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The Problem of where to Locate p-Sinks
in a Flow Network: Complexity Approach

Kaoru WATANABE', Hiroshi TAMURA'T, and Masakazu SENGOKU', Members

SUMMARY The p-ollection problem is where to locate p
sinks in a flow network such that the value of a maximum flow
is maximum. In this paper we show complexity results of the
p-collection problem. We prove that the decision problem cor-
responding to the p-collection problem is strongly NP-complete.
Although location problems (the p-center problem and the p-
median problem) in networks and flow networks with tree struc-
ture is solvable in polynomial time, we prove that the decision
problem of the p-collection problem in networks with tree struc-
ture, is weakly NP-complete. And we show a polynomial time
algorithm for the subproblem of the p-collection problem such
that the degree sum of vertices with degree > 3 in a network, is
bound to some constant X = 0.

key words: location problem, flow network, NP-complete, opti-
mization problem

1. Introduction

Recently the authors discussed the problem of where to
locate p sinks in a flow network such that the value of a
maximum flow is maximum [ 1], and called this problem
the p-collection problem. This problem is an important
location problem in a flow network because we can ap-
ply this problem to locating p resources (e.g. data-bases,
file-servers, etc.) in a computer network such that these
p resources can be used by as many terminals (clients)
as possible.

A network N = (D,c,d) is a digraph D = (V, A)
with a positive integer c(a) (called the capacity of a)
associated with each of its |A| arcs, and a nonnega-
tive integer d(v) (called the weight of v) associated with
each of its |[V|(= n) vertices. Let s be the specified ver-
tex with s ¢ V called a source, and let A; be the arc
set {(s,v) : v €V and d(v) > 0}. Let V* =V U {s},
and let A* = AU A;. Let D* be the digraph with the
vertex set V* and the arc set A*. The adjoint network
N* = (D*,s,c¢*) of N is the digraph D* with the source
s and the capacity ¢*(a) of each arc a € A* such that

0= i)

Figure 1 shows examples of a network and its ad-
joint network.

if acA
if a(=(s,v)) € As.
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Let X be an arbitrary subset of V. The flow net-
work N% is the adjoint network N* with | X| sinks fixed
on all vertices of X. The collection number hy(X) of
X is the value val(f) of a maximum flow f in N . Let
Hy(p) = max{hn(X):|X|=pand X CV}. (We usu-
ally drop the subscript N in hyx(X) and Hy(p) when
the network N is clear from context.) Then we call
the value of H(p) the maximum p-collection number
of N. A maximum p-collection set of N is a subset
X’ of V' with |X'| = p such that h(X') = H(p), and
the p-collection problem is the optimization problem of
searching a maximum p-collection set in V.

Similarly we can discuss the p-collection problem
in an undirected network A defined as the triple of
the graph G with a vertex set V' and an edge set F, a
weight function d on V, and a capacity function ¢ on
E. This undirected version comes to the p-collection
problem in a directed network without loss of gener-
ality by replacing each edge of the undirected network
with two arcs whose orientations are opposite to each
other, and whose capacities are equal to the capacity
of the replaced edge. The adjoint network M™* of M is
defined as the adjoint network of the (directed) network
obtained by such a replacement in M.

The authors showed an O(n) time algorithm for
the l-collection problem in a network whose under-
lying graph is a tree (called a tree network), and a
pseudo-polynomial time algorithm for the p-collection
problem in a tree network [1]. In this paper we discuss
the complexity of the pcollection problem. In Sect.2
we prove that the decision problem corresponding to
the pcollection problem is strongly NP-complete. It
is known that location problems (the p-center prob-

d(v1)=3 d(v4)=0
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Fig. 1 (a) A network. (b) Its adjoint network.
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lem and the p-median problem) in networks and flow
networks restricted within tree networks is solvable in
polynomial time[2]-[4]. In Sect.3 we prove that the
decision problem of the p-collection problem is weakly
NP-complete even if the decision problem is restricted
within classes of very simple networks as undirected star
networks whose underlying graphs are stars (where a
star is a bipartite graph K(; ,1y). The DSR (Degree
Sum Restricted) p-collection problem is the subproblem
of the p-collection problem such that the degree sum of
vertices with degree = 3 in a network is bound to some
constant K = 0. In Sect. 4 we present a polynomial time
algorithm for the DSR p-collection problem.

2. General Network

In this section we prove strong NP-completeness of the
p-collection problem in general networks.

First we explain the min-cut max-flow theorem [8].
Generally the min-cut max-flow theorem refers to a flow
network with a single source and a single sink, but we
can easily extend it to a multi-sink version. Let N% be
a flow network with a source s and a set X of sinks,
and let V* be the vertex set of N5. Let Y be a subset
of V* with s € Y involving no vertices of X, and let
(Y,V* —Y) denote the set of arcs incident from some
vertex of Y and to some vertex of V* — Y each in N
(called the cut (Y, V* —=Y)). Let cap(Y') denote the sum
of capacities of arcs in (Y, V*—Y") (called the capacity of
the cut (Y, V*—Y)). A cut with capacity miny {cap(Y)}
is called a minimum cut in N%. The following lemma is
an extended min-cut max-flow theorem. (We can easily
verify the lemma by identifying all sinks of X.)

