IEICE TRANS. FUNDAMENTALS, VOL. E80-A, NO. 4 APRIL 1997

651

[PAPER Special Section on Discrete Mathematics and lts Applications |

The p-Collection Problem in a Flow Network

with Lower Bounds

Kaoru WATANABE!, Hiroshi TAMURA'', Keisuke NAKANO!,

SUMMARY In this paper we extend the p-collection problem
to a flow network with lower bounds, and call the extended prob-
lem the lower-bounded p-collection problem. First we discuss the
complexity of this problem to show NP-hardness for a network
with path structure. Next we present a linear time algorithm for
the lower-bounded 1-collection problem in a network with tree
structure, and a pseudo-polynomial time algorithm with dynamic
programming type for the lower-bounded p-collection problem in
a network with tree structure. Using the pseudo-polynomial time
algorithm, we show an exponential algorithm, which is efficient
in a connected network with few cycles, for the lower-bounded
p-collection problem.

key words: location problem, network flows, NP-complete, opti-
mization problem

1. Introduction

Recently the authors discussed the problem where to
locate p sinks in a flow network such that the value
of a maximum flow is maximum, and called it the p-
collection problem[4],[5]. It is an important location
problem in a flow network because one can apply to lo-
cating p resources (e.g. data bases, file-servers, etc.) in a
computer network such that these resources can be used
by as many terminals (clients) as possible. In this paper
we extend the p-collection problem to a flow network
with lower bounds.

Let D = (V, A) be the digraph with a vertex set V
and an arc set A such that (v,u) ¢ A for any arc (u,v)
of A. Let b~ and b* be functions : V — Z (the set of
integers) such that b~ (v) < b*(v) for any v of V, let ¢~
and ¢t be functions : A — Z such that ¢~ (a) £ ¢*(a)
for any a of A, and let d~ and d* be functions : V —
ZU{oo} such thatd™ (v) < d*(v) for any v of V.. Wecall
the 7-tuple N = (D,b™,b%,c”,ct,d™,d%) a network
with lower bounds (described as N = (D,b*,ct, d%),
and called a network, for simplicity). Figure 1 (a) illus-
trates an example of a network with lower bounds.

Let s and t be new specified vertices called the
source and the sink, respectively. We represent V*,
A® and A? as the vertex set V U {s,t}, the arc sets
{(s,v) :v € V} and {(v,t) : v € V'} respectively. Let X
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be an arbitrary subset of V, let A% = {(z,t) : z € X},
and let A% = AUA®UAY. We define functions e~ and
et : A% — Z U {oo} as

bt(v) if u=s
et (u,v) = dt(u) if v=t
c*(u,v) otherwise.

And we define the adjoint network Nx of N with
respect to a subset X of V' as the s-t flow network
Nx = (Dx,s,t,et,e”) with lower bounds, where
Dx = (V*, A% ). Figure | (b) shows an adjoint network
of the network illustrated in (a). The adjoint network
Nx is feasible if there exists a flow f in Ax meeting the
following conditions.

Capacity Constrain: For any a € A%,

e (a) < f(a) < e*(a).

Flow Conservation: The flow f is conserved in any
vertex v of V. That is,

Z f(’U,U)— Z f(u,'l))=0,

u€adt (v) u€ad™ (v)

where ad™ (v) (respectively, ad™(v)) denotes the set of
vertices adjacent from (to respectively) v in Nx.

If Nx is feasible, the value of f is val(f) = ZaeAg( f(a)
for any flow f in Nx. Given a network N, we define
the collection number hyy(X) of X as

_ | maxygval(f) if Nx is feasible
hn(X) = { —00 otherwise.

(Notice that maxy val(f) is the value of a maximum
flow in Nx.) If p is a positive integer with p < |V, let
Hy(p) = max{hny(X) : |X| = p}. (We usually omit the
subscripts N of hy and Hy when N is clear from con-
text.) A subset X* of V' with | X*| = p is a maximum
p-collection set of N if h(X*) = H(p). We call the opti-
mization problem of searching a maximum p-collection
set of a network the lower-bounded p-collection problem,
and we write LBC as this problem. For example let’s
solve LBC for the network illustrated in Fig.1(a). We
have

h(’Ul,’Uz) = —0Q0, h(’Ug,’Ug) = 4, h(’l}3,’01) = 3

Thus H(2) = 4 and {vp,vs} is the maximum 2-
collection set.
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-1, bt(v1) =3,
bt (v2) = 2,
-1, bt(v3)=-1,

Fig. 1

The p-collection problem discussed in [4] is equiv-
alent to the subproblem of LBC such that

b= (v)=0 for any v of V,
¢ (a) £0< ¢t (a) for any a of A,
d™(v) =0 and d*(v) =00 foranywv of V.

