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Realization Problems of a Tree with a Transmission

Number Sequence

Kaoru WATANABE f, Masakazu SENGOKU f, Hiroshi TAMURA t

SUMMARY Problems of realizing a vertex-weighted tree with
a given weighted transmission number sequence are discussed in
this paper. First we consider properties of the weighted trans-
mission number sequence of a vertex-weighted tree. Let S be
a sequence whose terms are pairs of a non-negative integer and
a positive integer. The problem determining whether S is the
weighted transmission number sequence of a vertex-weighted tree
or not, is called w-TNS. We prove that w-TNS is NP-complete,
and we show an algorithm using backtracking. This algorithm
always gives a correct solution. And, if each transmission num-
ber of S is different to the others, then the time complexity of
this is only O(|S)?). Next we consider the dz-transmission num-
ber sequence so that the distance function is defined by a special
convex function.

key words: transmission number, NP-complete problem

1. Introduction

As the problem of realizing a graph from an integer se-
quence, degree sequences [ 1] and eccentric sequences [ 2 |
et al. are well-known. Although the transmission num-
ber of a graph is as important as the eccentric num-
ber in the Location Problem, few properties about a
(weighted) transmission number sequence are known.

Let G(V, E) be the vertex-weighted graph which is
an undirected connected graph with a positive integer
w(v) (called the weight of v) associated with each vertex
v of G. Let d(v,u) be the distance which is the length
of the shortest path between vertices « and v of G. The
transmission number [ 3] of a vertex v of ¢ is defined as
follows:

t(Gsv) = Z d(v, u)w(u)

ueV

(usually dropping the first term G when the graph is
clear from context). A vertex v of G is called a median
if t(v) = minyev t(u). Let S be a non-negative integer
sequence:

S = (81,82,'“,517).
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S is a transmission number sequence if there exists a
vertex-weighted graph G(V, E) whose vertices can be
labeled v, v, -, v, so that t(v;) = s; for all 4. If G is
vertex-unweighted (w(v) = 1 for all v € V'), some results
are given in Ref. [4]. In this paper, although we do not
consider such transmission number sequences, we will
define a weighted transmission number sequence and
extend results given in Ref. [4] to the case of it.

Let S be the sequence whose terms are pairs of a
non-negative integer and a positive integer:

S = ((Slawl)v (52711.)2), T (‘?P?wp))

with s; =2 0 and w; = 1 for all 4. (call each w; weight
of S, and call S an NPI sequence.) S is a weighted
transmission number sequence if there exists a vertex-
weighted graph G(V, E') whose vertices can be labeled
v1,vg, -, v, so that t(v;) = s; and w(v;) = w; for all
1. Figure 1 shows an example of a weighted trans-
mission number sequence. We discuss realizing of a
vertex-weighted tree with a weighted transmission num-
ber sequence hereafter.

We show some properties of transmission numbers
and weighted transmission number sequences of vertex-
weighted trees in Sect.2. We call the problem deter-
mining whether an NPI sequence is the weighted trans-
mission number sequence of a vertex-weight tree or not,
w-TNS. (The restricted problem of this so that w; =1
for all 4, is called TNS in Ref. [4]. There is a mistake
in it. The correction about this is in the end of this pa-
per.) We prove that w-TNS is NP-complete in Sect. 3.
An algorithm is given by using a backtrack method in
Sect. 4. w-TNS is not solvable in polynomial time un-
less P = NP, but w-TNS can be solved in polynomial

(27,1)

Fig. 1 The weighted transmission number sequence of this
vertex-weighted tree is (27,1),(27,1),(24, 1),(16, 3),(16, 5),(13, 2).
The vertex m is the median.
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(12,1)

(9,2)
(12.2) (10,3)

(12,1)

Fig. 2 The weighted dp-transmission number sequence of this
graph is (12,1),(12,1),(12, 2),(10, 3),(9, 2).

time if 51 > 53 > -+ > 5.

We discuss the following case in Sect. 5. We define
da(u,v) which is the distance between vertices v and v
of G as follows:

) d(u,v)  ifd(u,v) < 2
do(u,v) = { 2 ifd(u,v) =2,
and the dy-transmission number of a vertex v of G as
follows:
tz G U Z d2 ’U u

ueVv

(usually dropping the first term G when the graph is
clear from context). Figure 2 shows an example of a
do-transmission number sequence. We consider the case
where the weight of each vertex is equal to the others. In
this case, a vertex-weighted tree can be also constructed
in polynomial time.

