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SUMMARY In this work, a new structure of M-channel
linear-phase paraunitary filter banks is proposed, where M is
even. Our proposed structure can be regarded as a modifica-
tion of the conventional generalized linear-phase lapped orthog-
onal transforms (GenLOT) based on the discrete cosine transform
(DCT). The main purpose of this work is to overcome the lim-
itation of the conventional DCT-based GenLOT, and improve
the performance of the fast implementation. It is shown that our
proposed fast GenLOT is superior to that of the conventional
technique in terms of the coding gain. This work also provides a
recursive initialization design procedure so as to avoid insignifi-
cant local-minimum solutions in the non-linear optimization pro-
cesses. In order to verify the significance of our proposed method,
several design examples are given. Furthermore, it is shown that
the fast implementation can be used to construct M-band linear-
phase orthonormal wavelets with regularity.

key words:  multirate filter banks, paraunitary system, linear-
phase filter, subband image coding

1. Introduction

In the area of audio and visual communications, the
applications of multirate filter banks to data compres-
sion have been studied as an effective coding scheme,
known as the subband coding (SBC) technique[1]. In
the SBC applications, paraunitary (PU) property [2] of
filter banks is of interest since it allows us to use opti-
mal bit-allocation algorithms[3]. Besides, linear-phase
(LP) property of each filter in the system is desired in
image coding applications, since filter banks with LP
property can handle finite-duration sequences without
size-increase problem [4]-[8]. Hence, linear-phase pa-
raunitary filter banks (LPPUFB) are particularly ex-
pected to be applied for SBC of images.

Several LPPUFB have been studied so far [9]-[16].
By Princen and Bradley in [9], and by Malver in [10],
[11], special cases of such systems, of which polyphase
matrices[2] are of order one, were shown, and their
efficient implementation was established. The system
developed in [10] is known as the lapped orthogonal
transforms (LOT). By Vetterli et al. in [12] and by So-
man et al. in [13], the more general systems of higher
order were addressed, but the fast implementation was
not considered.
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Recently, in [14], Queiroz et al. constructed the
generalized LP LOT (GenLOT) based on the type-ll
discrete cosine transform (DCT)[17], and investigated
the fast implementation. The DCT-based GenLOT was,
however, considered under some limitation, and this
fact affects the achievable performance such as coding
gain and stopband attenuation. In order to solve the
limitation problem, the general form of GenLOT was
provided in [15],[16] by replacing the DCT by another
LP orthonormal matrix. However, the choice of the
initial parameters in the design processes is more com-
plicated than that of the DCT-based one, and the com-
putational load of the newly introduced matrix is, in
general, heavier than that of the fast DCT.

In this paper, to overcome the limitation problem
in the DCT-based GenLOT, we propose a new structure
of that and consider the fast implementation. The out-
line of this paper is as follows. In Sect. 2, we review LP
and PU properties of M-channel maximally decimated
filter banks, and in Sect. 3, we provide an overlap-save
method (OLS) based on the type-1II DCT (DCT-II) for
FIR filtering. Then, in Sect.4, we consider applying the
OLS to factorize some class of LPPUFB. The results can
be regarded as a new representation of the DCT-based
GenLOT. In Sect. 5, we provide a recursive initialization
design procedure to avoid insignificant local-minimum
solutions, and establish the fast implementation by sim-
plifying the structure as was done in [10],[11]. In order
to verify the significance of our proposed method, sev-
eral design examples and the computational complexity
are shown.

2. Linear-Phase Paraunitary Filter Banks

As a preliminary, we review the A -channel maximally
decimated filter banks, and also the PU[2] and LP
properties [12],{13]. All through this work, the follow-
ing notations are used.

O : the null matrix.
Iy @ the M x M identity matrix.

Jar ¢ the M x M reversal (or counter-identity) matrix.

I’y : the M x M diagonal matrix which has +1 and
—1 elements alternatively on the diagonal, defined
by I'yr = diag [1,-1,..., (—1)M-1].
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Py the M x M permutation matrix which permutes
the even rows into the top half and the odd rows
into the bottom half. For example,

Py = (D

OO O =
O OO
OO = O
= O O O

Besides, the superscript +’ denotes complex conjuga-
tion, and the superscripts ‘7 and ‘t” on a vector or
matrix denote the transposition and hermitian transpo-
sition, respectively. Furthermore, the tilde notation <
over vector or matrix denotes the paraconjugation[2],
for example, E(z) = ET(1/2*).

