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SUMMARY Fast wavelet transform is presented for real-
time processing of wavelet transforms. A processor for the fast
wavelet transform is of the frequency sampling structure in
architectural level. The fast wavelet transform owes its parallel-
ism both to the frequency sampling structure and parallel tap-
ping of a series of delay elements. Computational burden of the
fast transform is hence independent of specific scale values in
wavelets and the parallel processing of the fast transform is
readily implemented for real-time applications. This point is
quite different from the computation of wavelet transforms by
convolution. We applied the fast wavelet transform to detecting
detonation in a vehicle engine for precise real-time control of
ignition advancement. The prototype wavelet for this experiment
was the Gaussian wavelet (i.e. Gabor function) which is known
to have the least spread both in time and in frequency. The
number of complex multiplications needed to compute the fast
wavelet transform over 51 scales is 714 in this experiment, which
is less than one tenth of that required for the convolution
method. Experimental results have shown that detonation is
successfully detected from the acoustic vibration signal picked up
by a single knock sensor embedded in the outer wall of a V/8
engine and is discriminated from other environmental mechani-
cal vibrations.

key words: digital signal processing, wavelets, signals and
waves, acoustics

1. Introduction

Ignition advancement control in vehicle engines is
indispensable to high power-weight ratio and clean
emission. Control failure causes detonation in the
chamber of an engine. Detonation is an abnormal
phenomenon : after ignition by a spark plug, before-
burning air-fuel explodes by itself around the inner
wall of an engine vessel and the self-explosions happen
suddenly with irregular time intervals. Detonation
creates strong pressure waves and can destroy an engine
body, if it successively happens to a heavy degree.
Detecting detonation is thus of critical importance for
ignition advancement control.

Detonation is usually observed as acoustic vibra-
tion of the engine body in commercial vehicles. This
vibration unfortunately contains many other mechani-
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cal noises produced by the rapid motion of piston
heads, gear system, and valve system. Detonation
needs to be discriminated from other noise components
and has to be detected through analysis in the fre-
quency domain as well as in the time domain. Of
course each individual burning process of air-fuel
exhibits quite different modes from the others, every
time depending on cylinders, rotation speed, accelera-
tion, air-fuel ratio, road environment, temperature,
humidity, and so on. Detonation signals are highly
nonstationary, hence statistical analysis does not
always give correct results for the best control of each
particular ignition. Detonation signal analysis essen-
tially requires real-time analysis of time-frequency
instantaneous distribution under a low signal-to-noise
environment.

On the other hand, wavelet transform®~"® is a
new tool for time-frequency analysis, exactly speaking
for time-scale analysis. The wavelet transform of a
signal is an expansion of the signal into a special
family of functions called as wavelets. One can extract
some information about a signal with respect to time
and frequency, since wavelets exist locally both in the
time domain and the frequency domain. A wavelet
spans on a segment along with the time axis and also
does the same along with the frequency axis. This is
completely different from the periodic basis functions
such as exponential and Walsh functions. A family of
wavelets is generated from a single prototype wavelet
by dilation of time and by translation along the time
axis.

Owing to their good localization and dilation/
translation, wavelets are capable of detecting disconti-
nuities in a signal waveform and its derivatives, hence
are suitable to explore abrupt changes in transient
signals=M®=0D " Algo, wavelets provide robust
multi-resolution representation @~V (MRR) ; the
wavelet transform offers sharp time-resolution for rap-
idly changing signal components and fine frequency
resolution for slowly varying components. It is
difficult to find these desirable properties of singularity
detection, MRR, and numerical stability®®® in
other existing methods including short-time Fourier
transforms and several distributions?*"® affiliated to
the Cohen’s class. The above statements are the major
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, reasons why we use wavelets to analyze detonation®?.
Regarding detecting detonation we have another
reason. Statistical analysis is quite different from the
analysis by transforms and was actually experimented.
Sometimes it was successful but sometimes it failed in
detecting the nonstationary detonation at every explo-
sion. In addition, the statistical method was used to be
too time-consuming to control every the next explo-
sion.

By definition, the wavelet transform with respect
to non-orthogonal wavelets can be computed by
convolving a signal with every wavelet. However the
larger the dilation scale goes, the more multiplications
and additions are needed. It is thus difficult to apply
the convolution scheme for wavelet transforms to those
problems which impose fast and compact processing
such as detonation detection.