2. Properties of Transmission Number

In this section, we show some properties of the weighted
transmission number sequence of a vertex-weighted tree,
and we show a nondeterministic algorithm for w-TNS.

Let T(V, E) be a vertex-weighted tree, and let u
and v be adjacent vertices of T'. Let 7' — {u,v} be the
disconnected graph which is obtained by removing an
edge {u,v} from 7. We define T}, and 7, as the two
subtrees (components) of T' — {u, v} so that u € V(T},)
and v € V(T,). We define M(T) as follows

M(T) = w(v).

The following properties about the transmission num-
ber of a vertex-weighted tree are known [5].

Property 1: Let T(V, E) be a vertex-weighted tree. For
all w and v of T which are adjacent to each other;

M(Ty) — M(T,) = t(v) — t(u).
Proof: By the definition of the transmission number,
tw) = > d(v, v )w(v’)
veV

= Z d(v, v Yw(v')

v eV(T,)

+ Z d(v, v w(u').

u' €V (Ty,)
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Since the (shortest) v-u’ path passes on the edge {v,u},

t(v) = Z d(v, v Yw(v")

v €V (Ty)

+ Y () + Duw(w)

uEVT)

> d(v, v )w()

o €V (T)

+ Z d(u, v Yw(u)

W EV(Ty)

>

w' €V (Ty,)

Z d(v, v )w(v')

v €V(Ty,)

>

u' €V (Ty)

Il

Nw(u') + M(T,).

Similarly,

t(u) =

> dlu,w)w(u)

w EV(T,)

t D, d

v €V (Ty)

w(v') + M(T).

Therefore,

t(v) —t(u) =

Using Property 1, we obtain the following property.

M(T,) — M(T,). =

Property 2: Let T(V, E) be a vertex-weighted tree, and
let v be a vertex of 7. Then v is a median of 7 if and
only if for each vertex v that is adjacent to v;

M(T.) < M(T,).

(The vertex u is a median of T' if and only if the equal
sign is valid.) |

Immediately, Property 1 and Property 2 imply the fol-
lowing Property 3.

Property 3: The number of medians of a vertex-
weighted tree is one or two. If the tree has two medians,
they are adjacent to each other. o

We will show a necessary and sufficient condition for
an NPI sequence to be a weighted transmission num-
ber sequence. Immediately, the following lemmas are
obtained by using Property 1 and Property 2.

Lemma 1: Let T'(V, E) be a vertex-weighted tree, and

let vivy - - - v, be a vy-v, path of T. If v, is a median,
t(’Ul) > t(’Ug) > > t(’l}n_l) = t(?)n).

Un_1 = vp, if and only if both v,,_; and v,, are medians.)
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Lemma 2: Let T(V,E) be a vertex-weighted tree so
that |V| = 2, and let v be a vertex of T(V, E) so that
t(v) = maxy,ecy t(u). Then the degree of v is 1.

We prove the following theorem using these lemmas.

Theorem 1: An NPI sequence : S = ((s1,w1),
(s2,w2), ~++ (Sp,wp)) With 57 = s3 = -+ 2 55, 18
the weighted transmission number sequence of a vertex-
weighted tree if and only if there exists j (2 £ j < p)
such that

§; =81+ wy — E w;

2<i<p
and the sequence:

S = ((52 - wlaw2>; ct, (3j_1 — ’lUl,'UJ]‘_l),
(Sj — Wy, Wy + wl), (Sj+1 — wlij+1)7
"'7(Sp7w17wp))

is the weighted transmission number sequence of a
vertex-weighted tree.

Proof: We suppose that § is the weighted transmission
number sequence of a vertex-weighted tree. Then there
exists a vertex-weighted tree T" whose vertices are labeled
v1,V2, -+, Up O that ¢(v;) = s; and w(v;) = w; for all 4.
The degree of the vertex vy (corresponding to (s1,w1))
is 1 by Lemma 2. Let v; be the vertex which is adjacent
to v;. Then s; = 1 + w1 — Z2§i§p w; by Property 1.
Let 77 be the vertex-weighted tree which is obtained by
removing v; from T and setting w; + w; on the weight
of v;. We shall show that s; —w; is the transmission
number of each v; of 17.

