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SUMMARY Myoelectric (ME) signals during dynamic
movement suffer from motion artifact noise caused by mechani-
cal friction between electrodes and the skin. It is difficult to
reject artifact noises using linear filters, because the frequency
components of the artifact noise include those of ME signals.
This paper describes a nonlinear method of eliminating artifacts.
Tt consists of an inverse autoregressive (AR) filter, a nonlinear
filter, and an AR filter. To deal with ME signals during dynamic
movement, we introduce an adaptive procedure and fuzzy rules
that improve the performance of the nonlinear filter for local
features. The result is the best ever reported elimination perfor-
mance. This fuzzy rule based adaptive nonlinear artifact elimina-
tion filter will be useful in measurement of ME signals during
dynamic movement.

key words: nonlinear filter, fuzzy, adaptive filter, artifact elimi-
nation, separation of superimposed signals

1. Introduction

Motion artifact noise is caused by a sudden change in
the dc contact at the interface between electrodes and
the skin. In biomedical signal recordings during
movement, artifact noise is unavoidable. Several
methods have been proposed to solve this problem
including active electrodes [1], improvement of analog
electronic circuits [2], [3], and signal processing. The
signal processing approach seems to be a better choice
among them.

Artifact elimination corresponds to estimating the
time-varying electronic base-line wander from an ob-
served signal. A linear moving average filter is a
popular signal processing approach in this field. Alsté
and Schilder [4] used an FIR filter to remove the
base-line wander and power-line interference from
electrocardiographic recordings, because almost all the
artifacts consisted of low frequency components.
However, a linear filter does not perform well for
artifact noise when the same frequency components are
also contained in the target biomedical signals.

A nonlinear filter, whose coefficients depend on
the local features of an observed signal, looks promis-
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ing. Abramatic and Netravali [5] used the Winner
filter based adaptive noise smoothing filter to restore
noisy images, depending on the local variance of
images. Moore and Parker [6] proposed the E-filter,
which changed its frequency characteristics by referring
to the amplitude of the observed signal. Arakawa et al.
[7] proposed the e-separating nonlinear digital filter to
separate abrupt changes in waveform from the
electroencephalogram, using the T e threshold func-
tions. Kaneko et al. [8] developed a method of rejec-
tion artifacts from surface myoelectric (ME) signals
with a series of filters: the structure was a linear-
nonlinear-linear filter.

In this paper, we describe a fuzzy rule based
adaptive nonlinear filter based on Kaneko’s artifact
rejection method. By introducing an adaptive proce-
dure and adjusting fuzzy parameters empirically, we
obtained better artifact elimination for time-varying
ME signals during dynamic contractions.

2. Method
2.1 Adaptive Nonlinear Artifact Elimination Filter

Kaneko et al. [8] proposed a nonlinear artifact elimi-
nation filter. It consisted of a filter for selectively
whitening ME signals, a nonlinear filter that eliminates
ME-related components from the filtered observed
signals, and a restoring filter that recovers only artifact-
related components. The whitening and the restoring
(inverse whitening) filters are both autoregressive
(AR) filters and they have the same coefficients.
Subtracting the restored artifacts from the observed
signal leads to desirable artifact elimination.

Let us assume that a digitized observed signal,
y(n), can be expressed as the sum of a biomedical
signal, x(n), and artifact noise, a(n), as follows:

y(n)=x(n)+a(n) (1)

where »n denotes the time index. Artifact noise is
presumed to include the same frequency components
that are also contained in the target biomedical signals.
AR coefficients are estimated from a biomedical signal
for the whitening and the inverse whitening filters. The
signal after whitening filter is given by
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¢(n)=&(n)+a(n). (2)

The filtered biomedical signal £(n) is white noise if
the whitening filter at the first stage is suitably designed
for the biomedical signal. On the other hand, artifact
noise is partly filtered and its amplitude is rather
higher than that of the filtered biomedical signal.
Thus, the nonlinear filter in the middle stage separates
the filtered biomedical signal £(n) from the filtered
artifact @(n) by the difference in their amplitudes. As
a nonlinear filter, we employed a nonlinear LMS
smoothing filter [9] defined by:

E(n)=y(n){¢(n) —E[$ (M B+ E[¢(n)], ()

where y(n) is a nonlinear parameter of the nonlinear
LMS smoothing filter and E[:] is the expectation
procedure in an analytical interval. The z transform of
the nonlinear LMS smoothing-filter is given by

Z(z, n)
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where M is the number of samples in each interval.
The analog representation of the frequency characteris-
tic is