2.1 M-Channel Maximally Decimated Filter Banks

Figure 1(a) shows a parallel structure of M-channel
maximally decimated filter banks[2], where Hy(z) and
Fy(z) are the analysis and synthesis filters, respectively.
The boxes including | M and 1M denote the down-
sampler and upsampler with the factor M, respectively.
When the reconstructed output sequence X (z) is identi-
cal to the input X (z), except for the delay and scaling,
the analysis-synthesis system is called perfect reconstruc-
tion (PR) filter banks.

The structure as shown in Fig.1(a) can al-
ways be rewritten in terms of the polyphase matri-
ces as shown in Fig. 1(b), where E(z) and R(z) de-
note the M x M polyphase matrices[2] correspond-
ing to analysis and synthesis banks, respectively. Let
h(z) and f(z) be the M x 1 column vectors de-
fined by h(z) = [Ho(z),Hi(2), -+, Hy 1(2)]T and
f(2) = [Fo(2), Fi(2), -+, Fam-1(2)]T, respectively, and
let d(z) = [1,2z7%,---, 2= M-U)T " 1In terms of the

Subband signals
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Synthesis bank
(a)

Subband signals

Analysis bank

E(z)] :| |R(z)

Analysis bank

X /
] A .
z! Pz

Synthesis bank L2
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Fig. 1 M-channel maximally decimated filter banks. (a) and
(b) show a parallel structure and the polyphase matrix represen-
tation, respectively.
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polyphase matrices E(z) and R(z), h(z) and f(z)
are respectively represented as h(z) = E(2M)d (z) and
FE(2) = 2= M-1d(2)R(zM).- If E(z) and R(z) satisfy
the following condition[2]:

R(2)E(z)=2"NIy )

for some integer N, then the system has PR property.
2.2 Paraunitary (PU) Property

If E(z) satisfies the following condition[2]:
E(z)E(z) = IM, (3)

then it is said to be'paraunitary (PU).

The condition as in Eq. (3) is sufficient to construct
PR filter banks, since the PR property as in Eq.(2) is
guaranteed by choosing the synthesis polyphase matrix
as R(z) = 2~V E(z). When E(2) is causal FIR of or-
der N, so is R(z) in this choice. Besides, it is of interest
that the property as in Eq. (3) allows us to use optimal
bit-allocation algorithms in the SBC applications [3].

2.3 Linear-Phase (LP) Property

Assume that F(z) is real and causal FIR of order N.
On this assumption, the corresponding analysis filters
Hy (%) are also causal FIR with real coefficients and of
order K = (N + 1)M — 1. If E(2) further satisfies the
following property [12],[13]:

NIy E(z" Ty = E(2), 4

then each analysis filter Hy(z) for even k is symmet-
ric dnd one for odd k is antisymmetric with the center
of symmetry K/2. When the number of channel M is
even, the analysis bank h(z) consists of M/2 symmetric
and M/2 antisymmetric LP filters. Hence, the system
described in Eq. (4) satisfies the necessary condition for
LP PR filter banks with respect to the numbers of sym-
metric and antisymmetric filters[13, Theorem 1].

The complete factorization of LPPUFB as in
Eqgs.(3) and (4) has already been established in the ar-
ticles[13],[15],[16] for even M. Our proposed factor-
ization is also complete for the same class. Besides, the
corresponding cascade structure is based on the DCT-
II. As a result, a new representation of the DCT-based
GenLOT is obtained and the fast implementation hold-
ing high coding gain can be established.

3. Overlap-Save Method Based on DCT

In this section, we provide an FIR filtering technique
based on the DCT-II. The technique can be regarded as
a modification of the generalized overlap-save method
(OLS)[1] and has an important role for factorizing LP-
PUFB described in Egs. (3) and (4).

