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SUMMARY It is known that the resolution conversion
based on orthogonal transform has a problem that is difference
of luminance between the converted image and the original. In
this paper, the scale factor of the system employing various
orthogonal transforms is generally formulated by considering the
DC gain, and the condition of alias free for DC component is
indicated. If the condition is satisfied, then the scale factor is
determined by only the basis functions.
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1. Introduction

Orthogonal transform, which is typified discrete
cosine transform (DCT),”® has been developed as a
key technique to compress an amount of digital image
data.”® It is expected to be used in the area of visual
communication and storage. These applications gener-
ally contain various resolutions of displays. Therefore,
“scalability” among different resolutions or “compati-
bility” between standard TV and HDTV has been
becoming one of the most important features.®»®

For these requirements, techniques of decimation
in orthogonal transform domain have attracted a great
deal of attention.®® These decimation techniques are
compared against time domain decimation schemes by
K. N. Ngan.® He derive a relation among DCT,
Hadamard transform (HT) and discreet Fourier trans-
form (DFT). On the other hand, it has been proved
that orthogonal transforms can be evaluated as filter
banks.”” However, the decimation employing ortho-
gonal transforms has never been theoretically dis-
cussed the property of altering luminance of converted
pictures from the original.

In this paper, we purpose to formulate the scale
factor, that is necessary to correct the luminance of the
converted pictures. In Sect. 2, we summarize a basis
method that converts size or resolution of digital image
data, including interpolation case. In Sect.3, we
evaluate the conversion system as filter banks. In Sect.
4, by considering the DC gain of the conversion sys-
tem, we formulate the scale factor. In Sect. 5, we show
the result of the simulation of the luminance correc-
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tion.

2. Resolution Conversion Based on Orthogonal
Transforms

In this paper, although we consider the ortho-
gonal transform of one-dimensional (1-D) signals, the
results are of interest in image processing, since it can
easily be extended to the two-dimensional (2-D) case.

2.1 Orthogonal Transform®

The general 1-D orthogonal transform, and the
inverse transform are written as

Xor=Ax, (D
x=AtX0T (2)

where x and Xor are N-dimensional vectors of time
and transform domain respectively, 4 is a N XN
orthogonal matrix, and ‘¢’ indicates transposition.
Equations (1) and (2) are also expressed as

N-1
:nZOa(k, n)x(n)

Xor (k) 0Zk<N-—1, (3)

N-1
x(n) :kZOXOT(k)a(k’ n) 0=nsN-1 (4)
where x (n) and Xor(k) are N-point sequences of time
and transform domain respectively, and a(k, n) is an

element of matrix A, namely basis function.
2.2 Interpolation and Decimation®

Applying above transform, we explain the basic
method that converts a N-point sequence x (#n) into a
M -point sequence y(m) by the rational factor M /N,
as shown in Fig. 1.

First, in decimation case (N >M), we make a
new M-point sequence Yor(/) which is composed of
lower M coefficients of the N coefficients Xor(k)
obtained by Eq. (3) as

Yoo (1) =Xor(I) 0ZI/=M—1. (5)

In interpolation case (N<M), we make a new
M-point sequence Yor(/) which is composed of M
coeflicients that are added M — N —1 zeros over the N
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Fig. I Methods for conversion with orthogonal transform.

coefficients Xor (k).
as

The sequence Yor(/) is presented

0s/=N—-1

Yor (1) = N<I<M—1

{XOTU) -

Next, by employing a M X M inverse transform matrix
B?, such as inverse DCT (IDCT) matrix against DCT
matrix, we perform an inverse transformation of the
vector Yor as

y=B"'Yor (7)

or
y(m>='fg_:Y0T(1)b<z, m) 0=m=M—1 (8)

where y and Yor are M-dimensional vectors of time
and transform domain respectively, y (m) and Yor(k)
are M-point sequences of time and transform domain
respectively, and b(/, m) is an element of matrix B,
namely basis function. Thus, we can obtain the desired
sequence by above procedure.

3. Evaluation as Filter Banks

For considering the problem of the luminance, we
evaluate orthogonal transforms as operation of filter
banks. Here, we also discuss a case of the orthogonal
matrix of which basis functions are longer than the

transfer size, such as lapped orthogonal transform
(LOT).®

3.1 Relation between Transfer Function and Basis
Function®

An orthogonal transform using N XL matrix
corresponds to N-band critically decimated filter bank,
in which the impulse response of the synthesis filters
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Fig.2 Evaluation as filter banks.
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Fig. 3 Amplitude responses of analysis filter H,(z).

are the transform basis functions, the impulse response
of analysis filters are equal to the time-reversed basis
functions, namely the tap length of those filters is L.
Therefore, the M /N rate conversion operator can be
shown in Fig. 2.

The transfer function of the filters H, (z) and
F.(z) in Fig. 2 are written as

Lg—1 3
H.(z)= Z_oa(k, Lo—1—i)z7" 0=k=N-—1,

(9)
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Lp—1
Fk(z)=§)b(i, k)z™* 0sksM-1

(10)

where L, and L, are the length of the basis vectors of
matrix A and B, respectively.