G(w, t):y<t>+[1—y(z)]sinc(-%‘si>, (5)

where f; is the sampling rate and ¢ indicates the analog
time. Since G (w, t) contains the sinc function, G (w,
t) changes from a low-pass filter to an all-pass filter
depending on y(f). The nonlinear filter parameter,
y(n), is determined as follows:

if of(n)<o(n),
then y(n)=1 and ¢(n)=¢(n); (6a)

03(n) —oi(n) .
oi(n)

(6b)

if 0%(n)<o%i(n), then y(n)=

if 0¢(n) =o%(n),
then y(n)=0 and é‘(n)le[gb(n)]. (6¢)

where ¢Z(n) and ¢5(n) are the variances of £(#n) and
¢(n) in each interval, respectively. As a result, the
nonlinear filter acts as an all-pass filter to separate
a(n) form ¢ (n) (Eq.(6a)) and as a low-pass filter to
separate & (n) form ¢ (n) (Eq.(6c)), depending on the
local features in the variances.

We use an adaptive procedure for Kaneko’s filter
to treat ME signals during dynamic movement. Figure
1 shows an adaptive nonlinear artifact elimination
filter. The time-varying AR filter coefficients, [ c{?’], are
estimated by Lee’s algorithm [10]. Lee’s algorithm
adaptively estimates the time-varying AR coefficients
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Fig. 1 Adaptive nonlinear artifact elimination filter. Whitening
and inverse whitening filters are AR filters. AR coefficients,
[¢f?], are estimated by the adaptive procedure (Lee’s algorithm).
The nonlinear filter parameter, ¥ (#), is time-updated by Egs. (6)
and (7).

by introducing the forgetting factor and a recursive
procedure. The AR coefficients are time-updated for
the estimate of the ME signal, X (n), after eliminating
the estimated artifact noise, @ (n), from the observed
signal, y(n). Thus, the sufficient artifact elimination
improves the performance of the whitening and the
restoring filters. For the nonlinear filter, we introduce
a simple time-update procedure, because the variance
of the filtered biomedical signal, ¢%(n), cannot be
calculated in an arbitrary interval theoretically. The
initial value of ¢%(n) can be estimated in an arbitrary
early interval, in which artifact noise does not exist.
Then, using the variance of the filtered observed signal,
03(n), estimated in each overlapping interval, 62(n) is
time-updated as follows:

then ¢%(n)=0%(n), (7a)
then 62(n)=0%(n—1).
(7b)

if 62(n—1)=0o3(n),
if 62(n—1)<0o3(n),

2.2 Fuzzy Rule Based Adaptive Nonlinear Artifact
Elimination Filter

Although the time-update procedure of o¢%(n) is
sufficient for ME signals during a sustained contrac-
tion, the time-updated ¢%(n) sometimes includes a
large bias during dynamic movement. It is difficult to
control y(n) for such a bias by the Eq.(6b). Conse-
quently, the insufficient artifact elimination enlarges
the bias of the time-updated AR coefficients and in
turn the bias of the time-updated ¢%(n). In order to
compensate the behavior of the time-updated ¢Z(n),
we introduce the fuzzy associated rules [11] and then
effectively adjust 7 (n) to the local features even during
dynamic movement.

Figure 2 demonstrates the fuzzy membership func-
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Fig.2 Fuzzy membership functions and the fuzzy bank matrix
for ME signals during a sustained contraction: (a) input
associants as a function of variances; (b) output associant as a
function of y(n); (c¢) fuzzy bank matrix representing the rules
between the variances and y(n).

tions and the fuzzy bank matrix for ME signals during

a sustained contraction. The fuzzy membership func-

tion my,(B) indicates the degree to which object B
belongs to fuzzy set A. We use triangular shaped
membership functions. The fuzzy sets are S (small),
RS (rather small), RL (rather large), and L (large) for
the variances, ¢%(n) and ¢%(n), that are used as input
associants. Fuzzy sets of output associants are F
(filtering) , PF (partial filtering), PP (partial passing),
and P (passing) for y(n). Therefore, the fuzzy bank
matrix contains 16 rules. The fuzzy set “F” means that
the observed signal y(#n) is mainly dominated by the
ME signal x (n). On the other hand, the fuzzy set “P”
means that y(») is mainly dominated by artifact noise

a(n). Other fuzzy sets of output associants are pre-

pared for the ME signal contaminated with artifact
noise. The fuzzy membership functions of “F” and
“PF” are narrower than “PP” in order to obtain fine
control for the ME signal (Fig.2(b)). As a

defuzzification method, we use the correlation-

minimum (the correlation-minimum encoding with
the max-min composition) inference procedure with
the centroid defuzzification method.