HT5w) = Y
2<k<j, j<kZp
+(w(vy) +w(v1))d(vi, vs)
= Z w(vk)d(vi,vk)

2<k<p

+w(vr)(d(vi, v5) + 1) — wlv1)
= t(T;v;) — w(v1)

= §; —wWy.

wlvg)d(vi, vi)

Therefor U’ is the weighted transmission number se-
quence of 77,

Conversely, we assume that U’ is a weighted trans-
mission number sequence. Then there exists a vertex-
weighted tree 77 whose vertices are labeled va, vs, - -+, vp
so that for all ¢, t(v;) = s; — wy and

_J witw ifi=j
w(vi) = { w; otherwise.

Let T be the vertex-weighted tree which is obtained by
adding a vertex v; and the edge {v1,v;} to T/, and set-
ting w(v;) = w; for all v;. We shall show that each s; is

the transmission number v; of T For all v; (2 £ i < p);

t(T;Ui) = Z w(vk)d(vi,vk)

1<k<p
= Z w(vk)d(vi,vk)
2<k<p
+w(vy)(d(v;,v5) + 1)
>
a<k<j, j<k<p
+(w(vy) +wlvr))d(vi, v;) +w(v1)
= t(T";v;) + w(vy)

= 8.

w(vk)d(lui; Uk)

And for vq;

t(T, ’Ul) =

Since s; = 81 + wy — insp w;, t(T;v1) = s1. There-
fore U is the weighted transmission number sequence of
T. We have proved Theorem 1. a
Next we easily have the following nondeterministic al-
gorithm for w-TNS using Theorem 1. The following
NPI sequence is inputted;

S = ((81,w1), (Sz,wz), T (spva))

with 51 2 89 2 -+ 2 s5p.
Algorithm 1: Set W = w; +wy + - - wp. A variable
iis used as a counter in Algorithm 1.

Step 1. (Initialize) Set i «+ 1.
Step 2. If S = ((0, W)) then stop (accept).

Step 3. If there exists j (i < j < p) which satisfies the
following condition:
Condition A:s; — (W — 2w;) = s,
then go to Step 4 else stop (not accept).

Step 4. An integer j (i < j < p) which meets Condi-
tion A is guessed oracularly.
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Step 5. Set s; « s —w; for all k (i < k < p).

Step 6. Set w; « w;+ w;, and eliminate (s;, w;) from
S.

Step 7. i+ i+ 1 and go to Step 2.

This algorithm exactly solves w-TNS, and also con-
structs a vertex-weighted tree from a given weighted
transmission number sequence. In Sect. 3, we prove that
w-TNS is NP-complete using Theorem 1. And, we show
a deterministic algorithm in Sect. 3.

3. Proof of NP-Completeness

In this section, we prove that w-TNS is NP-complete us-
ing Algorithm 1. We explain PARTITION before this.
The proof which PARTITION is NPcomplete, is given
in Ref. [6].

PARTITION

INSTANCE : A positive integer sequence i1, ig, - - - L ip.
QUESTION : Is there J which is a subset of 7 =
{1, 2,0 ,p} so that Zke]ik = Zk’eI—Jik'?

w-TNS

INSTANCE : An NPI sequence :

S = ((Sl,wl), (52711)2), ) (Spva))

with sy 2855 2 -+ 2 s,,.

QUESTION : Is there a vertex-weighted tree whose
weighted transmission number sequence is equal to S
?

We will prove that w-TNS is NP-complete by transform-
ing PARTITION to w-TNS.

Theorem 2: w-TNS is NP-complete.

Proof: First it is easy to see w-TNS € NP, since (non-
deterministic) Algorithm 1 need to guess j on step 4
oracularly and to check that S is the weighted trans-
mission number sequence of a vertex-weighted tree in
polynomial time.

