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On a Generalization of a Covering Problem Called
Single Cover on Undirected Flow Networks
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SUMMARY Location theory on networks is concerned
with the problem of selecting the best location in a specified
network for facilities. Many studies for the theory have been
done. We have studied location theory from the standpoint of
measuring the closeness between two vertices by the capacity
(maximum flow value) between two vertices. In a previous
paper, we have considered location problems, called covering
problems and proposed polynomial time algorithms for these
problems. These problems are applicable to assigning files to
some computers in a computer network. This paper is concerned
with a covering problem called the single cover problem defined
in the previous paper. First, we define a generalized single cover
problem and show that an algorithm proposed in the previous
paper can be applicable to solving the generalized single cover
problem. Then, we define a single cover problem satisfying
cardinality constrains and show that the problem is solved in a
polynomial time.

key words: graphs and networks, flow network, location theory,
covering problem

1. Introduction

Location theory [1] on networks is concerned with the
problem of selecting the best location in a specified
network for facilities. Many studies for the theory have
been done. We have studied location theory from the
standpoint of measuring the closeness between two
vertices by the capacity (maximum flow value)
between two vertices [2]-[4]. In Ref [3], we have
considered location problems, called covering prob-
lems and defined two types of covering problems called
the single cover problem and the plural cover problem.
These problem can be solved in polynomial times and
these problems are applicable to assigning files to some
computers in a computer network. This paper is
concerned with a covering problem called the single
cover problem. We define a generalized single cover
problem. We show that an algorithm proposed in Ref.
[3] can be applicable to solving the generalized single
cover problem. Then, we define a single cover problem

Manuscript received June 28, 1996.
Manuscript revised September 30, 1996.

T The anthor is with the Department of Information and
Electronics Engineering, Niigata Institute of Technology,
Kashiwazaki-shi, 945-11 Japan.

11 The authors are with the Faculty of Engineering,
Niigata University, Niigata-shi, 950-21 Japan.
TIT The author is with the Faculty of Science and Engi-
neering, Chuo University, Tokyo, 112 Japan.

and Shoji SHINODATTT, Members

satisfying cardinality constrains and show that the
problem is solved in a polynomial time. For general
terminology in graph theory, we refer the reader to
Refs. [5] and [6].

2. Definitions and a Fundamental Theorem

Let us consider an undirected flow network N=(V,
E, cv) where V|, E, and cy are the vertex set, the edge
set and the function assigning a positive real number
cv(e) to each edge e E, respectively. c¢v(e) repre-
sents the edge capacity of e. The maximum flow value
between two vertices # and v in N is called the
capacity between u and v, denoted by gw(u,v).
Especially, we define gy (v, v) =00. In this paper, we
attach a vertex weight function A (+) assigning positive
real number to N. A subset U of V is called an
h(-)-single cover if max{gy(u, VVlucU}=h(v) for
any v&V. 1If U is an h(-)-single cover having
minimum cardinality, then U is called a solution of
the h(-)-single cover problem. In Ref. [3], we show
that if the value of A (v) is a constant for each vertex v,
then a solution of the 4 (-)-single cover problem can
be obtained in a polynomial time. In Fig. 1, a number
on each edge e represents ¢y {(e) and a number in each
vertex v represents A (v). Let Ui={w, v, 1}. Since

max {gn (u, )| uE U}=gn (n, 1) =5
2 h(w) (=3),

max {gn (u, vs) | uE Ui} =gn (vs, v3) =4
2 h(w) (=4),

max {gn (, ) |uE Ui} =gn (v, %) =4

V6 2 v 5
Fig.1 A network N.
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2h(v) (=1),

max{gy (u, v)|uE Ui} = h (v) for each vE V. Therefore
U, is an h(:)-single cover. However |Ui| is not
minimum. U,={w, v} is a solution of the A (+)-single
cover problem.

In a communication network, a vertex represents a
terminal computer and an edge represents a link
between computers. We assign a file to computers of
the network. The file is copied and assigned to some
computers. How do we assign these files? We assume
that the delay time to transport the data of a file can be
ignored in this network. In this case, for each terminal
computer pair, the number of links between the two
computers is the measure representing the closeness
between the two computers. Location theory on flow
networks is applicable to the above case. If for each
computer, the file which can be used by the computer
is fixed, the & (+)-single cover problem can be applied.