Lemma 1: A cut C is a minimum cut in a flow net-
work with a source and plural sinks if and only if the
capacity of C is equal to the value of a maximum flow
in the flow network.

Hence hy(X) is equal to the capacity of a minimum
cut. And the following lemma holds.

Lemma 2: Let f be a maximum flow in a flow network
with a source and plural sinks. If ¢ is an arc of a mini-
mum cut in the flow network, the value of f(a) is equal
to the capacity of a (i.e., the arc a is saturated).

If we prove strong NP-completeness of the p-
collection problem in undirected networks, then the p-
collection problem (in directed networks) is strongly
NP-complete. Thus we deal with undirected networks.
We define the decision problem corresponding to the p-
collection problem in the undirected network (denoted
by CUN) as follows.

Problem 1: CUN

INSTANCE : An undirected network M = (G,c¢,d)
with a graph G = (V, E), a positive integer p < |V| and
a nonnegative integer r < >, -y, d(v).
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QUESTION : H(p) = r, ie., is there V’gV with
[V'| < p such that A(V') = r?

In our proof we will transform the following VER-
TEX COVER problem (denoted by VC) to CUN.

Problem 2: VC

INSTANCE : A graph G = (V, E) and a positive inte-
ger k < V.

QUESTION : Is there a vertex cover V' CV with |V'| <
k,i.e., a subset V' CV with |V’| < k such that for each

edge {u,v} € E at least one of v and v belongs to V'?

It is known that VC is NP-complete if a graph is re-
stricted within planar graphs with maximum degree
3[5]. We prove the following theorem using this result.

Theorem 1: CUN is strongly NP-complete even for
planar graphs with maximum degree 3,

Proof: CUN belongs to the class NP since this problem
can be solved in polynomial time by guessing a subset
V' of V' with |V’| = p and by checking h(V') = r.

We transform an instance of VC to one of CUN.
Let G = (V, E) be a planar graph with maximum de-
gree 3, and k be a positive integer. We assign the degree
deg(v) of v to the weight d(v) for each vertex v and one
to the capacity c(e) of each edge e. Then the triple of
M = (G,c,d), k and ) . deg(v) = r is an instance
of CUN, and this transformation has been performed
in polynomial time. An example of transformation is
illustrated in Fig. 2.

It is clear that h(V') = r if a subset V/ of V is a
vertex cover of G.

Conversely we assume that V' is a subset of V' with
hV') = r. To show that V' is a vertex cover of G,
suppose that there exists an edge {u,v} uncovered by
V' (i.e. u,v € V). Let M* denote the adjoint network
of M, let V* denote the vertex set of M™*, and let A,
denote the set of arcs incident from s in M™. In this
paper, for a subset X of V*, we say that an arc (z,y)
of M™ is incident from X ifz € X and y ¢ X. Let B
denote the set of arcs incident from the set {u,v}. (By
the definition of “incident from vertex-set”, both arcs

(@) (b)

Fig. 2 (a) An instance of VC. (b) Its transformed instance.
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(u,v) and (v,u) do not belong to B.) Then

Z c(a) = deg(u) + deg(v) — 2

a€EB
< deg(u) + deg(v),

where deg(z) denotes the degree of a vertex z in
(GG. However notice that the arc set A, is the cut
({s},V* — {s}) with capacity r in M;,. Let f be a
maximum flow in M3, (where the flow network My,
is the adjoint network M* with the sink set V’). Since
val(f) = h(V') = r, the arc set A, is a minimum cut by
Lemma 1. From Lemma 2 we obtain f(s,u) = deg(u)
and f(s,v) = deg(v). Therefore

deg(u) +deg(v) = f(s,u) + f(s,v)

<)Y flasd ca)

acB a€B

This result is unreasonable, and so V/ must be a vertex
cover of G. Therefore a subset V' of V' with |V'| < k
is a vertex cover if and only if (V') = r. Thus CUN
is NP-complete. However the underlying graph of the
transformed network is a planer graph with maximum
degree 3, and the maximum number occurring in the
transformed instance is three. Hence CUN is strongly
NP-complete for planar graphs with maximum degree
3. m|

In the next section we shall restrict CUN within
tree networks because the general CUN problem is too
hard.

3. Tree Network

In this section we discuss the complexity of the p-
collection problem in tree networks. We will obtain an
interesting result. It is the fact that, CUN is weekly NP-
complete although location problems (e.g. the p-center
problem and the p-median problem) in a network and a
flow network with tree structure can be solved in poly-
nomial time[2]-[4]. It is known that the following
lemma holds[1].

