we assume that for any r-insufficient
set with plural cover W, there holds W N U=+¢. We
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Fig. 4 An undirected flow network N illustrating an »-
insufficient set with plural cover.
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call the assumption Assumption (4). We assume that
U is not a plural cover with ». There exists a vertex v
such that gy (U, v) <r. From Theorem 3, the capacity
gy (U, v) is equal to the minimum cut capacity ¢ ( #4,
W,) of all cuts separating U and v. Namely, g (U, v)
=c(Wy, W5). W, is an r-insufficient set with plural
cover. Since UC W, UN We=¢. This contradicts
Assumption (A). Therefore, U is a plural cover with
r. L]

From Lemma 5, we obtain the following corol-

lary, immediately.
Corollary 5: Let N be an undirected flow network
and U be a subset of V. A necessary and sufficient
condition for U to be a plural cover with » is the
following.

For any minimal r-insufficient set with plural
cover W, there holds W N U==¢. ]
Lemma 6: Let N be an undirected flow network. If
W, and W, are minimal r-insufficient sets with plural
cover where Wi= W, then WiN Wo=¢.

Proof: We assume that Wi\ Wo=+¢. Since W) and
W, are minimal r-insufficient sets with plural cover,
Wi— Wa=%¢ and Wo— Wi+¢. Let

ar=c(Wr— W, Wa—W1),
w=c(Wh— W, WiN W),
c(We— Wi, WiN W),
(W= Wo, V— Wy~ Wa),
c(WAN W, V—W1— W),
(Woe= W1, V—W1— Wa).

On the network in Fig. 5, the vertex set is { Wi — W, W,
— Wi, Wi Wa, V— Wi— W,} and each edge weight
represents the cut capacity. For example, the edge
weight of (Wi— Wa, Wo— Wh) is ¢ (Wi— Wa, Wo— W1).
Since W, and W, are r-insufficient sets with plural
cover,

atatata<r, (1)
a1+a2+a5+a6<r. (2)

We can see from the definitions of W; and W, that
neither W, — W, nor W,— W, are r-insufficient sets with

l
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Fig. 5 Explanation for the proof of Lemma 6.
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plural cover. Therefore,

atata=r, (3)

at+aztag=r. ‘ (4)
(1)+(2)

2a+t @+ s+ as+2a5+ ag<2r. (5)
(3)+(4)

2a1+as+ as+ as+ ag =2, (6)
From Eqgs. (5) and (6), 2a5<0. This contradicts the
fact that @s=0. Therefore WiN W= ¢. O

From Lemma 5, 6 and Corollary 5, we obtain the
following theorem. Since the proof of Theorem 5 is
similar to the proof of Theorem 4, we omit the proof.
Theorem 5: Let N be an undirected flow network
and U be a plural cover with . If there does not exist
a proper subset U’ of U such that U’ is a plural cover
with 7, then U is an r-plural cover. O

From Theorem 5, an r-plural cover on an undir-
ected flow network N can be obtained by the following
simple algorithm.

procedure PLURAL_COVER (#)
begin
U:=V;(x V={w, -, v} %)
for i=1to n do
hegin
if U—{v;} is a plural cover with r
then U :=U—{v;}
end
end. (% U is an r-plural cover of N %)

Judging whether U —{v;} is a plural cover with »
or not can be obtained in O(|V|s(|V|,|E|)) time.
Therefore, the time complexity of PLURAL_COVER
(r) is OV’ (V] |ED).

4. Covering Problems on Directed Flow Networks

We have defined covering problems on undirected
flow networks in Sect. 3. We define covering problems
on directed flow networks similarly and we consider
these covering problems. 1In this section, gy(u, v)
denotes the capacity from u to v in a directed flow
network N.

4.1 Single Cover Problem

Definition 5: Let N be a directed flow network and r
be a positive real number. A subset U of V is called
a single cover with r if for any v& ¥V, there exists ue&
U such that gy(u, v)=r and gy (v, u)=r. If U is a
single cover with » and | U] is the minimum cardinal
number of all single covers with 7, then U is called an
r-single cover. We simply call the problem of finding
an r-single cover the r-single cover problem. O

_COVER(r).
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Vg

Fig.6 A directed flow network N illustrating an 7-insufficient
set with single cover.