Let W be a non-empty subset of V. W is called
a stable set with respect to single cover if gy (w, v) 2
h(n) and gy (v, ) Zh(»m) for any », nEW. We
simply call a stable set with respect to single cover a
stable set hereafter. And W is called a maximal stable
set if it is not properly contained in any other stable
set. Since gy (v, v) =00, {v} is a stable set for any v&
V. Therefore for any vertex v, there exists a maximal
stable set containing v. For a maximal stable set W,
let A(W)=max{h(v)|vE W} in this paper. Let W,
and W: be two maximal stable sets. We say that W5 is
reliant on W\, if gy (v, ») 2 h (v2) for any nE W), n&
W,. If for any maximal stable set W (# W,), W, is not
reliant on W, we call W; a self-reliant set. In Fig. 1,
{1, »} and {,v} are maximal stable sets and {w, v} is
reliant on {w, w}. {w, »} and {v, v, »} are all self-
reliant sets in Fig. 1.

The following theorem is a fundamental theorem
[7] concerning maximum flow.

Theorem 1: Let N be an undirected flow network
and let u, v and w be vertices. Then the following
expressions hold.

(1) gv(u,v)=gn (v, u),
(i) gw(u, v) Zmin {gn (&, w), gn (w, v)}. O

3. The k(-)-Single Cover Problem

In this section, we give some properties concerned with
the /4 (+)-single cover problem and show that an algor-
ithm proposed in Ref. [3] can be applicable to solving
the A (-)-single cover problem.

Lemma 1: Let N be an undirected flow network and
let Wi and W, be two distinct maximal stable sets. If
W, is reliant on Wy, then W) is not reliant on W..
Proof: We assume that W, is reliant on W, and W is
reliant on W,. Let v be any vertex of W; and v, be any
vertex of W, Since W; is reliant on Wi, gnv (v, w) =
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h(w). Since W) is reliant on Wa, gy (v, v) 2h(wn).
Therefore WU W. is a stable set. Since W)+ W, W,
or W is a proper subset of WU W,. This contradicts
the fact that W), and W, are maximal stable sets. []
Lemma 2: Let N be an undirected flow network and
let W) and W. be two maximal stable sets. If W% is
reliant on W, then A(W) = h(W2).

proof: We assume that W, is reliant on W: and
h(W) <h(W,). Let w;E W, where h(w:)=h(W;) (i
=1,2). Note that wo& W, since A (W) > h(W)).
Since W, is reliant on Wy, gy (1, we) = h(we) for any v
& W, Since A (w2) >h(wy) =2 h(vy), gy (v, we) >
k(). Therefore, Wi U{wy} is a stable set, contradict-
ing the fact that W) is a maximal stable set. Therefore,
h(W) =Zh(Ws). OJ
From the above discussion, it follows that the relation
“is reliant on” is transitive.

Lemma 3: Let N be an undirected flow network and
let W\, W2 and W; be three maximal stable sets. If W,
is reliant on W; and W5 is reliant on W», then Wi is
reliant on Wj.

Proof: We show that for any veE W, and wE Wi,
gy (v, v3) = h(vs). Let w, be a vertex in W, where
h(ws) = h(W2). Since W: is reliant on Wy, gy (v, wn)
= h{(w,). Since Wi is reliant on Wa, gn (e, 1) = h(w).
From Lemma 2,

h(Wz)Zh(Wz)gh(WQZh(Vs)-
From Theorem 1,
gn (n, v3) Zmin {gn (0, we), gn (e, v3) } Z A (1s).

Therefore, W3 is reliant on Wi ]
Now, we give a necessary and sufficient condition for
U to be an A(-)-single cover as follows.

Lemma 4: Let N be an undirected flow network and
let U be a subset of V. A necessary and sufficient
condition for U to be an A(+)-single cover is

WO U=+¢ for any self-reliant set W

Proof: First, we prove the necessity. Let U be an
h(-)-single cover and let W be a self-reliant set. We
assume that W N U =¢. Let w be a vertex of W where
h(w)=h(W). Since U is an h(-)-single cover, there
exists a vertex % of U such that gy (u, w) Zh(w).

Now we assume that A{w) = h(u). Since gn(v,
w) = h(w)for any v of W,

gn (v, o) Zmin {gn (v, w), gn (W, o) } = A (w)
gh(llo).