Lemma 3: There exists a pseudo-polynomial time al-
gorithm for the pcollection problem in tree networks.

To begin with, we define CUN in star networks
(denoted by CUS) as follows.

Problem 3: CUS

INSTANCE : An undirected network M = (S,¢,d)
with a star .S, a positive integer p and a nonnegative
integer r.

QUESTION : H(p) = r?

In our proof we will transform to CUS the following
EQUICARDINAL PARTITION problem (written as
EP).
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Problem 4: EP
INSTANCE : A positive integer sequence (t1, ..., o)
where m is a positive integer.
QUESTION : Is there a subset I' of I = {1,...,2m}
with [I'] = m such that Zti = Z t;?

icl’ iel—rI
EP is a subproblem of the PARTITION problem and
known to be NP-complete[6]. We prove the following
theorem using this result.

Theorem 2: CUS is weakly NP-complete.

Proof: CUS belongs to the class NP since CUS is a
subproblem of CUN. We transform an instance of EP
to one of CUS. Let (¢4, ..., t2,) be a positive integer se-
quence in an instance of EP. Let @ = > ;. ;. Let S be
the star with the vertex set V' = {u,vy,...,vam } and the
edgeset £ = {{u,v1},...,{u,vam}}. Foreachi e I, we
assign @) to weight d(v;) of each vertex v; and assign ¢;
to capacity c(u,v;) of the edge {u, v;}, and we associate
zero with the weight d(u) of the vertex u. The triple of
the undirected network M = (5, ¢, d), the positive inte-
ger m and the nonnegative integer (2m + 1)Q/2 = R
is an instance of CUS, and this transformation can be
accomplished in polynomial time. An example of a
transformed instance is illustrated in Fig. 3.

We assume that I’ is a subset of I with |I'| = m
such that ), ti = >, pte. Let V= {vfi € I'}.
Let f be a flow in M5, such that

Q fz=sandy=v; (i€l
; fz=sandy=wv; (1 ¢ I

ifr=v,(i¢I)andy=u
ifer=vandy=v; (i €I)
otherwise.

flz,y) =

o+ o ok
<

o3

Since val(f) = R, we have h(V') > val(f) = R.

Conversely we suppose that V' is a subset of V
with |V/| = m such that (V') = R. If u € V’, the in-
equality cap(V*— V') < mQ must hold in M7, and by
Lemma [ we obtain A(V') < cap(V* — V') < mQ < R.
Thus we have v ¢ V'. Let I’ be the subset of I
such that I’ = {1 € I|v; € V'}. We hope to show
that >, ti = > ;o pti. To verify that this equa-
tion holds, assume the opposite. We examine the case
where } it < Q/2 < 37, ;_pti. By Lemma 1 and
cap(V* — V') = > .. ti + mQ, we obtain

h(V') < cap(V* — V')

10 10 10 10

Fig. 3 The instance transformed from the instance {1,2,3,4}
of EP.
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< Zti +mQ
el
< Q/24mQ—R.

In the case where >, t; > Q/2 > > ..,/ t;, we have
h(V') < R since cap(V* — (V' U{u})) = > icr_pti +
m@. These two cases contradict A(V') = R, and so
Dier i = Dierp bi-

Hence there exists a subset I’ of I with |I'| = m
such that ), ;. t; = > ,c;_p t; if and only if there ex-
ists a subset of V' with |V’| = m such that A(V') 2 R.
By Lemma 3, CUS is weakly NP-complete. O

Now we study the complexity of the restricted CUN
problem such that the maximum degree of an undi-
rected tree network is three. Let M’ be the tree network
with the vertex set {wy, ..., Ugm, V1,...,Vom} and with
the edge set {{u;, uir1}1l < 4 < 2m} U {{u;,v,;}[1 <
J < 2m} such that d(u;) = 0 (1 £ 17 < 2m), d(v;) =
Q (1 <i<2m), cluj,uipr) = Q (1 £ 4 < 2m), and
c(ug,v;) = t; (1 <4 < 2m). Considering M’ as a net-
work transformed from an instance of EP, we obtain the
following theorem.

Theorem 3: If an undirected tree network is of maxi-
mum degree 3, CUN is weakly NP-complete.

All of the obtained theorems hold in the directed case
since the directed case includes the undirected case.

4. Subproblem in P

In this section we show a polynomial time algorithm
for the DSR p-collection problem. First we deal with a
connected network.

Let N = (D,c,d) be a connected DSR network
where D is the digraph with a vertex set V' and an arc
set A, let G = (V, E) be the underlying graph of D, and
let K be a constant binding the degree sum of vertices
of V' with degree > 3.

We call a subset W of V' a wall in G if W is empty,
or if there exists an edge e of E such that for any vertex
w € W, there exists a w-e path (between the vertex w
and the edge e) including no vertices of W —{w}. Let W
be a nonempty wall in G, and let e be an edge such that
for any vertex w € W, there exists a w-e path including
no-vertices of W — {w}. Let E’ be the maximum subset
of E such that for any ¢’ € E’, there exists an e-¢’ path
having no vertices of W. Then we call the pair (W, E')
a garden in G. The wall W is contained in the set of
vertices of V' incident to edges of E’ since each vertex
of W is adjacent to some edge of E’. Figure 4 shows
an example of a wall and a garden.