The time-updated ¢0Z(») has a small bias and only
03(n) increases around artifact noise for ME signals
during a sustained contraction. Thus, we design that
y(n) should be “F” if g4(n) is under the time-updated
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Fig. 3 Fuzzy bank matrix for ME signals during dynamic
movement. '

o%(n) (Fig.2(c)) and should be “P” if ¢3(n) is “L”
and ¢%(n) is “S.” The bias in the time-updated o%(n)
is inevitable for the ME signal during dynamic move-
ment, because the time-varying ME signal is super-
imposed on the base-line wander artifact. Thus, we
design an alternative fuzzy bank matrix (Fig. 3) with
the same membership functions in Figs. 2(a) and (b).
That is, we consider that artifact noise possibly appears
around the parts where ¢5(n) and ¢2(n) are “RS” or
0%(n) is significantly larger than o%(n).

3. Experimental Procedure

Working with the tibialis anterior muscle, we mea-
sured ME signals during sustained and dynamic move-
ment. The dynamic movement was an ergocycle exer-
cise. An active four-bar electrode was pasted on the
skin parallel to the muscle fibers, with each bar perpen-
dicular to the muscle fibers. The distance between each

~bar was lcm. The raw surface ME signals were

bandpass filtered, 53-1000 Hz, to eliminate power-line
interference and low frequency artifact noise. The gain
of the amplifiers was 60 dB. The ME signals were
sampled at 5 kHz with a 14-bit digital data recorder
(TEAC, DR-F1).

The order of the AR filters at the first and last
stages was 10. The forgetting factor of Lee’s algorithm
[10] was 0.998. The adaptive procedure was carried
out every 0.2ms (one sample). These values were
suitable for ME signals during dynamic movement in
our experiment. The initial variance of o%(n) was
estimated at an early interval of 35 ms (M =175 sam-
ples), in which the ME signal of a sustained contrac-
tion was locally stationary and did not contain artifact
noise. The variance of the observed signal, ¢5(n), was
estimated every 0.2 ms in each overlapping interval of
35 ms, then ¢Z(n) at time instant n was time-updated
according to Egs.(7a) and (7b).

4. Results
First of all, we confirmed the performance of our

artifact elimination filters by computer simulation
(Fig. 4), using the membership functions and the fuzzy
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Fig. 5 Result of artifact elimination for the ME
signal during an ergocycle exercise: (a) observed
signal contaminated by artifacts; (b) estimated arti-
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Fig. 4 Estimation of some types of artifacts by the adaptive
nonlinear artifact elimination filter and the fuzzy rule based
adaptive nonlinear artifact elimination filter: (a) given artifacts;

(b) observed signal contaminated by artifacts; (c) estimated

artifacts; (d) mean square error of estimated artifacts; (e) per-
formance of the nonlinear filter parameter y(n).

bank matrix in Fig.2. The types of artifacts tested
were sinusoidal, exponential, triangular, and impulsive
waveforms (Fig.4(a)). A simulation signal (Fig. 4
(b)) was composed of several types of artifacts super-
imposed on the ME signal measured during a sustained
contraction. According to the result of Fig. 4(c), ME
signals still remained on the artifacts restored by the
adaptive nonlinear artifact elimination filter (adding
the adaptive procedure in Kaneko’s filter). On the
other hand, the fuzzy rule based adaptive nonlinear
artifact elimination filter achieved better performance
for individual artifacts. This was also confirmed by the
mean squared error evaluation (Fig.4(d)). Employ-
ment of the fuzzy rules made the performance of the
adaptive nonlinear artifact elimination filter better
than ever. It was, however, difficult to eliminate abrupt
changes in artifacts. Figure 4(e) shows the perfor-
mance of the nonlinear filter parameter y(n) for the
adaptive nonlinear artifact elimination filters with and

adaptive nonlinear artifact elimination filter; (c) esti-
mated artifact and the nonlinear parameter y(n) with
the fuzzy membership functions of Figs. 2(a) and (b),
and the bank matrix showed in Fig. 3.

without fuzzy rules. Fine control of y(n) around a
small value was effective for the ME signal during a
sustained contraction. That is, comparing the time-
series of y(n), the performance of the adaptive non-
linear artifact elimination filter was worse when ¢2(n)
came close to ¢Z(n), in which y(n) varied frequently
from 0.0 to around 0.5; on the other hand, y(n)
remained steady around 0.2 almost everywhere in the
fuzzy rule based adaptive nonlinear artifact elimina-
tion filter.