Since gn (v, o) 2 h(up) and gy (v, o) 2 h (W) 2 h(v),
W U{u} is a stable set. This contradicts the fact that
W is a maximal stable set. Therefore, & (w) <A (uy).
Let W’ be a maximal stable set containing .
Since uoE W, W'=W. For any vEW’ and vE W,

anv (v'v) Zmin {gn (V', o), gn (tho, w), gn (w, v) }
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zZmin {h{w), h(w), h(w)}=h(w)
=h(v).

Therefore W is reliant on W’. This contradicts the
fact that W is self-reliant. Hence, W N U #* ¢.

Conversely, we assume that W U=+¢ for any
self-reliant set W of N. We show that for any v&E V,
there exists ¥< U such that gy (u, v) 2h(v). Let Wp
be a maximal stable set containing v.

If W, is self-reliant, then there exists a vertex &
WyN U. From the definition of a stable set, gn (1, v)
=h(v).

If W, is not self-reliant, then there exists a self-
reliant set W’ such that W, is reliant on W’ from
Lemma | and Lemma 3. From the assumption, there
exists a vertex uS W' N U. Since W, is reliant on W',
gv(u, v) Z2h().

Therefore, U is an h(-)-single cover. O
Lemma 5: Let N be an undirected flow network, and
let W and W. be two maximal stable sets and W, W2
*+¢. Then,

W, is reliant on Wi if and only if
h(W) 2h(W).

Proof: Let vE W N W,. First, we assume that 4 (W)
=h(W.). We show that W, is reliant on Wi, Let w;
E W, where h(w;) =h(W;) (i=1,2), and let v be any
vertex of Wi and w be any vertex of W, Since W) and
W, are stable sets,

gv (v, m) Zh(v), gv (v, m) Zh(w) and
gy (v, wi) Zh(w).
Since A (wi) Zh(we) Zh(wm),
gn (v, ) Zmin {gx (0, wi), gv (w1, v), gn (v, ) }
= h(wm)

from Theorem |. Therefore, gy (v, %) = A (), so that,
W, is reliant on W,.

Conversely, we assume that W; is reliant on Wi.
From Lemma 2, h(W) = h(W>). O
Lemma 6: Let N be an undirected flow network. If
Wi and W, are two distinct self-reliant sets, then W
W2:¢.

Proof: We assume that Wi W+ ¢. From Lemma 5,
W, is reliant on W> or W, is reliant on Wi. This
contradicts the fact that W, and W: are self-reliant.
Therefore Wi N W= ¢. ]
From Lemmas 4 and 6, we obtain the following theo-
rem.

Theorem 2: Let N be an undirected flow network. A
necessary and sufficient condition to U to be a solu-
tion of the 4 (+)-single cover problem is the following.

U is an A(-)-single cover and there does not exist
a proper subset U’ of U such that U’ is an A (-)-single
cover.
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Fig.2 Explanation for the proof of Theorem 2.

Proof: The necessity is clear.

From Lemma 4 and Lemma 6, U is a solution of
the A(+)-single cover problem if and only if for any
self-reliant set W, IUﬂ Wl=1 (see Fig. 2). So, the
sufficiency is also clear. 0

From the above theorem, a solution of the
h(+)-single cover problem can be obtained by the
following simple algorithm. The following algorithm
is striking similar to an algorithm for the original
single cover problem [3].

Algorithm SINGLE COVER_A

Input: an undirected flow network N=(V, E, cv)
and a vertex weight function A(+)

Output: a solution U, of the A(-)-single cover prob-
lem

begin
Al U:=V;5V={n, -, vw}¥)
A2 fori=1to ndo

begin
A3 if U-{v.}isan A(+)-single cover then
U:=U-{v}
end
end.

Obviously, an output U of the above algorithm is an
h(+)-single cover. We show that there does not exist a
proper subset U’ of U such that U’ is an A(+)-single
cover. If U-{v;} is an A(-)-single cover then v; is
deleted from U in the case of i=j in the algorithm.
So, U-{v;} is not an A(:)-single cover. Clearly, any
subset of U-{v,} is not an A (+)-single cover. Therefore
there does not exist a proper subset U’ of U such that
U’ is an h(-)-single cover. From Theorem 2, U is a
solution of the A (-)-single cover problem.