We introduce some expressions. Let (W, E’) be an
arbitrary garden in G. Let V/E' denote the set of ver-
tices of V' incident to edges of E’, let G/E’ denote the
subgraph of G with the vertex set V/E’ and the edge set
E’, let A/E’ denote the arc set {(z,y) € A : {z,y} €
E’}, and let N/E' denote the subnetwork in N restricted
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(" Walw A
O,

O/ -
Garden (W,E")

Fig. 4 An example of a wall W and a garden (W, E’).
The edges of E' are illustrated with thick lines.

/

on the digraph with the vertex set V/E’ and the arc set
A/E'.

Let’s consider enumerating all gardens, proving the
following lemma.

Lemma 4: Let G be a graph with n vertices and m
edges such that the degree sum of vertices with degree
> 3 is equal to K. Then the size of each wall in G is at
most K + 2, the number of walls in G is O(n"+?), and
the number of gardens in G is O(mn®+2).

Proof: To begin with, we estimate the size of a wall
W in G. There exists a garden (W, E') with the wall
W. By the definition of walls, there exists an edge
e of E’ such that for any w € W, there exists some
w-e path P, involving no vertices of W — {w}. Let
G" = (Upew V(Pw) Upew E(Pw)) where V(P,) and
E(P,) denote the vertex set and the edge set of P, re-
spectively. Then each w of W has degree 1 in G’. Let n’
denote the number of vertices of G/, and let m’ denote
the number of edges of G’. It is well known that the
degree sum of all vertices of G’ is equal to 2m/, and (if
G’ is connected,) the inequality n’ < m’ + 1 holds[9].
In 7, let V; denote the set of vertices with degree 1,
and let V5 denote the set of vertices with degree 2, and
let V5 denote the set of vertices with degree = 3. Then

Z deg(v) = 2m/ — Z deg(v) — Z deg(v)

veEV3 vEVL vEV2
2n' — 2 — |Vi| — 2| V3|
2(n — V2| = [Vi]) = 2+ |4
Vil —2 = W] - 2.
Since oy, deg(v) £ K, we get [W[ < K 2.
Let r denote the number of walls in G, The number

v IV IV

of walls with size g is equal or less than . Hence
min{n,K+2} min{n,K+2}
n . n
r < . Since <
= > (1) > ()=
g=1 q=1
min{n,K+2} K+2

Z n? < Z n?, we obtain r = O(n®*2). The
g=1 g=1
number of gardens in G is O(mn®*2) since it is equal
or less than msr. o
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Fig. 5 A garden § = (W,E’) with W = {vi,vz,v3}, and
£(g>z) = {E17E27 ES}

Suppose that X is a subset of V' with size < K + 2.
Using depth-first search, in O(m) time, one can know
whether X is a wall, and simultaneously enumerate gar-
dens with the wall X when X is a wall. By Lemma 4
it takes O(mn®*2) time to enumerate all walls in G.

Let G = (W, E') be a garden in GG, and consider the
subgraph G/E’. If z is a vertex of V/E' — W, let £(G, z)
denote the family of maximal subsets of £’ such that in
G/E', there is an e-¢’ path containing no vertices of
W U{z} for any edges e and e’ of each subset, and such
that £(G, z) is a partition of F’. Figure 5 illustrates an
example of such a partition.

To examine properties of such a partition, we prove
the following lemma.

Lemma 5: Let G be the graph with a vertex set V' and
an edge set £, let G = (W, E’) be a garden in G, let z
be a vertex of V/E' — W, and let W/ = W U {z}. Then
the following conditions hold.

() If F1 and E5 are different edge-sets of £(G, z), then
V/E, — W' and V/E; — W’ are disjoint.

(I1) If E; and E, are different edge-sets of £(G, z), then
V/IExNV/E; CW'.

(III) The following equations hold.

V/EI = UE”GS(Q,Z) V/E”,
W’ =Upneegny W NV/E".

(IV) For any E” € £(G, z), the pair (W' N V/E" E")
is a garden in G.

Proof: (I) Assume that there exist different edge-sets B
and Ey of £(G,z) such that (V/Ey — W')n (V/E; —
W’) 4 0. Let v be a vertex of (V/E, — W) N (V/E; —
W'). Then we have v € V/E,, v € V/E,, and v ¢ W'.
Hence there exist edges e; of Fy and e; of F5 incident
to v. Since v ¢ W', there exists e;-e3 path involving no
vertex of W', This consequence contradicts maximality
of F1 and E,. Hence we have proved (I).