For real-time processing, this paper presents a
scheme for fast wavelet transforms"®. Tt can be
identified with a wavelet transform processor. The
processor is capable of computing non-orthogonal
wavelet transforms with a constant number of multipli-
cations independent of specific scales. If the fast
wavelet transform is implemented in a parallel process-
ing system, the computation time per sample can be
reduced to that spent for two complex multiplications.
The processing speed is thus much faster than that. of
the conventional implementation of convolution.

After wavelet transforms are overviewed in the
next section, we describe the fast wavelet transform in
Sect. 3. An application of the fast wavelet transform is
given in Sect. 4 where a fast wavelet transform proces-
sor is designed for the Gaussian wavelet®® as a basic
wavelet and a successful experiment for detonation
detection is shown.

2. Wavelet Transforms

The wavelet transform” of a signal is computed
by expanding the signal onto a basis of wavelets. The
expansion coefficients describe the distribution of the
signal on the time-scale plane: roughly speaking, on
the time-frequency plane. A given basic wavelet g ()
is scaled by « in the time domain and is translated by
b to generate a basis family

000 (1) =—A—g(122"). (1)

The basic wavelet ¢g(¢) is selected as a function such
that g(¢) spans its amplitude around the origin and
vanishes apart from the origin. This must be true in
both domains of time and frequency. In fact, a wavelet
decays at least faster than the reciprocal of
time® (10 Hence all the wavelets g,,, (¢) are also
localized functions both in the time domain and in the
frequency domain. Typical modes of wavelets in the
time domain and in the frequency domain are illus-
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Fig. | Dilation of wavelets, (a) in time, (b) in frequency.
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Fig. 2 Resolution in time and frequency, (a) of wavelet trans-
forms, (b) of Fourier transforms.

trated in Fig. 1. The discrete-time wavelet transform of
a signal s(¢) is defined by

$(a, )= 31 Fus(nT)s(nT) (2)

where T is a sampling period and the top bar denotes
complex conjugate. S (a, b) represents an expansion
coefficient of the signal with respect to the wavelet
9a,5(nT). Strictly speaking, we are considering the
discrete-time version of discrete wavelet transform (i.e.
the wavelet frame expansion®®) that may be orth-
onormal and non-orthogonal.

Wavelet transforms are well compared with Fou-
rier transforms in resolution space with respect to time
and frequency® ™. The time resolution and frequency
resolution of the short-time Fourier transform are
uniformly fixed by the uncertainty relationship
between time and frequency, as shown in part (b) of
Fig. 2. By contrast, the wavelet transform has fine
frequency resolution for low frequency components,
because these components are analyzed over long
periods. Higher frequency components are observed
during shorter periods, and hence the frequency resolu-
tion is degraded but the time resolution is improved, as
illustrated in part (a) of Fig. 2.

Most random signals and transient signals contain
rapid changes (higher frequency components) and the
duration periods of important changes are short but
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background noises might be extended over longer
periods with strong intensity. One of the objectives in
analyzing those signals is to extract when some charac-
teristic changes happen and how long period they
remain before vanishing. The short-time Fourier trans-
form with a particular window can analyze an appro-
priate frequency component during a particular period.
However, if a signal varies discontinuously, this trans-
form produces a too-much regularly-smoothed” spec-
trum and the occurrence of the discontinuous change
will be smeared. The Wigner-Ville distribution analy-
sis suffers from ghosts due to the cross term effect»%
in both time and frequency. Furthermore, if signal-to-
noise ratio is low, there is no hope for these two types
of analysis to detect abrupt changing components.

By contrast, wavelets respond quickly to abrupt
changes and this is due to the essential property of
singularity detection. This point is a distinct difference
from the others. There exists another advantage in
wavelets : robust reconstruction from the transform.
Even for non-orthogonal wavelets, reconstruction is
still possible, if the discrete grid in the a-b plane has
a fine mesh, that is, if the frame is snug®. Wavelet
transforms are thus qualified for analyzing random or
transient signals, and the information gained through
wavelet analysis is no other than what we hope to
catch.