In Fig. 3, the amplitude responses of 8 X8 DCT
and 8X 16 LOT filter bank are shown by calculating
Eq. (9).

3.2 Relation between Input and Output Signals®

The relation between input and output spectrums
of filter bank shown in Fig. 2 is expressed as

K—1 N-1
Yir (%) = 2 Fu(e™) 3% Hy (/o5

Xer (&7(H0-57)) (11)
where K is minimum value among M and N.

For example, a result of the decimation employing
LOT is displayed for N=8 and M =4 in Fig. 4(b).
Figure 4(a) is the original image consisting of 640X
400 pixels. Note that the luminance of the result must
be corrected.

(a)

(b) ()

Fig. 4 Result of Simulation.
‘ (a) Original image consisting of 640 X 400 pixels, encod-
ed with 8bits/pixel.
(b) Decimated image with LOT, N =8, M =4, consist-
ing of 320X 200 pixels.
(c) Image corrected Fig. 4: (b) by scale factor o®=
M/N=1/2.
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4. Scale Factor for Luminance Correction

Executing resolution conversion based on ortho-
gonal transform, it generates a problem that is
difference of amplitude scale between input and output
signals. After all, it influences the luminance of the
converted image.

4.1 Gain of System for Sampling Rate Conversion® -

Relation between input and output spectrums of
ideal system for sampling rate conversion by a rational
factor M /N is expressed as

M M
WXFT(eJNw) >

Y i () = for leémin[n, ﬂﬂ'}

M

0, otherwise.
(12)

Here, since the operator shown in Fig. 2 is a kind
of the multirate system, the gain of the system must be
settled M /N for |w|<min[z, Nx/M], namely pass
band for input spectrum. However, the conversion
employing orthogonal transform is not always enough
to that conditions.

4.2 Selection of Scale Factor

For normalization of the output signal, let us
consider to adjust the gain of the whole of the filter
banks. However, it is mostly impossible for all w,
since each filter of the system possesses not an ideal
amplitude characteristic and the system performs
decimation before interpolation. Thus, we investigate
only DC gain, because the luminance of image is
mostly determined the DC component. Then, we
suggest to perform the gain correction by only scale
factor for DC component. Here, from Eq. (12), we
define the scale factor as

y=ay, (13)

where y’ is the output vector corrected its amplitude,
and ¢ is a scale factor for luminance correction.
However, by Eq. (11), we see that ¢ depends on the
input signal. It is problem for digital image process-
ing, because the value of the scale factor alter on each
block in block processing.

But, if the filter banks shown in Fig. 2 satisfies the
next conditions

Fo (e =0 k+0(k=1,2, -, K—1), (15
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Hy(e 75" =0 n+0(n=1,2, -, N—1), (16)

then «a is expressed as Eq. (17) by Egs. (11) and (14).
We see that it independents on the input signal.

— M
lHO(eJO) F,(e) |

The combination of Egs. (15) and (16) is a sufficient
condition that the filter banks shown in Fig. 2 is alias
free for DC component of any input signals.

The basic idea expanded before can be extended
for subband coding (SBC).

(17)

4.3 Examples

All of HT, DCT and LOT satisfy both of condi-
tions Eqgs. (15) and (16). Therefore, in this case, scale
factor « is obtained by Eq. (17). Now, for example, let
us investigate the ¢ of the system of resolution conver-
sion employing LOT by rational factor M /N in 1-D
case. :

Example: LOT

The DC gain of the filter Hy(z) is obtained by

evaluating Eq. (9) on unit circle as

H, (ejo)

2N—-1

= %a(o, IN—1—j)e™

| _ (2i—|—1)7r>}
=Z3 N{l ﬁcos( IN
v ] _ (2(2N—1—i)+1)7r>}
t &l ‘/7"05< N
_ 1
—2N><2W—W. (18)
Similarly, DC gain of filter F;(z) is obtained as

F(e®)=J/M. (19)

Hence, by Egs. (17), (18) and (19),

a= \/% (20)

Therefore, in 2-D case, namely image processing, it is
better that we select M /N as scale factor.
The scale factor of the system employing DCT or
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HT can be obtained similarly, and both their result are
also yM/N .

5. Simulation

According to Fig.4(b), we find that the lumi
nance correction is necessary. In Fig. 4(c), the
decimated image with scale factor ¢ is shown. From
the result, we see that the correction is accomplished
subjectively.

6. Conclusion

In this paper, we formulated the scale factor of the
system employing various orthogonal transforms by
considering the DC gain, and indicated that the scale
factor is determined by only the basis functions, if the
condition of alias free for DC component is satisfied.

Actually, we confirmed that the solution is ade-
quate to correct the luminance in both interpolation
and decimation case by employing various orthogonal
transforms, such as DCT and HT.
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