Let H(z) be an FIR filter and e(z) be the M x 1
vector defined by
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e(z) = [EO(Z)v By (2)7 T ﬁE-M—l(Z)]Tv (&)

where Ey(z) is the {-th type-1 polyphase component of
H(z) with the decomposition factor M. In terms of
e(z), H(z) can be represented as H(z) = eT(zM)d(z).
In the followings, we assume that the factor M is even.
In order to establish OLS with the DCT-II for FIR
filtering, we firstly decompose e(z) into the symmetric
vector s(z) and antisymmetric vector a(z), as follows:

e(z) = s(z) + a(z) (6)
where

S(z) — W7 (7)

a(z) = M @®)

Note that s(z) and a(z) are uniquely determined from
their own M /2 x 1 bottom-half vectors, which consist of
their representative elements, respectively. By denoting
the bottom-half vectors of s(z) and a(z) as s*(z) and
a’(z), respectively, e(z) can be represented as follows:

C@=["0 @) | ] o

Then, we define transform coeflicient vectors gr(z)
and g (z) of s*(z) and a’(z), respectively, by

g(z) = Ty Ch s*(2), (10)
go(2) = 'y Shia'(2), (11

where CYL and S denote the M -point orthonormal
DCT-II and type-IV discrete sine transform (DST) ma-
trices[17], respectively (see Appendix). Substituted
the relations s'7(z) = gET(z)I‘% C’% and a7 (z) =

gOT(z)F% S%, Eq.(9) can be rewritten as

e'(2) = V2 [gh(2) g5(2)] PuCYTw, (12)

where the properties PMPJ:'\} =1y, FMCR% = Cﬁ} I
and I'y, S?,[/ = CRI/J m and the sparse matrix factoriza-
tion of the DCT-II[17]

o Lpr| €% O J[Iy Jy 13
2 2

are used, where Cﬂ}f is the M-point orthonormal type-
IV DCT matrix[17]. From Eq.(12), an equivalent
structure to H(z) can be obtained as shown in Fig.2.
The structure can be regarded as a special case of the
generalized OLS[1] using the DCT-domain filtering
technique [ 18].

Assume that the order of the polyphase component
vector e(z) is N. In this case, the order of H(z) results
in K = (N +1)M — 1. Note that if and only if H(z) is
symmetric with the center of symmetry K/2, that is, the

1
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Fig. 2 A structure of DCT-based OLS for FIR filtering. The
letters ‘E” and ‘O’ represent even and odd coefficients, respectively.

case that z~VeT(271)J ), = €T (2), then the following

properties are satisfied with yg = 1 and yo = —1:
9u(2) = 12 Vgg(z™), (14)
9o(2) = 102 Vg0 (7). (15)

Besides, if and only if H(z) is antisymmetric with
the center of symmetry K/2, that is, the case that
—z Vel (271 Iy = eT(z), the above properties are
satisfied with yg = —1 and yo = 1. These proper-
ties can be used to factorize LPPUFB as we will show
in the next section.

4. New Structure of DCT-Based GenLOT

In this section, by using the DCT-based OLS developed
in the previous section, we discuss a factorization tech-
nique of LPPUFB satisfying Egs. (3) and (4) for even
M. Our proposed factorization provides a new struc-
ture of the DCT-based GenLOT [14], which covers the
same class as that of the general form[15],[16].

Assume that E(z) is causal FIR of order N and
satisfies the condition as in Eq.(4), and that the num-
ber of channels M is even. As mentioned before, on this
assumption, the corresponding analysis filters Hj, (2) are
causal FIR of order K = (N +1)M —1, and the analysis
bank h(z) consists of ///2 symmetric and M/2 antisym-
metric LP filters.

Let ex(2) be the type-I polyphase component vector
of Hy(z) provided as in Eq. (5), that is, the transpose of
the k-th row vector of E(z). Since ex(z) can be repre-
sented with the DCT-II as in Eq.(12) and satisfies the
LP properties Egs. (14) and (15), E(z) can be rewritten
as the following form:

E(z) = P3,G(2) Py CY T, (16)

where G(z) is the M x M matrix which consists of the
transform coefficient vectors obtained from ey (z) as in
Egs. (10) and (11), and has the form

Grs(z) Goa(z)
G(z) =2 G}];i((z)) GZ/;EZ)] (17)

In Eq. (17), Ggs(z), GOA(Z), GEA(Z) and Gos(z) de-
note M/2 x M/2 matrices of order N which satisfy the
properties
G_s(z) = 2 NG_s(z71), (18)
G_n(z) = =G A(z "), (19)
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Fig.3 A new cascade structure of the DCT-based GenLOT, where M denotes the number
of channels and is even, and besides N denotes the order of the corresponding polyphase
matrix E(z). The letters ‘E” and ‘O’ represent even and odd coefficients, respectively.

where the subscript ‘-’ stands for either ‘E’ or ‘O’. The
top half sub-matrix of G(z) corresponds to symmetric
filters and the rest does antisymmetric ones.