3. Fast Wavelet Transforms"2-0®

The wavelet defined by Eq.(1) has a finite dura-
tion period on the time axis. Hence the expansion
coefficients into translated wavelets with a particular
scale correspond to a sequence of the output of a
finite-duration impulse response (FIR) filter. There is
a well known frequency sampling structure®® to imple-
ment FIR filters, as shown in Fig. 3. It consists of a
cascade of a comb filter to form equi-spaced zeros and
several resonators to produce poles on the unit circle.
It is of benefit to identify the comb filter with a switch
to drive the following resonators initially with in-
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Fig. 3 Frequency sampling structure.
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phase and then with anti-phase after some time lag,
hence producing finite-duration oscillations”. The
impulse response of the frequency sampling filter in
Fig. 3 is of the form

M pd
h(nT) =A21Hiej"Tsz" for 0 n<N

=0 elsewhere (3)

where M and N stand for the numbers of resonators
and the serial delay elements, respectively. A is a
constant factor to adjust to normalization for the
present, but it can be removed by combining it with the
following multiplies H; in actual implementations.
M, N and resonant frequencies specified by k; are
designed to give an impulse response such as

h(nT)=g(—nT) (4)

where for simplicity A (nT) is considered to be zero-
phase. Then the output sequence of the frequency
sampling system

y(nT)= 2 g(mT—nT)s(mT) (5)
is equal to the expansion coefficients S (1, nT) with
respect to the wavelets with the dilation scale of a=1
and the translation shift of b=nT. In this paper, a
frequency sampling filter of which impulse response is
described by Eq.(4) will be referred to as a basic
filter.

Filters corresponding to all the other wavelets
with different scales are derived from the basic filter by
varying the number of the serial delays, N, and the
normalization factor A. To design such a filter for the
wavelet with the scale of

a= (6)

it is enough to replace N with N; and to change 4 with

Ai:

(7)
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Fig. 4 A processor for the fast wavelet transform.
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where N; is an integer. As N is replaced with N; and
k; is left to be unchanged, so resonant frequencies are
shifted by a factor of the scale a;.

Since the scale change is performed by changing
the length of the serial delays in a comb filter, an
appropriate tapping of the delay line can do the same
effect as the scale change. Hence we get a wavelet
transform processor as shown in Fig. 4. Every resonant
block consists of the same number of parallel
resonators and is labeled in R; where i=1,2, 3, -+, L.
A cascade of the comb filter prepared by the proper
tapping and the resonant block R; generates the wave-
let with the scale of a; as its impulse response.

This processor is capable of concurrently comput-
ing the wavelet transform at every scale. The processor
involves the same number of arithmetic operations for
every scale : the computational complexity of the fast
wavelet transform presented here is independent of
particular scales in wavelets. In fact, the number of
complex multiplications needed to compute the fast
transform is given by 2ML per sample: twice the
number of resonators for a single wavelet times the
number of scales.

In the convolution method for computing wavelet
transforms, the required arithmetic operations increase
in the number as the scale takes a larger value. Hence
the fast wavelet transform offers much faster computa-
tion than the convolution method. It may be of
significance to compare the complexity between the
fast transform and subband coding scheme, though the
subband coding is only applicable to the octave scale
(i.e. 2"), while the fast transform is capable of comput-
ing any number of scales per octave. If we make the
comparison under the restriction of the octave scale,
say the number of scales be L, and if the sum of the
durations of two band-split filters is equal to 2M, then
the complexity would be the same for the subband
coding and the fast transform.

Furthermore it is possible to implement a hard-
ware system for the fast wavelet transform through
easier VLSI layout because of the simplicity and regu-
larity of the fast wavelet transform. Parallel processing
of the fast wavelet transform can be readily performed
in a multi-processor system or in a dedicated hardware.
Because of the rich parallelism shown in Figs. 3 and 4,
the fast wavelet transform per sample can be computed
within the time spent on two multiplications.

4. Detonation Detection

The fast wavelet transform described in the previ-
ous section is designed for providing a time-scale
analysis tool, and then it is applied to detecting deto-
nation in vehicle engines.
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4.1 Design of the Fast Wavelet Transform
The Gaussian Wavelet® (Gabor function)
g (1) =e 12 (e — = 9") (8)

is employed as a basic wavelet, and the constant £ is
given by 27z that is greater than 742/In2®. The
subtraction term in Eq.(8) ensures the admissibility
and is negligible in practice. The reasons for this
choice are threefold : because /1/ the Gaussian func-
tion has the least spread in both domains of time and
frequency, /2/ it is not yet thoroughly investigated

, what extent is the best for analyzing detonation in both

time and frequency, and /3/ the non-orthogonal wave-
lets, redundant frames, can offer numerically-stable
reconstruction®®, if the scale factor and the shift
constant are close to one and zero, respectively.
Especially the Gaussian wavelet is used to be preferred
in singularity detection®~®»®-®  For comparison,
several results obtained by the other types of wavelets
including orthogonal wavelets are added in Appendix.