(II) IfV/ElﬂV/Eg = @, Clearly V/El ﬂV/Ez g W’.
Hence we consider the case where V/E;NV/E, = 0. Let
v be an arbitrary vertex of V/E; NV/E,. To establish
that v € W', assume the opposite : v ¢ W’. Then there
must exist edges e; € E; and e; € Ey incident to v. By
v & W’ there exists an ej-e; path having no vertices of
W'. This result contradicts maximality of F; and F.
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Hence v € W'. Therefore we obtain V/E,NV/Es CW'.

(IIT) Let v be an arbitrary vertex of V/E’. Then
there exists an edge e of E’ incident to v. Since £(G, z)
is a partition of E’, there exists an edge set £ of £(G, z)
with e € E”. Hence we obtain v € V/E" C [J{V/F :
Fe&(G,2)}.

Conversely let v be an arbitrary vertex of [ J{V/F :
F € £(G,z)}. Then there exists an edge set E of
£(G,z) with v € V/E”, and there exists an edge e of
E" incident to v. Sincee € B/ C ', we havev € V/E'.
Thus we obtain V/E' = | J{V/F : F € £(G, z)}.

Since WCV/E'" and z € V/E', we obtain
W' CV/E'. Hence we get

W' nv/F:Fceg,2)
=W n|J{V/F:Fe&G,2)}
=W nV/E =W

(V) Let W” = W/ nV/E”. To begin with, we
show that W” is a wall in G. If |E”| = 1, the pair
(W" E") is a garden in G. Hence we examine the case
where |E”| = 2. There exists an path between arbitrary
two edges of E’ having no vertices of W' in G/FE’ by
the definition of E”. Since W” CV/E", there exists an

edge of E” incident to w for any w of W”. Hence if ¢ is
an edge of E”, then for any vertex w of W, there exists
a w-e path in G’ including no vertices of W' —{w}, that
is, there exists a w-e path in G containing no vertices of
W' — {w} CW' — {w}. Therefore W” is a wall in G.

We should show that (W, E”) is a garden in G.
Let ¢ be an edge of £, and let € be an arbitrary edge
of F— F’'. We suppose that in G, there exists some e-¢’
path P having no vertices of W”. Since e € E” and
e ¢ E— E”, P must have vertices of W’. Let w be the
vertex of W' nearest to e in P. Asw ¢ W, the edge set
E" does not involve any edge incident to w. Let ¢’ be
the edge nearer to e which is incident to w, and which
liesin P. Then e’ ¢ E”, and no vertices of W’ lie in the
subpath of P between e and ¢”. This is a contradiction
to maximality of E. Thus for any e/ € E—E", there is
not any e-¢’ path in G having no vertices of W”. Hence
the pair (W",E") is a garden in G. ~ O

Now we prove the following lemma to study the
collection number of the subnetwork constructed of a
garden in G.

Lemma 6: Let G = (W, E’) be a garden in G, let z be
a vertex of V/E' — W, and let W/ = W U {z}. For any
subset X of V/E' with W/ CX,

By (X) = Y d(w)

weWw’

1£(G,2)]
= Z (hN/Ei(XﬁV/Ei)— Z d(w)>

=1 weW;
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where Fy, ..., Fgg, .y are all members of £(G,z) and
W; =W'NV/E, for each 1 £ < |E(G, 2)|.
Proof: In this proof, for simplicity, we write m as

1£(G,2)]
|E(G, 2)|, and we write Z as
=1
Let (N/E")% denote the adjoint network of N/E’

with a source s and the sink set X, and let V', A’ denote
the vertex set and the arc set of (N JE"% respectively
For any 1 < ¢ <m, let (N/E;)% denote the adjoint net-
work of N/E, with the sink set X NV/E;, and let V;, A;
denote the vertex set and the arc set of the adjoint net-
work of (N/E;)% respectively. Then V; = V/E,; U {s},
and A; = A/E; U{(s,v) : v € V/E; and d(v) > 0} for
any 1 <4 < m. Hence, forany 1 < i < m, if (u,v) € A,
then u,v € V;.

We define functions g, g1,...,9.,m on A’ as

ifu=sandv e W’
otherwise,

ifu=sandv e W;

o={ %
and forany 1<i<m
d(v)
0 otherwise.

Functions g, g1,...,9m are flows in (N/E')%. Let f
be a maximum flow in (N/E')%. We define functions
fi,eeoy fm on A’ as

fi(u,v) = { f(igv)

We verify whether f; is a flow in (N/E')% for any
1 £ % £ m. Each function f; satisfies the capac-
ity constraint, and is flow-conserved on all vertices of
(V! =V;) = (X U{s}) since fi(a) = 0 for any arc a of A’
incident to-or-from vertices of V' =V, (i.e.,, a € A’ — A;).
It remains to show that in (N/E’)%, each f; is flow-
conserved on any vertex v of V; — (X U {s}). Such a
vertex v must belong to V/E,;. Since W’ C X, we have
v & W'. If v is incident to arcs of some A; (¢ % j), then
v € V/E;, and sov € V/E;NV/E; CW' by Lemma
5(11). Therefore v must not be incident to any arcs of
A; for any j % 7. Thus for any 1 < 7 < m, the function
fi is flow-conserved on all vertices of V; — (X U {s}),
and so f; turns out to be a flow in (IN/E')%.