We will transform PARTITION to w-TNS. Let
7 = (41,42, ,%p) be an instance of PARTITION, and
set €' = i3 +ig+- - -+ip+2. AsZ can be sorted in polyno-
mial time, it is proper to suppose that 7 < iy < -+ < ip
without loss of generality. Moreover if i, > (C/2) — 1
for some k, then Z does not have a partition evidently.
Hence if instances of PARTITION are restricted so that
ir < (C/2) — 1 for all k, then such a subproblem is yet
NP-complete. So we assume 7, < (C/2) — 1 for all k.

Set
. {§C~ﬂm+n if1<k<p
k =

C -2 ifp<k<p+2,

wk:{llk

e

if1<k<p
ifp<k<p+2
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Then s; = s5 =2 --- > s,,5. Let S be an instance of
w-TNS as follows;

S = ((s1,w1), (s2,w2), -, (Spt2, Wpi2))

It is clear that PARTITION is transformed to w-TNS
in polynomial time.

We assume that 7 has a partition. Set I =
{1,2,---,p}. Then there exists a subset .J of I so that

> i = > iw.

keJ kel—-J

Let V be a vertex set whose vertices are labeled
V1,V2," ", Upyo SO that w(vg) = wy for all k (1 < k <
p+2), and let E be the edge set as follows;

E = {{vi, vpu1}k € J}
U{{’Uk, ’l)p+2}|]€ S I — J}
U{{vpt1, vptat}

Then T(V, E) is a tree. Since the definition of s, and
Property 1, t(vk) = si for each vertex vy of T(V, E).
Therefore if 7 has a partition, S is the weighted trans-
mission number sequence of a vertex-weighted tree. Fig-
ure 3 shows an example of a tree corresponding to PAR-
TITION.

Conversely, we assume that S is the weighted trans-
mission number sequence of a vertex-weighted tree.
Then there exists a vertex-weighted tree T(V, E) whose
vertices are labeled vy, v, -+, vyt so that tor) = s
and w(vg) = wg for all k (1 < k < p+ 2). Then
vpt1 and wvpyo are medians, and are adjacent to each
other by Property 3. Using an inductive method, we
will show that for each v (1 < k < p), vy, is adjacent
only to either v, 1 Or v,y and the degree of vy, is 1. If
k =1, it easy to see that these hold by Lemma 2 and
the definition of s;. We suppose that these hold for all
J (1 £j <k < p). Then for all 5, each v; is not ad-
Jacent to v, and t(v;) = t(vg). We assume that there
exists vy (k < k' < p) which is adjacent to v,. Then
we observe the following two cases:

Case 1. vy is not included in the path between v, and
vp+1. Then t(vg) (= sx) < t(vir) (= s1r) by Lemma 1.
This is contradictory to s, = s.

Case 2: In the other case, the degree of v, is 1. Then
Property 1 does not hold.

Hence vy, is not adjacent to all vy (k < k' < p). There-
fore the degree of v is 1 and v; must be adjacent only

(29,2) (27.3)
(19,1 (19,1)

(25,4) (27,3)

Fig. 3 This is a corresponding tree to a partition of (4,3, 3, 2).
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to either v, 41 OF Uptp. Thus forall k (1< k< D), Uk 18
adjacent only to either vp41 OF Upya. Set

J = {k < p|uvg is adjacent to vpy1},
J' = {k < p| v is adjacent to vpyo}.

We suppose Y.y Wk F 2 ey Wi Then M(T,, ., ) F
M(T,,.,). By Property 1, we have t(vpi1) (= 8pt1) F
t(vpt2) (= Spi2). This contradicts sp41 = Sp12. There-
fore Y ey we = Yy ey wi. Since J U J'=TandJnN
J' =10, J is a partition of Z. Hence 7 has a partition
if and only if S is the weighted transmission number
sequence of a vertex-weighted tree. We have proved w-

TNS is NP-complete. |
4. A Deterministic Algorithm for w-TNS

We show a deterministic algorithm for w-TNS in this
section. Algorithm 2 (deterministic) is easily given by
transforming Algorithm 1 (nondeterministic) using a
backtrack method. Algorithm 2 is improved so that the
stage corresponding to Step 5 in Algorithm 1 is omitted
using a variable h. (Notice that § = (h, W) replaces the
condition of the stage corresponding to Step 2.)
Algorithm 2: Set