Detonation is perceived by the human hearing
sense, and the audible frequencies should be analyzed
under 50 kHz sampling. Hence our analysis is targeted
at the 5-octave band from 0.0125 Hz up to 0.4 Hz in the
normalized frequency. As seen by simple calculation,
the 128-point rectangular time-window suffices to
approximate the Gaussian wavelet into the unity-scale
basic wavelet of which center frequency is at 0.05 Hz.
The windowed wavelet is shown in Fig. 5 where heavy
and light curves display the real and imaginary parts,
respectively. Then it is approximated in the frequency
domain with a frequency sampling structure consisting
of a series of delays and seven resonators. Resonant
frequencies are specified by the coefficients &; by select-
ing 7 frequencies at which frequencies Fourier
coefficients have larger wvalues. The weighting
coefficients H; are assigned to be equal to the 7 Fourier
coefficients.

We have prepared 51 wavelets with each scale of

a;=("/2)’ (9)
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Sample no.

Fig.5 The basic wavelet.
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where i runs through —30 to 20. Integer N;, which
gives the number of delays required for the dilation to
the ith wavelet, is approximated by

Ni=Q[a:N] (10)

where Q denotes truncation. Parts (a) and (b) in Fig.
6 display the frequency responses of the minimumscale
wavelet and the maximum-scale wavelet in this appli-
cation, respectively, each being compared with the
frequency response of the basic wavelet. Figure 6 well
illustrates that the frequency resolution of the wavelet
transform is fine in low frequencies and is coarse in
high frequencies.

The 51-scale wavelet transform is carried out with
2X7X51=714 multiplications and additions per sam-
ple (see the previous section). In contrast, the direct
convolution by the definition of wavelet transforms
requires the computational complexity in proportion
to the dilation scale. The basic wavelet spans its
duration over 128 samples, and thus the convolution
with the dilated wavelet of scale a; needs 128 a; multi-
plications. The summation of these terms over { from
—30 to 20 gives the total number of multiplications
required for this application and it amounts to 7,398.
The computational burden of this fast wavelet trans-
form is less than one tenth of that for the convolution
scheme.
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400 ~
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200

oW
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Normalized Freq. e aq=1
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(b)
Fig. 6 Frequency responses of the wavelets, (a) with the scale
of @=0.125, (b) with the scale of a=4, each being
compared with that of the basic wavelet.
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4.2 Experiment

The acoustic vibration observed on an engine
body is picked up by a single pressure-voltage sensor
embedded in the outer shell of a V/8 vehicle engine.
An A/D converter samples the vibration signal at the
rate of 50 kHz. Detonation is caused by misadjusting
the ignition advancement of the first cylinder, which is
most far from the sensor, under 1,200 rpm.

The detonation-free vibration signal after A/D
conversion is shown in Fig. 7(a), where the duration
of 50 samples corresponds to 1 ms. The amplitude and
phase of the fast wavelet transform are shown in (b)
and (c) of the figure, respectively. Figure 8 shows the

100

- 10044+ HEF 1

Amplitude

[TV T TR S

~300
0 100 200

Sample no.

(a)

0 100 200

0 100 200

b
(c)

Fig.7 Wavelet analysis of the detonation-free signal. (a)
Original signal, (b) amplitude of the fast wavelet trans-
form, (c) phase of the fast wavelet transform.
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corresponding signal and transforms in the case of
detonation. Amplitude in the transformed domain is
represented in gray through dark to bright. The largest
amplitude is displayed in white and the smallest is in
black. The phase of the wavelet expansion coefficients
is represented in the gradations of gray and the change
from black to white corresponds to the phase shift of
27r. Figures 7 and 8 display the interval from 1.4 ms to
5.4 ms after ignition.

Comparing the amplitudes in Figs. 7(b) and 8(b),
it is found that the components with the scales smaller
than 2 grows high during the period from 5=120 to b
=160. These components are independent of the
presence of detonation. Taking into account of the

100:

oo g e

Amplitude

o 100 200
Sample no.