Now we examine values of these functions on each
arc (u,v) of A’ separating three cases.

Case 1) v #+ s : Then the edge {u,v} of G/E’
must belong to £y for some 1 < k& < m. Hence
(u,v) € A/Ey, and (u,v) ¢ A/E; for any i & k. By
u £ s we have (u,v) ¢ A; for any i + k. Thus
we have fi(u,v) = f(u,v), and f;(u,v) = 0 for any
i = k. However, by u + s, we have g(u,v) = 0,
and g;(u,v) = 0 for any 1 < ¢ < m. Hence we get
Fuv) = g(u,v) = 37;(fi(u, v) — gi(u, v)).

Case2) u=sandv ¢ W' : Thenwv € V/E, — W' for
some 1 < k < m. For any ¢ & k, vertex sets V/E; — W'

if (u,v) € 4;
otherwise.
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and V/E;, — W' are disjoint by Lemma 5 (I), and so
v ¢ V/E; — W'. Since v & W/, we have v ¢ V/E;
for any i & k. Hence (u,v) € Ag, and (u,v) € 4;
for any ¢ + k. Thus we have fx(u,v) = f(u,v), and
fi(u,v) = 0 for any 7 + k. However, by v § W', we
have g(u,v) = 0, and g¢;(u,v) = 0 for any 1 < 4 < m,
Hence we get f(u v) = g(u,v) = 32 (filw,v) — gi(u, v)).

Case 3) w = s and v € W’ : If ¢ is an index with
v € W, then (u,v) € A; since v € W;CV/E;. If
i1 is an index with v ¢ W; = W' N V/E; conversely,
then v ¢ V/E;, and so (u,v) ¢ A;. Consequently
{i :ve W} ={i: (uv)e€ A} (= 1I). Thus we
have f,(u,v) = f(u,v) for any ¢ € I, and f;(u,v) =0
otherwise. Therefore ), fi(u,v) = > c; filu,v) =
[I]f(u,v). We obtain f(u,v) = d(v) (i.e., (u,v) is satu-
rated in (N/E’)% with the flow f) since (u,v) joins the
source s and the sink v. Hence >_. f,(u,v) = |I|d(v).
Since ), gi(u,v) = |I|d(v), we have Y, fi(u,v) =
> gi(u,v). Since f(u,v) = d(v) = g(u,v), we get
f(u,v) - g(”?”) = Zi(fi(u7v) - gi(uaU))'

These results in the three cases induce f(u,v)—g(u,v) =
Yo (filu,v) — gi(u,v)) for any (u,v) € A’. Since

59, fieo s fmag1, .., gm are flows in (N/E')%, we
have

val(f) —val(g) = > (val(f;) — val(g;)).

We know that val(f) = hy/p(X), that val(g) =
> wew d(w), and that val(g;) = 3,y d(w) for any
1 £ ¢ < m. We concentrate our attention on the value of
each f;. Forany 1 <¢ < m, let f/ denote the restriction
of f; on A;. Then each f is a flow in (N/E;)%. To es-
tablish that each f/ is a maximum flow in (N/E;)%, as-
sume the opposite. Then there exists an f]-augmenting
directed-path P in (N/E;)%. The directed-path P does
not include any arcs incident from s to vertices of W;
since all of these arcs are saturated in (N/E;)% with the
flow f{. Hence P is an f-augmenting directed-path in
(N/E')%. Thus f is not a maximum flow in (N/E’)%
This consequence is irrational. Thus f/ is a maximum
flow in (N/E;)% . Therefore val(f;) = hnyg, (XNV/E;)
for any 1 £ ¢ < m. Hence we have proved Lemma 6.
O

Let (W, E') be a garden in G with |[W| < p. We
define that for any nonnegative integer & with |W| <
k < min{p, V/E'[},

HN/E'(k) = m)?X hN/E’ (X),

where X' satisfies that W C X CV/E" with |X| =
Then the following proposition holds. (Hereafter, for

convenience, we refer operators E R U and max to
P k
[E(G,2)]

and max

respectively.)
kiyokle(g,2)1

1]
=C
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Proposition 1: If G = (W, E’) is a garden in G with
|W| < p, then for any |W| < k £ min{p, |V/E'|},

)
weW;

=  InaxX

2EV/E—W {maxZ( ~/.
+ Y d(w)

weWu{z}

with the following condition :
(a) Each variable k; (1 < ¢ < |€(G, %)|) runs from |W;|
to min{k, |V/E;|} satisfying

1£(g,2)]
> (k= W)+ WUz} =+,
j=1
where E1,..., Ejgg,.) denote all members of £(7, z),

and W; denotes (W U {z}) N V/E; for any 1 < i <
€(G,2)].