We obtain the capacities between all vertex pairs
ino(|[VIs(V|,|E|)) time [8], where s (| V|, |E|) is the
time required to solve a maximum flow problem in N
(the best time bound for s(| V|, |E|) known to date is
O(|V||E|log(|V|*/|E]))[9]). Since judging whether
U-{v:} is an h(-)-single cover or not can be obtained
in O(|V]*)time, the time complexity of Algorithm
SINGLE_COVER_A is O([V|s( V] |EN+|V]).
However, using suitable data structures, judging
whether U-{v;} is an A (+)-single cover or not can be
obtained in O (] V]) time (see Appendix). In this case,
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a solution of the A(-)-single cover problem can be
obtained in O(|[V[s(I[V|,|E]) +|V]) (=0(V|s(V],
|E]))) time.

4. A Single Cover Satisfying Cardinality Con-
straints

On the file assigning problem in a computer network
discussed in Sect. 2, we had better avoid excessive
accesses to a specific computer having the file. There-
fore, we define a single cover satisfying cardinality
constraints in this section. A similar problem on
networks from the standpoint of measuring the close-
ness between two vertices by the distance between two
vertices has been discussed in Ref. [10].

Let N be an undirected flow network and let W
be a non-empty subset of V. W is called a territory
with respect to single cover if there exists a vertex w&
W such that for any vEW, gy (w, V) 2h(V). And
such a w is called a mother vertex of W. We simply
call a territory with respect to single cover a territory
hereafter. Let 7 ={W,, ---, W;} be a vertex partition,

t

namely for each i, (i#j). W.N W,=¢, and L_JlWiz

V. And let r be a positive integer. J is called an
h(-)-single cover partition satisfying cardinality con-
straints if W; is a territory and |W;|<r for each i. We
simply call an A(-)-single cover partition satisfying
cardinality constraints an A()-single cover partition
hereafter. Note that there exist /4(-)-single cover
partitions for any r since {v} is a territory for each v&E
V. T is called a solution of the h(-)-single cover
partition problem if J has minimum cardinality of all
h(-)-single cover partitions. For example, in Fig. 3,
{1, », vs} is a territory and w is its mother vertex (w is
its mother vertex t00). T ={{n, v, vs, v}, {15}, {ve, vs},
{vs, w}} is an A (-)-single cover partition in the case of
r=4. Note that any stable set is a territory and the set
of mother vertices in an A (-)-single cover partition is
an 2 (-)-single cover. On the file assigning problem in
a computer network discussed in Sect. 2, mother ver-
tices mean computers having the file and each vertex,
that means a computer, in a territory accesses the
mother vertex of the territory.
A territory has following properties.

2 vg

Fig.3 A network M.
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Lemma 7: Let N be an undirected flow network, let
W be a territory and let v be a vertex where v&E W. If
there exists a vertex w< W such that £(w) =h(v) and
gnv{w, v) 2h(v), then W U{»} is a territory.

Proof: If w is a mother vertex of W, then W U{v} is
clearly a territory. We assume that w (# ) is a mother
vertex of W.

gn(w, v) Zmin {gn (w, %), gn (v, )} Z A (V)

since gy (w, w) =h(w), gv(ve, V) 2h(v) and h(w) =
h(v). Therefore, W U{v} is a territory. ]
Lemma 8 Let N be an undirected flow network. If
W is a territory, then any non-empty subset W’ of W
is a territory.

Proof: Let w be a mother vertex of W and let w'E
W’ where h(w’) =max {h(v)|vEW’}. We show that
gn (W', v) Zh (V) for any vE W’. Since w is a mother
vertex of W, gn (w, v') Zh (V) and gv(w, w) Zh(w’).
Since h{w’) = h(V'),

gy (W, v) Zmin {gv (W', w), gv(w, V) } 2R (V).

Therefore, W’ is a territory of N and w’ is a mother
vertex of W' L]
From the above lemmas, we obtain the following
simple algorithm for the 4(-)-single cover partition
problem.

Algorithm SINGLE COVER B

Input: an undirected flow network N=(V, E, cv), a
vertex weight function 4(+) and a positive integer
Output: a solution 7, of the A(-)-single cover parti-
tion problem

begin

Bl sort all the vertices in order of £ (+):(* let A(w)
=2 h(v)*)

B2 Vi=V, T.=4¢;

B3 while V'# ¢ do

begin
B4 let v:= ¥V’ where A (v;) =max{h(v)|veE
V'
B5 We={v:;V:=V'{v};
B6 for j=1to ndo
begin
B7 if v;€ V' then
begin
B8 ing(Vi, Vj) Zh(vj)and |W1~|r
then
begin
B9 Vi=V'-{v};
B10 WiI:WiU{VJ‘}
end
end
end
Bl T:=TU{wy
end

end.