S = ((s1,w1), (s2,w2), -, (8p, wp))

with 81 = 83 2 -+ 2 s, = 0 and w; = 1 for all ¢, and
set W =wy +wo + -+ wyp.
INPUT:S
OUTPUT:boolean
function W-TNS(S);
function link(, h);
val oldw, j:integer;
begin
if ¢ = p then
it $ = (h, W)
then return(TRUE);
else return(FALSE);
Je—i+1;
while 7 < p do
begin
if s; = 83 + 2w, — W then
begin
oldw «+— wy;
Wy Wi + Wy;
if link(i + 1, b + ws)
then return(TRUE);
w, «— oldw;
end;
Jei+
end;
return(FALSE)
end;
begin
return(link(1, 0));
end. 0
Algorithm 2 always gives a correct solution. If
s; ¥ s; for all 4,5 (i + j), then the time complex-
ity of this is only O(]|S]?). Algorithm 2 is so fast as
to decrease the number of vertices whose transmission
numbers are equal to the others. Figure 4 shows an
example of a behavior of Algorithm 2.

(40,1) (38,2) (36,3) (24,1) (24,1) (14,10)
(] o o (-] (-] (-]

I
(=]

(38,2) (36,3) (24,2) (24,1) (14,10) =2

2) (] [+] o (-] h_=1

(36,3) (24,4) (24,1) (14,10) |4

3) t E [ j o [} h=3
(24,7) (24,1) (14,10)

4) T E g o o Ih==46

(24,4) (24,4) (14,10)

o
k 0
[}
T
o

W
&)}

Fig. 4  An example of a behavior of Algorithm 2 whose input
is (40,1),(38,2),(36,3),(24,1),(24,1),(14,10). A backtracking is
done in 4).

5. A Convex Distance Function

We consider the case where the distance function is the
convex function dy(,-) hereafter. We will show a nec-
essary and sufficient condition of a weighted dy-trans-
mission number sequence in the special case where each
weight of this sequence is equal to the others. Before
this, we show the following three properties.

Property 4: Let G(V,E) be a vertex-weighted con-
nected graph, and let v be a vertex of G. We define
U as a subset of V — {v} so that

U= {ueV—{v}|uis adjacent to v}.
Then
to(v) + > wlu) = 2(M(G) — w(v)). O

uwel

Immediately, we obtain the following two properties by
Property 4.

Property 5: If w(u) = w for each vertex u of a vertex-
weighted graph G, for each v of G whose the degree is

deg(v):
to(v) +w-deg(v) = 2w - (V| —1). 0
Property 6: If S = ((s1,w), (s2,w), -, (sp,w)) is a

weighted do-transmission number sequence of a vertex-
weighted graph G, then
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P
Zsi <2w-(p—1)~4
i=1

(G is a tree if and only if the equal sign is valid.) O

We obtain an upper bound of a weighted d,-trans-
mission number sequence in such a case. We prove the
following lemma and theorem using Property 5. Let
G(V, E) be a connected graph. We define deg(G;v) as
the degree of each v of G (usually dropping the first
term G when the graph is clear from context).

By Property 5, t3(G;v)/w + deg(G;v) is constant.
Hence this problem comes to the discussion in the case
of a degree sequence. But we must consider a connected
graph in the case of a weighted ds-transmission number
sequence. (A graph constructed from a degree sequence
is not always connected.)

Lemma 3: Let G(V, E) be a connected graph, and let
v be a vertex with the minimum degree in V. There
exists a connected graph whose degree sequence equals
the degree sequence of G — {v}

Proof: Set G'(V/,E') = G — {v}, and set § =
deg(G;v). Let ¢(G) and k(G) be the number of funda-
mental circuits and components of G respectively. Then
it is known that the following equation holds[7]:

B(G) = c(G) = V' - |E|.
By the definition of G,
B(G) = (@) = (V] -1) - (|E] - 6).