Then, let us consider factorizing G(z) satisfying the
property Eq. (17) under the PU constraint Eq. (3). Note
that if and only if Egz) is PU, the G(z) is PU since all
of Py, Jy and C%W are PU. For convenience of the
further discussion, we define the M x M matrix F(z)
by F(z) = TBG(z) where

T — I% (0] B - 1 I_z\zi I%
Slo gy PP T R e Iy |

Note that both of T and B are orthonormal. The ma-
trix F'(z) can be represented as

ZﬁNF]?E(Zﬁl) ﬁZ—Ngvo(Z—l) } ’ (20)

where FE(Z) :GES(Z)+GEA (Z) and Fo (Z) :Ggs(z)+

) -T|

Goa(z). From Eq.(20), it can be verified that F(z)
satisfies the following property:
o [ Iu O
2 NIy F(z 1){ 6 _I. } = F(2). 1)
2

Once the above relation was obtained, as done in
the proof for [13, Theorem 3], any F(z) can completely
be factorized under the PU constraint Eq. (3) as

F(z) = TBRNyBA(2)BRy_1B -+ A(2) BRy,

(22)
where

W, O 1 o

In the above equation, W, and U, are M/2 x M/2
orthonormal matrices. It should be noted that F'(z)
of which order is zero has the form F(z) = TBRy.
Substituted the relation G(z) = BT'F(z) and Eq. (22),
Eq. (16) can be represented as follows:

E(2) = PRNQ(2) Ry -Q(2) RoPrCliy T
(23)

ES

where Q(z) = BA(z)B, which is also PU.

From Eq. (23), we notice that any PU analysis bank
described in Eq.(4) for even M can always be con-
structed with the cascade structure as shown in Fig. 3,

where the scaling factors 1/4/2 involved in B are uni-
fied, so that the result is 2N . Conversely, we can uti-
lize the structure to design LPPUFB by controlling W,
and U ,,,. Because of the PU property of E(z), the coun-
terpart synthesis bank R(z) holding PR property is sim-
ply obtained as R(z) = z~ N E(z).

From Fig. 3, the structure can be regarded as a new
representation of the DCT-based GenLOT[14]. The
conventional DCT-based GenLOT is viewed as the spe-
cial case that Ry = I;. Note that the limitation of Ry
affects the achievable performance such as coding gain
and stopband attenuation. Hence, the performance of
the fast implementation based on the conventional tech-
nique is also limited. The proposed GenLOT can over-
come this problem and allows us to construct the fast
implementation holding high coding gain or stopband
attenuation, nevertheless it is based on the DCT-II.

5. Design Procedure and Fast Implementation

In the previous section, we developed a factorization
technique of LPPUFB. In the followings, the design
procedure is discussed, and then the fast implementa-
tion is established so as to reduce both of the design
and implementation complexities. The proposed fast
algorithm can achieve higher coding gain or stopband
attenuation than the conventional one. In order to ver-
ify the significance of our proposed method, several de-
sign examples are also shown. Besides, we give some
comments on the regularity, which is important to con-
struct M-band wavelets [13],[15].

5.1 Recursive Initialization Design Procedure

According to the factorization as in Eq.(23), we can
construct any M-channel LPPUFB satisfying Egs. (3)
and (4) for even M by controlling 2(N +1) M/2x M/2
orthonormal matrices W,,, and U, in the structure as
shown in Fig.3. Since each W,, and U,, can com-
pletely be characterized in terms of M (M —2)/8 Givens
rotations (or planar rotations)[1],[2], it is allowed to
design such a system by means of an unconstrained op-
timization process to minimize (or maximize) some ob-
ject function. Both of the PU property as in Eq. (3) and
the LP property as in Eq.(4) are guaranteed while de-
signing since these constraints are structurally imposed.
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In the optimization process, the initial parameters
have to be carefully chosen so as to avoid insignifi-
cant local-minimum solutions. In both of the proposed
and conventional GenLOT, the problem can almost be
solved by recursively initializing the parameters to be
optimized. Let E,,(z) be a matrix of order m repre-
sented as in Eq. (23). It can be verified that, when