We prove the correctness of the above algorithm.
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Theorem 3: Algorithm SINGLE_COVER_B correct-
ly finds a solution of the A(+)-single cover partition
problem.

Proof: Let 7 be an output of Algorithm SINGLE_
COVER B. Obviously, 7 is an A(-)-single cover
partition. We show that the 7 has minimum car-
dinality of all A(-)-single cover partitions.

Now let 7={W,, W, -} where i<&<---. Note
that v,& W;, for each j. We show that there exists a
solution that contains W, ---, W, for each t.

First, we assume that there exists a solution that
contains Wi, -, W,(k=1). Under the assumption,
we show that there exists a solution that contains W;,,
oo, Wi Wi... Let T, be a solution of the A (-)-single
cover partition problem with the following properties.

1) T contains Wy, +--, Wi.
2) Wi,,N W, where vy, € WE T, has maximum
cardinality of all solutions that contain Wy, ---, Wi,

From a property of Algorithm SINGLE COVER
B,

h(vi,) =max {h(W) |yEV — Wy, —— Wy}

Let wy be a mother vertex of W. For any weW,
gn (wo, w) Zh(w).
Since g(w, Vi) Zh (Vi) and h(vi.,) Zh(w),

n (Wi, w) 2Zmin {g (vi,i, wo), g (wo, w)}
=Zh(w).

So, for any wE W, gn (v, w) Zh(w).

Now, we assume that W=+ W,,,..

If W,., . CW, then there exists a vertex we& W
Wi, WwE V—Wy— = Wi—= Wi, gN(vih+|3 W) =
h(w) and |Wi..|<r, which contradicts the construc-
tion of Wi,.,. Therefore, W, T W.

Let v& W,,,,— W . There exists W’'& T such that
ve W’ Note that W =W, -+, W, (see Fig. 4).
Since gy (Vioy, V) Zh (v} and A (vs.,) Zh(v), WU {v}
is a territory from Lemma 7.

We assume that W C W,,.,, namely |W|<r. If W’
—{v}=* ¢, then W —{v} is a territory from Lemma 8.
Therefore, (T o—{W, WHU{W U, w—{v}} is
also a solution of the #(-)-single cover partition
problem, contradicting the defining property of Jo. If

w-

Fig.4 Explanation for the proof of Theorem 3.
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W' —{v}=¢, then (To—{W, W HU{WU{v}} is an
h(+)-single cover partition. This contradicts the fact
that 7 is a solution of the 4 (-)-single cover partition
problem. Therefore, WO W,,.,.

Let vVEW — W,,., (see Fig. 4).
and Ve W,

v Wiy V) Z R (V) and gy Vi, V) ZH(V),

Therefore, A (v) = h(v") from the construction of Wy,
since v&E W,,,, and V& W,,.,.
Hence,

Since v&E W,

gn (v, V) Zmin {gnv (0, Vi), gy (Viers V) }Z A (V).

From Lemma 7, W’ U{v'} is a territory. From Lemma
8, (WU{v}) —{¥} and (W U{v}) —{v} are territories.
Therefore

(To—{W,w'})
U{w u{v)) v} (W u{vh —{v

is also a solution of the A(-)-single cover partition
problem, contradicting the defining property of J.

Hence W=W,,..

We can easily show that there exists a solution
containing W;, by similar arguments. So, we omit the
proof.

Therefore, for the output 7 ={W,,, W, ---} where
i <i<---, there exists a solution that contains W, -+,
W, for each ¢, namely, J is a solution of the
h(-)-single cover partition problem. O
For example, let us consider N in Fig. 3. In the case
of r=4, an output of Algorithm SINGLE_COVER_B
is {{v1, w, v, W}, {w, v}, {5, v, v3}} and mother vertices
are v, v, and s, respectively.

The time complexity of Algorithm SINGLE
COVER B is clearly O(| V|s( VL IED+| V) (=
o(vis(vILIEN).