If v is not a cut-vertex, then G/ is connected. There-
fore we consider the case that v is a cut-vertex of G.
Then G’ is disconnected. We will reconstruct & to be
connected without changing the degree of each vertex
of V. If § = 1, v is never a cut-vertex. Hence we as-
sume 6 = 2. Then |V| = 3. It is well-known that the
following inequality holds:

m= Y
Hence
MG - (@) = (v -1 - (L
guw—m_@@§3+1
< @)QL’_—Z) +1<1

Since k(G') =2 2 (' is disconnected),
(G zZk(G)—-121

Hence there exists a component which has a circuit. Let
{u1,us} be an edge on the circuit of the component, and
let {uz,us} be an edge of another component. Let G”
be a graph which is obtained by removing {uy,us} and
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Fig. 5  Edges {u1,u2} and {us,us} are removed, and edges
{u1,u3} and {uz,us} are added to make components C; and Cs
connected each other.

{us,u4}, and adding {u;,u3} and {u2,uq4} to G’. Then
k(G") = k(G") ~ 1 and ¢(G") = ¢(G') — 1, and the de-
gree of each vertex of V' do not change (Fig.5). Since
k(G") — (G") = k(G') — ¢(G') £ 1, the similar way is
repeated (until k(-) = 1) to get a connected graph (of
all vertices whose degrees equal to degrees of all vertices
in G'). O

We prove the following theorem using this lemma.

Theorem 3: For p > 1, S = ((so,w), (s1,w),
(s2,w), -, (sp,w)) with g9 = 5 = --- = sp 20
and w = 1, is a weighted da-transmission number se-
quence if and only if S" = ((s7,w),(s3,w) -, (s, w))
is a weighted dy-transmission number sequence so that

o — si—2w f1<i<sg/w—p
T si—w ifsg/w—p<i<p.

Proof: Set D = (2|V| — so/w — 2,2[V| — s1/w —
2,--,2|V| — sp/w — 2). By Property 5, S is the
weighted da-transmission number sequence of a con-
nected graph G if and only if D is the (graphical) de-
gree sequence of G. Generally, a degree sequence:D =
(do,dy,-++,dp)(do £ dy < --- < d,) is graphical if and
only if a degree sequence:D’ = (df,db, -, d,,) is graph-
ical so that

d:
; i
@‘{¢—1

(This is proved similarly as the proof by Havel-Hakimi
[1].) Since G is connected and dy is minimum in
this graph, there exists a connected graph G/(V',E’)
with the degree sequence D’ by Lemma 3. For all
i (1 £4 < p),set s) =2w-(|V/]|—1)—wd,. By
Property 5, D’ is a (graphical) degree sequence of G’
if and only if (s, w), (s3,w), -+, (sy,w) is a weighted
do-transmission number sequence of G’. Then if 1 <
1 £ p — do(= s0/w —p),
s{ =2w-(|V'| - 1) - wd,

=2w-((|[V]-1) - 1) — wd;

=2w- (V|- 1) —wd; — 2w

/
=5 — 2w =s,.

ifl1<i<p—do
ifp—dyg<i<p.
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And, if p— do < i < p,

= 2w (V'] ~ 1) - ud
=2w-(([V|-1) - 1) —w(d; —1)
=2w-(|V|-1) —wd; —w

I
= 8 —wW=S5;.

Therefore S is the weighted do-transmission number se-
quence of G if and only if S’ is the weighted dy-trans-
mission number sequence of G’. We have proved this
theorem. (]

By applying Theorem 3, we can determine whether
S is a weighted da-transmission number sequence and
construct a graph with S in O(]S]?) time if each weight
of S is equal to the others.

6. Conclusion

In this paper, we discussed realizing a vertex-weighted
tree from a given sequence whose terms consist of a
pair of non-negative integer and positive integer. We
proved that w-TNS was NP-complete, and we showed
the deterministic algorithm for w-TNS which used a
backtracking.

Next, we considered ds-transmission number se-
quence. We showed the necessary and sufficient con-
dition for an NPI sequence whose weight is equal to
the others to be da-transmission number sequence.

The following problems are unsolved:

e Average-behavior complexity of Algorithm 2 ?

o Is w-TNS NP-omplete when each weight of an
NPI sequence 1s 1 ?
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Correction

Please excuse us for mistaking in Ref. [4]. The proof
of NPcompleteness in Sect.4 is uncorrect. Therefore

Theorem 2 is false, and whether the subproblem of w-
TNS whose weight is 1 (called TNS in Ref. [4]) is NP-
complete or not, is unsolved. But w-TNS (which is
discussed in this paper) is NP<complete.
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