Figure 5 demonstrates the result for the actual ME
signal during an ergocycle exercise. The surface ME
signal was contaminated by the complex base-line
wander associated with cyclic movement. The execu-
tion time of the fuzzy rule based adaptive nonlinear
artifact elimination filter was around 70 s for the ME
signal of about 20s by using a SPARC station 10,
model 30 (86.1 MIPS). It seems small enough to
proceed with the practical experiments in the field.
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Using the adaptive nonlinear artifact elimination filter,
the ME signal was not removed from the estimated
artifact and the artifact-dominant parts were unexpect-
edly low-pass filtered (Fig.5(b)); in which y(n)
varied from 0.0 to about 0.8. The incorrect behavior of
y(n) was caused by the insufficiently time-updated
0#(n) and AR coefficients of the whitening and the
restoring filters. This defect was overcome by the fuzzy
rule based adaptive nonlinear artifact elimination filter
with the suitable fuzzy bank matrix designed in Fig. 3;
in which y (n) was finely adjusted around 0.0, whereas
7 (n) varied from 0.1 to 0.2 around artifact noise (Fig.

5(c)).
5. Discussion

5.1 Employment of Fuzzy Rules in Motion Artifact
Elimination

The benefits of Kaneko’s filter have already been
published [9]. It showed better performance than a
Bessel linear filter and an e-separating filter [7].
Kaneko’s filter is, unfortunately, effective only if ME
signals are stationary. Locally stationary ME signals
could be measured during a sustained contraction in a
basic physiological research. ME signals of current
interested are, nevertheless, nonstationary during
dynamic movement.

Time-varying properties of ME signals can be
tracked by introducing an adaptive procedure. As an
adaptive procedure, we used the time-update procedure
designed for tracking ME signals sample by sample.
The adaptive filter designed for the ME signal, how-
ever, did not separate artifact noise effectively, because
artifact noise was temporary and contained the same
frequency components as the ME signal. Another
problem was the inevitable bias in the time-updated 52
(n). Accordingly, effective separation in the variances
between the filtered time-varying ME signal and the
filtered artifact was not always obtained after the time-
varying whitening procedure. In order to compensate
the above defects in a practical situation, fuzzy rule
based determination of y (n) was incorporated, instead
of the y(n) functionally defined by the Eq.(6b).

5.2 Customizing the Performance of ¥ (n)

The nonlinear filter parameter y(n) is strictly deter-
mined by the characteristics of the employed function
(6b) in the adaptive nonlinear artifact elimination
filter. On the other hand, the fuzzy rule based adaptive
nonlinear artifact elimination filter can adjust the
performance of y(n), depending on the local features.
Fine control of the frequency characteristic around the
small value of ¢4(n) was useful for ME signals during
a sustained contraction (Fig.4). It was, however,
difficult to eliminate abrupt parts of artifacts probably
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due to the insufficiency of time-varying procedure. The
flexible control of the frequency characteristic by chan-
ging the fuzzy rules benefitted the time-varying ME
signal superimposed on the base-line wander artifact
noise (Fig.5(c)). That is, we expected that the base-
line wander artifact noise would appear around the
rather small values in ¢%(n) and ¢%(n).

Further study will be required to balance the
membership functions and fuzzy rules for practical ME
signals. Moreover, the time-update procedure of ¢2(7)
should be improved to reduce the bias. Impulsive
noises like abrupt artifacts could be removed by the
median filter [12] and its related methods [13], [14]
which have been developed in the fields of speech
signal processing and image processing. Hence, the
application of the median filter should be examined as
well.

6. Conclusion

We have developed a fuzzy rule based adaptive non-
linear artifact elimination filter composed of a whiten-
ing (inverse AR) filter, a nonlinear LMS smoothing
filter, and an inverse whitening (AR) filter. The
inverse AR filter adaptively makes surface ME signals
into random and small amplitude white noises by Lee’s
algorithm. The nonlinear LMS smoothing filter selec-
tively averages small amplitude signals at each time,
depending on the local variances of the observed sig-
nal. We applied the fuzzy rules to adjust the perfor-
mance of the nonlinear filter parameters to the local
features more effectively. The AR filter at the last
stage, which has the same coefficients as those of the
AR inverse filter, finally provides the estimated artifact.
Subtracting the estimated artifact from the observed
signal results in artifact elimination.

Computer simulation and practical experiment
showed that the fuzzy rule based adaptive nonlinear
artifact elimination filter achieved better performance
than ever before. As a result, it is applicable to the
measurement of surface ME signals during dynamic
movement in sports science and rehabilitation.
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