In this paper we call this problem PRC, the primary p-
collection problem. The sink-capacitated p-collection
problem discussed in [6] is equivalent to the subprob-
lem of LBC such that

b= (v)=0 for any v of V,
¢ (a) £0< ct(a) forany a of A,
d~(v)=0 for any v of V.

In this paper we call this problem SCC. We introduce
description a/3/v for subproblems of the p-collection
problem. The first item « denotes is the value of p.
If a = p, suppose that p is arbitrarily fixed. The sec-
ond item 3 indicates a network topology. In this pa-
per we deal with three topology types: general network
(8= N), tree (6 =T) and path (8 = P). The last item
4 means a subproblem (PRC, SCC or LBC) on which
b%, ¢t and d* are restricted. For example, the prob-
lem p/T/LBC denotes the lower-bounded p-collection
problem in a network with tree structure.

In the paper[4] the authors presented an O(n) al-
gorithm for 1/T/PRC, and an O(p*n3C?) algorithm
for p/T/PRC, where n = |V| and C denotes the max-
imum of weight and capacity. Tsukiyama proposed
an O(p°n®C?) algorithm for p/T/PRC [2]. The re-
port [5] contains some complexity results; the problem
p/N/PRC is strongly NP-hard, and p/T/PRC is weakly
NP-hard. The report[3] proposes an O(pn?) algorithm
for p/P/PRC.

In Sect.2 we discuss the complexity of this prob-
lem to show NP-hardness of p/P/LBC. We present
an O(n) algorithm for 1/T/LBC in Sect.3, and a
pseudo-polynomial time algorithm with dynamic pro-
gramming type for p/T/LBC in Sect.4. Using the
pseudo-polynomial time algorithm, we show an expo-
nential algorithm, which is efficient in a connected net-
work with few cycles, for p/N/LBC in Sect. 5.

(a) A network N, (b) The adjoint network of N with respect to X = {v1,v3}

2. Complexity Results

It is known that p/N/PRC is strongly NP-hard[5].
Hence p/N/SCC and p/N/LBC are strongly NP-hard.
We know that p/T/PRC is weakly NP-hard [5]. We
will show a pseudo-polynomial time algorithm for
p/T/LBC in Sect.4. Thus p/T/SCC and p/T/LBC
are weakly NP-hard. There is an O(pn?) algorithm for
p/P/PRC [3]. Hence p/P/PRC belongs to the class
P. In this section we mainly consider the complexity of
p/P/LBC. We prove the following theorem transform-
ing the partition problem to p/P/LBC.

Theorem 1: The problem p/P/LBC is weakly NP-
hard.

proof: Let ky,...,k, be positive integers. The parti-
tion problem is that of deciding whether there exists
the subset I' of I such that > .. ki = Y, c; ; ks,
where I = {1,...,n}. This problem is known to be
NP-complete[1] if n is even, and if we require that
|I'| = n/2. In the case where ., k; is odd, it is easy
to see that there is not a solution. Hence we can sup-
pose that >, k; is even. Let K = (1/2)> .., ki. We
construct an instance of p/P/LBC from the partition
problem. Let V be the set of n vertices vq,...,v,, let
A = {(vi,viq1) : 1 £i < n}, and let D = (V, A). For
any 1 <4 < n, we define b and b~ as

K if =1
£ —
b*(vi) _{ 0 otherwise,

and d* and d~ as
di (Uz) = ki'

For any arc a of A, we associate K with c¢*(a), and
0 with c”(a). We can construct the network N =
(D, b, ¢t d*) in polynomial time.

Now we show that, there exists a solution I’ of
the partition problem with |I’| = n/2 if and only if
H(n/2) 2 0. Suppose that there exists a subset I’ of I
with |I'| = n/2 such that 3, ;. ki = 3,/ ki Let
X ={v;:i€I'}. Thenh(X)= K, andso H(n/2) 2 0.

Conversely assume that H(n/2) = 0. Then there
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exists a subset X of V with |X| = n/2 such that
hMX)=H(n/2). Let I' ={i €I:v; € X}. Let f be
a flow in the adjoint network Nx. Then f(s,v;) = K,
and

ke if el
f (Ui,t)_{ 0 otherwise.