Wp=Wny=1Iuy, (24)
Um =Up1 = _IM; (25)

2

there exists a matrix E,,—2(z), and the matrix E.,(z)
can be represented as follows:

Ep(2) = 27 Ep_s(2). (26)

Equation (26) implies that E,,(z) is identical to the
two lower order system E,,_»(z) but with the delay.
Hence, when E,, 5(z) has good performance, for ex-
ample high coding gain, so does E,,,(z). As a result, we
can design a significant GenLOT for minimizing some
object function by starting with a simple problem, and
evolutionary increasing the parameters as the following
procedure:

Step 1: Start with proper LPPUFB Ey(z) for even N
or E(z) for odd N, for example DCT-II or LOT, and
optimize it.

Step 2: Initialize the two higher order system by adding
two sections according to Eq.(23) with the matrices as
in Egs. (24) and (25).

Step 3: Optimize the system, and go to Step 2 until the
order reaches to V.

Note that the starting guess in Step 1 is easily
achieved, since the proposed structure is based on the
DCT-II, and that the above procedure does not depend
on the choice of object function. Although it does not
guarantee the global minimum solution, experimental
results show that it leads to a significant solution.

In the entire structure as in Eq.(23), the number
of free parameters, that is, rotation angles, to be opti-
mized is (N + 1)(M — 2)M /4, and the implementation
requires p(CYy) + (N + 1)M?/2 multiplications and
a(CY) + (N + 12(M —2)M/2 + 2N M additions per
block, where u(Ch;) and a(C%) denote the number of
multiplications and additions of M-point DCT-II, re-
spectively, and it is assumed that each of W, and U,,
requires M2 /4 multiplications and (M — 2)M /4 addi-
tions. As well known, DCT-II has the fast implementa-
tions [17], and therefore, can be efficiently implemented.

Indeed, the proposed GenLOT is slightly inefficient
compared with the conventional general form. How-
ever, since the DCT-II is a good approximation to the
optimum solution of the first transform matrix in the
general form, the complexity of the proposed structure
is considerably reduced by some simplification, holding
good performance.
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5.2 Fast Implementation

In order to reduce both of the design and implementa-
tion complexities of the proposed GenLOT, we consider
simplifying the matrices W, and U, as

W = Iy, @7)
Um =Ty s 5T 2s 3 Trmo (28)
for m = 0,1,---, N, respectively, in the similar way to
the type-I fast LOT[10],[11], where
I; (o) o
Tm:=| O Y (0:,5) o , (29)
0] O ITw_, o
2
N _ | cosbmi —sinfm;
Y (Om,i) = sinfp,; cosbm; (30)

By the above simplification, the number of rotation an-
gles 0, ; to be optimized is reduced to (N+1)(M —2)/2,
and the implementation complexity is also reduced
to u(C') + 3(N 4 1)(M — 2)/2 multiplications and
o(C)+3(N+1)(M —2)/2+2NM additions per block,
where it is assumed that each U, requires 3(M — 2)/2
multiplications and 3(M — 2)/2 additions. As we will
show experimentally, this simplification does not lead
significant reduction of the coding gain. Note that the
recursive initialization approach is still available.

5.3 Design Examples

In order to verify the significance of the proposed Gen-
LOT and its fast implementation, we show some design
examples, where the object function of optimization is
chosen as the maximum coding gain Grc [3].

Table 1 shows the resulting Gr¢’s of the proposed
GenLOT and its fast structure which are optimized for
an AR (1) signal with p = 0.95, and also their imple-
mentation complexities, where the number of channels

Table 1 Coding gain Gpc of several transforms, for an AR (1)
signal with p = 0.95 and computational complexities (M = 8).
N denotes the order of the corresponding polyphase matrix.
#MUL’s and #ADD’s stand for the numbers of multiplications
and additions per block, respectively.