(a)

0 100 200

0 100 200

(c)

Fig.8 Wavelet analysis of the abnormal signal under detona-
tion. (a) Original signal, (b) amplitude of the fast
wavelet transform, (c¢) phase of the fast wavelet trans-
form.
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additional information about engine motion, it is
found that these are due to the mechanical vibration
produced by slapping of piston against cylinder wall.
Special behavior is found during the period through b
=50 to 5=100. As shown in Fig. 8(b), the wavelet
expansion coefficients with scales of 1 through 2 grow
high only under detonation. Also it is found in the
same period that the wavelet expansions grow over the
scales of 27% to 271

Concerning the phase of the wavelet expansion
over b=50 to b=100, the detonation signal exhibits
the coherent phase shifts of 27 over a wide range of
scales around 1 in Fig. 8(c), whereas no remarkable
phase shift other than disordered behavior is found in
Fig. 7(c).

It is concluded that the detonation under 1,200
rpm of the experimented engine is successfully detected
by the wavelet analysis with the dilation scales of 1 to
2 and of 27° to 27" during the period of 2.4 ms to 3.5 ms
after each ignition.

5. Conclusions

An advantageous scheme for fast wavelet trans-
forms is presented. It is also of benefit to identify the
scheme with an architectural processor for computing
discrete-time wavelet transforms. The fast wavelet
transform has been applied to the detection of detona-
tion in vehicle engines. Detonation was successfully
detected by the fast wavelet analysis of the vibration
signal on the engine body, and it was discriminated
from other mechanical noise components over some
dilation scales and during a particular period.

Through the experiment it has been demonstrated
that the wavelet analysis provides a useful tool for
visualizing transient signals. This is because of the fact
that engineers involved with the experiment could see
the process of appearance, growth and decay of partic-
ular detonations by looking at the behavior of the
wavelet transforms.

Further investigation should be followed, which
includes the comparison between the wavelet analysis
and in-cylinder pressure analysis and statistical reason-
ing for the agreement between the wavelet analysis and
human hearing sense for listening to detonation.
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Appendix: More Examples

Three types of wavelets other than the Gaussian
wavelet in Sect. 4 are applied to the same pair of the
signals. Parts (a) and (b) in the following figures
display the wavelet transforms of the detonation-free
signal and the abnormal signal, respectively.
A.l1 Another.Gaussian Wavelet

Another Gaussian wavelet is designed as a
Gaussian-windowed sinusoid expressed by

g(t)= g~ 121207 gi2nft.

The duration, ¢2, is fixed at 50 so that the Gaussian
part may be sufficiently close to zero at the ends of the
tails, 1==+64. The center frequency, f, is selected to
be 6/128 so that the lower and upper normalized-
frequencies, 27%f and 2°f, may fit the audible fre-
quency band under 50 kHz sampling. The resulting
function corresponds to the Gaussian wavelet with 2
=2.08 in Eq.(8). Figure A1 shows a significant
improvement in time resolution compared with Figs. 7
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Fig. A-1 Wavelet analysis via another Gaussian wavelet.
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Fig. A-2 Wavelet analysis via the Mexican hat.
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(b)

Fig. A-3 Wavelet analysis via the Haar wavelet.

and 8 at the cost of frequency resolution.
A.2 The Mexican Hat Wavelet

The Mexican hat wavelet® is the second deriva-
tive of the Gaussian function, hence the Laplacian-
Gaussian. The basic wavelet for the Mexican hat is
also approximated by a 128-point FIR filter. Figure A
*2 shows clear corn-like patterns in the vertical direc-
tion which are due to the sharp time-resolution in the
Mexican hat. Frequency-resolution is inferior to the
modulated Gaussian wavelets.
A.3 The Haar Wavelet : An Orthogonal Basis

Figure A-3 shows the discrete wavelet transforms
based on the Haar function, which forms an or-
thogonal wavelet basis®. The mosaic patterns are too
rich to understand the variation of the signals. This is
because the orthogonal wavelet basis should be con-
structed with the strict scale factor of 2, and hence the
shift step should grow in proportion to 2" that is the
reciprocal of the Nyquist scale. This example demon-
strates that orthogonal wavelets are not always prefer-
able more than non-orthogonal wavelets. Subband
coding is well carried out by orthogonal wavelets“®,
but non-orthogonal wavelets will find a wide range of
application because of their finer scales and denser
time shifts.
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