Proof: Let m = |£(G, 2)|, and let W/ = WU {z}. LetY
be a subset of V/E’ with |Y| = k such that W/ CY.
Then maxx hy/p/(X) = max, maxy hy/g (YY) since
the domain on which X runs is equal to one on which
Y runs. Fixing z, we should show the following equa-

tion.
> d(w)

weW’

= HlaXZ ( N/E

First we verify that the left side is equal or less than
the right side in Eq.(1). Let Y’ be a subset of
V/E' with |Y’'| = k such that W’ CY”, and such that
hn/e(Y') = maxy hy/p(Y). By |Y'| = k we have
Y N V/E;| < min{k,|V/E;|} for any 1 < i < m.
Since W; = W N V/E, CY’' NV/E;, we obtain |W;| <
|Y'NV/E;| for any 1 <4 £ m. However we can obtain
the following equation.

> (Y NV/E;]| -

i

ln}é:th/El Y) -

- Y dw ) ()

weW;

[Wil) + W' = k (2)

(Because calculating this equation tires us, we note it in
Appendix.) Hence, for each 1 < ¢ < m, there exists a
value of variable k; equal to |Y' N V/E;| satisfying the
condition (a). Hence, using Lemma 6, we can verify

that
> d(w)

weW!

= Z (hN/Ei(Y’ NV/E;) —

Z( Vi (Y NV/E]) —

h’N/E’(Y —

3 d<w>)

weW,;

5o

weW;
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< maxz ( N/EV

Conversely we verify that the left side is equal or
greater than the right side in Eq.(1). Let &{,..., k],
be values of variables ki, ..., k,, respectively such that
> H]@El(k;) = maxpy_, HX,V/‘IE (ki). Then, for any
1 £ 1 < m, there exists a subset Y/ of V/E; with W, CY/
such that |Y/| = ki, and hyyg, (Y/) = Hyjpg (k). Let

= J,Y/. Now we show that Y/ = Y' nV/E; for
any 1 <4 <m. Since Y/ CY’ and Y/ CV/E;, we know
that Y/ CY' N V/E;. To show that Y/DY' N V/E,,
we deal with an arbitrary vertex y of Y’ N V/E;. In
the case where y € W', the vertex y must belong to
V/E; NW', and so y € Y/. We examine the case where
y ¢ W'. To establish that y € Y/ in this case, we sup-
pose the opposite : y ¢ Y/. Then y must belong to
V/E; and also belong to Y’ for some j & i. Hence we
havey € V/E,NV/E; and soy € W’ by Lemma 5 (II).
Since we are examlnmg the case where ¥y ¢ W’ now,
this result is absurd. Hence we have y € Y/ also in
the case where w ¢ W'. The consequences in two cases
reads to y € Y/ NV/E;. Hence we get Y/ DY' NV/E,.
Consequently we get Y/ = Y'NV/E, forany 1 < i < m.
However we can obtain the following equation.

- ge)

weW;

Y=k 3)

(Because calculating this equation tires us, we note it
in Appendix.), and we have W’ = [J,W; C |, Y/ =Y".
Hence, using Lemma 6, we can verify that

maxz (H]‘G//E — Z d(w))

weW;
E hN/E/ (v

weW,

— > dw)

weW’

- Y dw)

weW’

1A

m&th/E/(Y

Therefore we obtain Eq. (1). O
If N/E’ has no sinks without vertices of W
(i.e|W| = k), the value of HJVVV/E,(A) can be evaluated in

O(|V| - |E|log|V|?/|E|) time using the maximum flow
algorithm[7]. Since a maximum p-collection set of N
includes the wall §, the equation Hy(p) = H% (p) holds.
Thus we should calculate the value of the right side of
this equation to obtain the maximum collection num-
ber of N. The DSR p-collection problem on a network
N is solvable in polynomial time, taking apart subnet-
works induced by gardens in G . We show the following
algorithm for the DSR p~collection problem using the
dynamic-programming approach.
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Table 1
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Complexity results of subproblems.

Restriction A : The maximum degree is bound to some constant K > 3.
Restriction B : The degree sum of vertices with degree = 3 is bound to some constant K > 0.

No restriction

Restriction A

Restriction B

Networks Strongly NPC | Strongly NPC P
Tree networks | Weakly NPC | Weakly NPC P
Star networks | Weakly NPC P P

Algorithm 1:

Step 1: Enumerate all gardens each with a wall of size
equal or less than min{p, K + 2}.

Step 2: For any garden (W, E’) in G, using the maxi-
mum flow algorithm, calculate the value of H }G// = (IW]).
Step 3: i — 2.

Step 4: j + min{s,p} — 1.

Step 5: For any garden (W, E’) in G with |[W| = j such
that |V/E’| = i, using the equation in Proposition 1,
calculate the value of HY) (k) for each k (|[W| < k <
min{i, p}).