Hence we obtain ) .., ks = > ,cp f(vi,t) = K. Thus
we have Y .. ki =Y i p ki = K with |[I'| = n/2.

However the algorithm in Sect.4 solves p/P/LBC
in pseudo-polynomial time. Consequently this problem
is weakly NP-hard. ]

The topology type, path, is not essential because
the lower-bounded p-collection problem is (weakly
or strongly) NP-hard for any kind of topology types
with connected structure. The obtained results so far
are brought together in Table 1. The complexity of
p/P/SCC remains open.

3. The Problem 1/T/LBC

In this section we present a linear time algorithm for
1/T/LBC. Let N = (T,b%,ct,d*) be a network with
tree structure, where T = (V, A). Let vy be an arbi-
trary vertex of N, and call vy the root of N. For any
vertex v of N, we define the level lev(v) of v as the
number of all the arcs in a v-vy path between v and
vo. Let L(l) = {v € V : lev(v) = [} for any non-
negative [, and let [* denote the maximum integer such
that L(I*) 4+ @. For convenience, we reverse the di-
rection of any arc (u,v) with lev(u) < lev(v). Then
we can assume that ¢t(v,u) = —cF(u,v). If T/ is a
subdigraph of T, then N|T’ denotes the restriction of
N on T'. Let u and v be adjacent vertices of T'. If
we remove all the arcs adjacent to-or-from v from T
without (u,v) or (v,u), then we obtain the subtree T}
involving v. Let NY be the s-t flow network obtained
by replacing e*(s,v) with 0 and e*(v,t) with oo in
the adjoint network of N|TV with respect to v. We
define F*(u,v) (F~(u,v) respectively) as the value of
a maximum (respectively, minimum) flow in N} if the
obtained network is feasible; otherwise F*(u,v) = —o0
(respectively, F~ (u,v) = +00). Let

gi (u7 ’U) = Z

wead(u)—{v}

FE(w,u) + bt (u),

and let

GEw)= Y F*(w,v)+b* (),

wEad(v)

where ad(z) denotes the set of vertices adjacent to-or-
from z. Then we can prove the following lemmas.
Lemma 1: Let N = (T,b%,c*,d¥) be a network with
tree structure. Let u and v be adjacent vertices of T'.
If max{c™(u,v),g~ (u,v)} £ min{c*(u,v),g"(u,v)},
then
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F*(u,v) = min{c* (u,v), g* (u,v)}, (1)

and
F~(u,v) = max{c™ (u,v),g™ (u,v) }; (2)

otherwise F*(u,v) = Foo.
Proof: If w is a leaf, then this lemma is trivial.
Hence we consider the other case hereafter. Sup-
pose that the lemma holds on F*(w,u) for any w €
ad(u) — {v}. If there exists a vertex w # v inci-
dent to-or-from u such that max{c™ (w,u), g~ (w,u)} >
min{ct(w,u), gt (w,u)}, then F¥(w,u) = Foo, and
so the lemma holds clearly. Assume that there is
not such a vertex w. Then F~(w,u) < Ft(w,u)
for any w of ad(u) — {v}. Hence g (u,v) <
gt (u,v). If gt (u,v) < ¢ (u,v) or ¢™(u,v) < g7 (u,v),
i.e., min{ct(u,v), g% (u,v)} < max{c (u,v),9~ (u,v)},
then N? is not feasible, and so F*(u,v) = Foo.
If max{c™(u,v),9 (u,v)} < min{c*(u,v),g%(u,v)},
then Eq. (1) and (2) hold from the capacity constrain.
0O

Lemma 2: Let N = (T,b% ¢t d*) be a network

with tree structure, and let v be a vertex of T. If
max{d~ (v),G~(v)} £ min{d*(v), Gt (v)}, then

h(v) = min{d* (v),G*(v)};

otherwise h{v) = —oco.