Definition 6: Let N be a directed flow network. A
nonempty subset W of ¥V is satisfied the following
condition.

W=V,
or for any v&EV W, we W,
g (v, w) <rorgy(w,v)<r.

Then, W is called an r-insufficient set with single
cover. If W is an r-insufficient set with single cover
and there does not exist a proper subset W’ of W such
that W’ is an r-insufficient set with single cover, then
W is called a minimal r-insufficient set with single
cover. ]

In Fig. 6, let r=3. W={w,w, w} is an -
insufficient set with single cover. However, W is not
minimal. {w, w} and {v,} are minimal r-insufficient sets
with single cover included in W.

We obtain the following results in the single cover
problem on directed flow networks. These proofs are
similar to the proofs of Lemma 2, 4 and Theorem 4.
Therefore we omit the proofs.

Lemma 7: Let N be a directed flow network and U
be a subset of V. A necessary and sufficient condition
for U to be a single cover with r is the following.

For any r-insufficient set with single cover W,
there holds W N U = ¢. |
Lemma 8: Let N be a directed flow network. If W,
and W, are minimal r-insufficient sets with single cover
where Wi+ Wa, then Wi Wo=¢. 1
Theorem 6: Let N be a directed flow network and U
be a single cover with ». If there does not exist a
proper subset U’ of U such that U’ is a single cover
with , then U is an r-single cover. : L]

From Theorem 6, an r-single cover on a directed
flow network can be obtained by using SINGLE
Since we obtain the capacities between
every ordered vertex pair in O(|V|’s(| V|, |E|)) time,
the time complexity of SINGLE_COVER(r) is O
(\VIPPs(V],|E])) in the case of directed flow net-
works.
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Vg

Fig.7 A directed flow network N.

4.2 Plural Cover Problem

First, we define the capacity gy (X, Y) from a
vertex set X to a vertex set Y, as follows. f XN Y=
@, we construct a directed flow network N’ from N.
The vertex set of N” is ¥ U{xo, }. The (directed)
edge set of N is EU{(xo, u)|lucX}IU{(¥, ) |vE Y}.
For u& X, wy (X, u) =00 and for y& Y, wy (v, o) =
00,

Let
gn (X, Y) =gnr (XO, yo) .

If XNY=+¢, we define gy (X, ¥)=00. gy(X,Y) is
called the capacity from X to Y of N. Especially, if
Y ={v}, the capacity from X to Y is also denoted by
gv (X, v). Obviously, if X={u} and Y={v}, gv(X,
Y)=gn(u,v).

Definition 7. Let N be a directed flow network and
r be a positive real number. A subset U of ¥ is called
a plural cover with # if gy (U, v) =7 and gy (v, U) =r
for any v& V. If U is a plural cover with » and | U] is
the minimum cardinal number of all plural covers with
7, then U is called an r-plural cover. We simply call
the problem of finding an r-plural cover the r-plural
cover problem. ]

We show that an r-plural cover on a directed flow
network is not always obtained by using PLURAL
_COVER(r).

In Fig. 7, let r=2. U={w, v, v} is a plural cover
with 7. There dose not exist a subset U’ of U such that
U’ is a plural cover with ». However, U is not an
r-plural cover. {w, w} is a unique r-plural cover.
Therefore, in directed flow networks, Theorem 5 does
not hold, namely, an r-plural cover on a directed flow
network is not always obtained by using PLURAL
_COVER (r). Actually, the output of PLURAL
_COVER(r) in U={w, v, w} in N in Fig. 7.

5. Conclusion

We have given the definitions of covering prob-
lems called the single cover problem and the plural
cover problem on flow networks. These problems are
applicable to assigning files to some computers in a
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computer network. We have shown that these covering
problems on undirected flow networks and a single
cover problem on directed flow networks are solved in
polynomial times. In this paper, we treat only a single
cover problem on directed flow networks. There are
some other covering problems on directed flow net-
works to be solved in future.
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