Step 6: j < j — 1.

Step 7: If 7 > 0, go to Step 5.

Step 8: ¢ — i+ 1.

Step 9: If ¢ < |V, go to Step 4.

Step 10: Return H% (p).

It is easy to improve Algorithm 1 to calculate a maxi-
mum p-collection set. So we omit its computation. We
examine the complexity of Algorithm 1. Letn = |V, let
m = |E|, and let  be the number of gardens each with a
wall of size equal or less than min{p, K+ 2}. We know
that Algorithm 1 can perform Step 1 in O(mn**+2) time,
and Step 2 in O(rnmlogn?/m) time. The frequency of
calculating the value of HY, (k) in Step 5 is O(pr). The
time to evaluate the value of each HY, (k) in Step 5, is
O(nmk). The complexity is O(pr-nmk). By Lemma 4,
we know r = O(mn®+2). Since k < p, the complexity
of Algorithm 1 is O(p*m?nf+3).

Now we examine the case of the disconnected DSR
network N. Let ¢1,...,¢c, be connected components
of N where w is the number of these components of
N, and let Cx = (U, <ics Vies),Urgicr E(ei)) for any
1 £k <w where V(¢;), E(c;) denote the vertex set and
the edge set of ¢; for any 1 <4 < w. We can calculate
the maximum p-collection number of N by the follow-
ing algorithm with dynamic-programming type.
Algorithm 2:

Step 1: Using Algorithm 1, calculate H,, (k) for 1 <
i <w and 0 < k < min{p, |V{(e)|}.
Step 2: For any 1 < k < min{p, |V(e1)|}

He, (k) — He, (k).

Step 3: i — 2.
Step 4: If ¢ > w, then go to Step 7.
Step 5: For 0 < k < min{p, |V(C;)|},

ch' (k) = }CIIE}QX{HCiﬂ(kl) + Hci (kQ)}a
1,k2

where ky runs from zero to min{p, |V (C;_1)|}, and ks
runs from zero to min{p, |V (¢;)|} satisfying k; + ks = k.
Step 6: ¢ +— ¢+ 1 and go to Step 4.

Step 7: Return He, (p).

The frequency of evaluating the value of each H. (k)
is O(wp). Therefore the complexity of Algorithm 2 is
O(wp) times of the complexity of Algorithm 1. Hence
we obtain the following theorem.

Theorem 4: The DSR p-collection problem belongs to
the class P.

The obtained results so far are brought together in
Table 1.

5. Conclusion

In this paper we obtained complexity results of some
subproblems of the p-collection problem. We proved
that the decision problem corresponding to the p-
collection problem is strongly NP-complete, and that
the decision problem in a tree network is weakly NP-
complete. And we showed a polynomial time algorithm
for the restricted p-collection problem such that the de-
gree sum of vertices with degree equal or more than 3 is
bound to some constant K > 0. Although the restricted
problem is in P, the algorithm may be practically use-
less unless K is enough small because it is exponential
in terms of K. So we need to decrease its complexity.
We will consider an approximation algorithm for the
p-collection problem.
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Appendix A: Checking Eq. (2)

For any 1 < i < m, from W, = W' NV/E,,

Y N V/E;| — |W;]

= |Y'NV/E;| — W' nV/E;,
by W' Y’

= |(Y - W')NV/E]

=Y n(V/E; —W').
By Lemma 5 (I), for any 1 < 4,5 < m (i & ), we know
that V/E; — W' and V/E; — W' are disjoint, and so
Y'N(V/E; —W') and Y' N (V/E; — W') are disjoint.
Hence we get

2 (YN V/E]| = [Wi]) + W]

= 2u(Y' 0 (V/E =W + W]
U (Y 0 (V/E: = W)+ [W'

= Y 0 (U; V/E — W)+ W7,
by Lemma 5 (III)

= [Y'n(V/E' = W')|+ W],
asY'N(V/E'—W') and W’ are disjoint

= (Y n(V/E'=W")uW'|

= [Y'uw)n((V/E' = WHuw'),
by W' C Y’

= Y'n(V/E'uW'),
by Y'CV/E'

=Y NV/E'|=|Y'| =k.
Appendix B: Checking Eq. (3)

By Lemma 5(III) we know W' = [J,W,. Hence

W'=J;W:C ;Y/. Thus
Y= U Y7
= (U, ¥i =Wy uw
= U, (Y =W UW.
Since Y{ — W',..., Y, — W' and W' are disjoint, we
get
Y = (U (Y =W u
=2 Y =W+ W]
= Sl¥ - W AY |+ W
= (Y =Wy + W7
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Since Wy C W' and W; gYi’, we obtain W; gW/ nY/.
However, since Y/ C V/E;, we obtain W' NY/CW’'n
V/E; =W;. Thus W; = W/ nY,. Hence

V=20 = [Wal) + W]
= 2k = [Wil) + W7
= k.
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