Proof: If there exists a vertex w adjacent to-or-
from v such that F*{(w,v) = —oo, then this lemma
holds clearly. Assume that there is not such a ver-
tex w. Then F~(w,v) £ F*(w,v) for any w. Hence
G (v) £ GT(w). If GY(v) < d~(v) or d¥(v) <
G~ (v), i.e., min{d*(v),GT(v)} < max{d~(v),G~(v)},
then N, is not feasible, and so h(v) = —oo. If
max{d~(v), G~ (v)} < min{d*(v),G*(v)}, then h(v) =
min{d*(v), GT(v)} holds from the capacity constrain.
O
Lemma 3: If there exist different vertices w; and wy ad-
jacent to-or-from some vertex v in a network with tree
structure such that F*(w;,v) = —oo and F*(wq,v) =
—o0, then H(1) = —oo.
Proof: Let V be the vertex set of this network. Assume
that there exist such vertices w; and wo. By Lemma 1,
we have h(v) = —oco, and we obtain h(v;) = —oo for
any vertex v; of V — V(T3 ), and h(vy) = —oo for any
vertex vy of V — V(T3 ). Since (V — V(T ) U (V —
V(Ty,))U{v} =V, we have h(u) = —oc for any vertex
u of V. Hence H(1) = —o0. O
Using Lemma 1, 2 and 3, we can design Algo-
rithm 1 with complexity O(]V|)} for the l-collection
problem. Let
} + 2.

In this algorithm the value B substitutes for co.

?

B=2ma,x{

> bHw)

veV

Yo b (v

veV
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Table 1  Complexity results.

Topology type PRC SCC LBC
Network Strongly NPH [ Strongly NPH | Strongly NPH
Tree Weakly NPH Weakly NPH Weakly NPH
Path P ? Weakly NPH

Algorithm 1: (This algorithm returns the maximum I-
collection number.)
begin
B — 2max{| Y, oy, b+ @)1 Y, 0y b~ ()} +2
for all v € V do G*(v) + b*(v) od;
for all (u,v) € A do F¥(u,v) — 0 and F*(v,u) < 0 od;
R
while ¢ > 0 do
for all arcs (u,v) € A such that lev(u) =i do
if max{c™ (u,v), G~ (v)} £ min{ct(u,v), GT (u)} then
F+(u,v) « min{c*t (u,v), GT(uw)};
F~(u,v) «— max{c (u,v),G~ (u)};
else
FE(u,v) — FB;

G (v) — G*(v) + F (u, v);
if Gt (v) £ —3B/2 then return(—oo) fi;
od;
i—1i—1;
od;
i—1;
while i < I* do
for all arcs (u,v) € A such that lev(v) =i do
gt (v,u) — GE(v) - FE(u,0);
if max{c™(v,u),g~ (v, w)} £ minfet(v,u), g+ (v, u)}
then
Ft(v,u) « min{ct (v, u), gt (v,u)};
F~ (v,u) — max{c™ (v,u), g (v,u)};
else
Ft(v,u) — ¥B;

G (u) — G*(u) + F* (v, u);
if G*(u) £ —3B/2 then return(—oo) fi;
od;
t—i+1;
od;
for all v € V do h(v) — min{d* (v), GT(v)} od;
H(1) «— max{h(v): v e V};
return(H(1));
end.

4. The Problem p/T/LBC

In this section we present an O(p?>n2C?) algorithm for
p/T/LBC based on dynamic programming approach,
improving the O(p?>n3C?) algorithm in [4]. Given a
network with tree structure, for convenience, we con-
sider the network obtained by adding a new vertex vy
and a new arc (vqy,vg) with ¢ (vy,v9) = 0 where v;
is an arbitrary vertex of this network. Now let N =
(T,b%, ct,d*) be such a network where T' = (V, A). In
the same way as Sect. 3, we suppose that lev(u) > lev(v)
for any arc (u,v), and fixing the root on vg in N, we de-
fine L(-), lev(-), I* and TV. Let v be a vertex of N, and
let U(v) = {u € ad(v) : lev(v) < lev(u)} U {s} (where s
is the source, and where ad(v) denotes the set of vertices

adjacent to-or-from v). We define D}, as the digraph ob-
tained by adding the arcs (s,w) (w € V(T?) — {v}) to
T? for any vertex u of U(v) — {s}, and D? as the di-
graph consisting of the arc (s,v). Let U’ be a subset
of U(v), and let Dy, = (U,epr VDY), Uyerr ADY))-
For the cut {(u,v) : uw € U’} in D}, we define C*(U’)
and C~(U’) as

CEU) = ex(u,0).

uwelU’

Let W = V(Dy,) — {s,v}, and let N’ = Ny|D¥,. Now
we define Ry [y, k|, the local optimal value in N’. The
integer variables y and k run from C~(U’) to C*(U’),
and from 0 to min{p, |W|}, respectively. Let X be a
subset of W with | X| = k, and let N% be the digraph
obtained by adding the sink ¢ and the arcs (z,t) (z € X)
to N'. Let fx , be a function on the arc set of N% with
Yucu’ f(u,v) = y satisfying the capacity constrain for
any arc of N, and the flow conservation for any vertex
of W (usually dropping the subscript X,y of fx , when
X and y are clear from context). And we say N’ to be
[y, k]-feasible if there exists such an f for some X with
|X| = k. We define Ry [y, k] as

max max z,t) if N’ is [y, k|-feasible
1 12 z;(f( ) [y, k]
—00 otherwise.