TRANSFORM N | Gpre | #MUL’s | #ADD’s
[dB] | [/Block] | [/Block]
DCT-II 0 | 8.825 13 29
LOT-Fast 1 1 | 9.198 22 54
Conventional 2 | 9.180 77 109
DCT-based GenL.OT 3 | 9.360 109 149
0 | 8.846 45 53
Proposed 1 | 9.269 77 93
GenLOT 2 | 9.394 109 133
3 | 9.463 141 173
0 | 8827 22 38
Proposed Fast 1 | 9232 31 63
GenLOT 2 | 9.315 40 88
3 | 9.438 49 113
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M was fixed to 8. Those of DCT-II[17], the type-I
fast LOT (denoted as LOT- FasT 1)[10],[11] and the
conventional DCT-based GenLOT [ 14] are also shown,
where any simplification for fast implementation is not
assumed for the conventional GenLOT.

From Table 1, we notice the following things: 1)
Grc of the proposed fast GenLOT is comparable to
that of the entire structure, and the implementation is
more efficient. 2) Gpe of the proposed fast GenLOT is
higher than that of the conventional DCT-based Gen-
LOT where no simplification is assumed, and the im-
plementation is more efficient. Summarizing, the fast
implementation of the proposed fast GenLOT is supe-
rior to the conventional technique in terms of the coding
gain, in spite of the parameter reduction.

As an example, Table 2 gives the optimized angles
Om,s of the proposed fast GenLOT, where M = 8 and
N = 3. Besides, the amplitude and impulse responses of
the optimized analysis filters Hy(z) are given in Fig. 4.

Table 2 A design example of the proposed fast GenLOT:
angles 6,,; optimized for an AR (1) signal with p = 0.95
(M =8,N =3).

Om 7
0] 1] 2
0 —0.157 | —0.027 —0.047
m 1 1.297 | —0.037 0.937
2 1.177 | —0.017 1.057
3 0.857 —0.157 1.197

o
S

(=)

Amplitude 201log, [Hi(e)| [dB]
A Lo
S 3

0 /2 T
Normalized Angular Frequency w [rad]
(2)

rluzf ‘ §”§v
it IR
(b)

Fig. 4 A design example of the proposed fast GenLOT for an
AR (1) signal with p = 0.95 (M = 8 N = 3, K = 31). (a) and
(b) show the amplitude and impulse responses of 8 analysis filters
Hp(z), respectively.
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5.4 Regularity

The use of the GenLLOT enables us to obtain M-band
LP orthonormal wavelets by iterating the decomposi-
tion[13],[15]. The condition that the continuous time
wavelets have at least one vanishing moment is that
h(1) = E(1)d(1) = [v/M,0,0,---,0]7. In this case,
there is no DC leakage into the higher frequency sub-
bands. It can be verified that, in the proposed GenLOT,
this condition is satisfied when the product of the ma-
trices W, has the form

WNWN_l---Wo:[}) 3] (31)
where V' is an (M/2 — 1) x (M/2 — 1) orthonormal
matrix. The above condition is easily derived from
the facts that Py, ChyJ pd(1) = [VM,0,0,---,0]T and
Q(1) = I,s. Obviously, our proposed fast GenLOT sat-
isfies the above condition and, therefore, is applicable
to construct M-band wavelets with regularity.

6. Conclusion

In this work, we proposed a new structure of M -channel
linear-phase paraunitary filter banks for even M, which
can be regarded as a new representation of the conven-
tional DCT-based GenL.OT. The most significant fea-
ture of our proposed method is that the fast implementa-
tion is achievable by some simplification, holding high
coding gain. The significance was verified by several
design examples. It was also shown that the fast im-
plementation is applicable to construct M-band linear-
phase orthonormal wavelets with regularity. In future,
we will provide the size-limited structure for the ap-
plications to subband image codings, and develop the
discussion to construct multidimensional non-separable
linear-phase perfect reconstruction filter banks.
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Appendix: Definitions of DCT-II and DST-IV

The M-point orthonormal type-II DCT and type-IV
DST matrices are defined as follows, respectively [17]:

\ 1y,
[Cﬁ]mn = \/%km cos <%> , (A1)

sh] = \/%sm <(m+ %i\(/[wr%)”), (A-2)

for 0 < m,n £ M — 1, where the notation [-],,, denotes
the mn-th element of its argument matrix, and k,, is
1/v/2form=0and1forl<m<M—1.
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