5. Conclusion

In this paper, we have generalized a single cover
problem proposed in Ref. [3]. We have shown that a
polynomial time algorithm proposed in Ref. [3] can be
applicable to solving the generalized single cover
problem. Then, we have defined a single cover prob-
lem satisfying cardinality constrains and we have
shown that the problem is solved in a polynomial time.
On a file assigning problem in a computer net-
work, if for each computer, the file which can be used
by the computer is fixed, the A (+)-single cover problem
can be applied. If for each computer, the computer can
use any file, a covering problem called the plural cover
problem [3] can be applied. We plan to discuss on a
generalized plural cover problem in another paper.



TAMURA et al: ON A GENERALIZATION OF A COVERING PROBLEM

Acknowledgment

The authors would like to thank President Takeo Abe
at Niigata Institute of Technology for his helpful
comments and continuous encouragement. The
authors also would like to thank the anonymous
reviewers whose valuable comments lead to a better
rewriting of this paper.

References

[1] G.Y. Handler and P.B. Mirchandani, “Location on
networks: Theory and Algorithms,” MIT Press, 1979.

[2] H. Tamura, M. Sengoku, S. Shinoda, and T. Abe, “Loca-
tion problems on undirected flow networks,” IEICE
Trans., vol. E73, no. 12, pp. 1989-1993, 1990.

[3] H. Tamura, M. Sengoku, S. Shinoda, and T. Abe, “Some
covering problems in location theory on flow networks,”
IEICE Trans., vol. E75-A, no. 6, pp. 678-684, 1992.

[4] K. Watanabe, H. Tamura, and M. Sengoku, “Problems of
where to locate p-sinks in a flow network,” IEICE Trans.,
vol. J78-A, no. 8, pp. 938-946, 1995.

[5] M. Bezad, G. Chartrand, and L. L. Foster, “Graphs and
Digraphs,” Prindle, Weber & Schmidt, 1979.

[6] C. Berge, “Graphs,” North-Holland, 1985.

[7] L.R. Ford and D.R. Fulkerson, “Flows in Networks,”
Princeton University Press, Princeton, 1962.

[8] R.E. Gomory and T.C. Hu, “Multi-terminal network
flows,” J. Soc. Indust. Appl. Math., vol. 9, no. 4, pp. 551~
570, 1961.

[91 A.V.Goldberg and R. E. Tarjan,” A new approach to the
maximum flow problem,” Proc. 18th Annual ACM Sym-
posium on Theory of Computing, pp. 136-146, 1986.

[10] T. Moriizumi, S. Tsukiyama, S. Shinoda, M. Sengoku,
and 1. Shirakawa, “An optimal cardinality-constrained
territory map on a network”™ IEICE Trans., vol. J7I-A,
no. 10, pp. 1917-1929, 1988.

Appendix

We propose a more efficient algorithm than SINGLE
COVER_A as follows.

Algorithm SINGLE COVER_A’

Input: an undirected flow network N=(V, E, cv)
and a vertex weight function A ()

Output: a solution U, of the 4 (+)-single cover prob-
lem

begin
A’l U:=V;(*V={w, -, w}*)
A2 fori=1to ndo
A’3 M=, EV|gn(v;, v) 2 h(v:);
A4 fori=1to ndo
begin
A’S if M, +{v;} for any k then
begin
A’6 for j=1to ndo
A’7 if ViEMj then Mj::Mj'{vl‘};
A’8 U:=U-{V:}

end
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else
A9 for j=1to ndo
A’10 if V;‘EMJ’ then MjZ:¢
end
end.

In the loop of A’4-A’10, if M,.= ¢, there exists i <i
such that v, € U and gn (vs, &) = h (vz). Therefore, v,
is in the output of SINGLE COVER_A’. And if M,
+ ¢, there does not exist i <i such that v,& U and gn
(Vig, V&) Z h (W),

If M,#+{v;} for any k (A’S), then U —{v;} is obvi-
ously an A(-)-single cover.

We assume that there exists ko such that M, ={v:}.
Since there does not exist </ such that v, & U and
N (Vig, Vro) Z A (Vig) , gn (U, Vro) <h (Wi} for any ue U
—{v;}. So, U—{v;} is not an A (:)-single cover.

From the above discussion, in A’4-A’10, we can
judge whether U —{v;} is an A(-)-single cover or not.
If we represent M, using a list Ly= (Va,, Vi,, ***) (k1<kz
<---), the loop of A’5-A’10 requires O (| V]) time.
Therefore, the time complexity of SINGLE COVER _
A is O(VIs(VLIED +VPY=0(VIs(V]|ED).
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