If N’ is [y, k]-feasible, then we call a subset X* of
W, a maximum [y, k]-collection set of N’ such that
Ryly, k] = max{val(fx~ ) : fx~y}. That is, the value
of Ry[y, k] and a maximum [y, k]-collection set mean
the local optimal value and a local optimal solution in
N’ respectively, when y and k are fixed. From the def-
inition of Ry [y, k], we have H(p) = R,,[0,p]. So we
should compute R,, [0, p] for evaluating H(p).

Now let’s study properties of Ry [y, k] separating
three cases.
Case 1: The vertex v is a leaf of T (k = 0).
Then U’ = {s}, and N’ consists of the arc (s,v). From
the definition of [y, k]-feasibility, if there exists a func-
tion f on (s,v) with f(s,v) = y that meets the capacity
constrain on (s,v), then N’ is [y, k|-feasible. Hence for
any C~(U') <y < CH(U’), we have

Ry[y, k] = 0.

From now on, we deal with cases where the vertex v is
not a leaf of T'.

Case 2: [U'| =1.

Let u denote the vertex of U’, let U” = U(u) and
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N" = Ny|D¥,,. Furthermore we consider the follow-
ing two cases.

Case 2.1: u is adjacent to the sink (1 £ k < |W)).

Let g(y, k) denote the value of Ry [y, k| in this case. Let
Y1, Y2 be integers with y; — y2 = y such that C~(U") <
y1 £ C*T(U"), and such that d=(u) £ yo < d*(u). In
the much same way as the PRC version in [4], we can
know that if C~(U") —d*(u) Ly < CH{U") — d~ (u),

q(y, k) = g}fgg{Ru"[yl, k—1]+y2};

otherwise q(y, k) = —co. For any y and k, let y7(y, k)
denote a value of y; such that q(y, k) = Ry~[y1, k—1]+

Y2.

Case 2.2: u is not adjacent to the sink (0 < k < [W]).
Let 7(y, k) denote the value of Ry [y, k] in this case. In
the much same way as the PRC version in [4], we can
know that

(y, k)
_ [ Rurly,k] ifC—(U")Sy<CHU")
- —00 otherwise.

Using values of g(y, k) and r(y, k), we have
Ry [y7 k]

= { max{q(y,k),r(y,k)} if1<k<|W|
q(y, k) ifk=|W|

For any k (1 £ k < |W]), if N’ is [y, k]-feasible, and
if q(y,k) > r(y,k), then the union of {u} and the
maximum [y} (y, k), k — 1]-collection set is a maximum
[y, k]-collection set of N'. If N’ is [y, k]-feasible and if
q(y, k) < r(y, k), then the maximum [y, k]-collection set
of N” is a maximum [y, k]-collection set of N'. It is
easy to see that for k = 0 or |W|, if N’ is [y, k|-feasible,
then the maximum [y, k]-collection sets of N’ are equal
to 9 or W, respectively.

Case 3: |U'| 2 2.

Let U; and U, be nonempty subsets of U/ such that
UyUU, = U’ and Uy N Uy = 0. Let Ny = Ng| Dy,
and N; = Ng|Dj,. Let y; and yo be integers with
y1 +y2 = y such that C~(U;) £ y3 £ C*T(Uy) and
C~(Uz) £ yo £ C*(U,). Let kq,k; be integers with
ki + ko = k such that 0 £ k; < min{p, |V(Ny)| -2} and
0 < ky < min{p, |V(N2)|—2}. We can evaluate Ry [y, k|
using the values of Ry, [y1, k1] and Ry, [ys, k2. If N' is
[y, k]-feasible, then the following equation holds.

Ry/ly, k) = max {Ruy,|y1, k1] + Ru,[y2, k2]} (3)

y1,Y2.k1,k2
where y1, ¥2, k1, k2 run meeting two conditions that
Nj is {y1, k1]-feasible, and that Ny is [yz, ko]-feasible. If
N is not [y, b1]-feasible, or N; is not [yz, by]-feasible,
then Ry, [y1, k1] + Ru,[y2, k2] = —oco. Moreover, if N’
is not [y, k]-feasible, then N; is not [y1, b]-feasible, or
N, is not [y, b1]-feasible, for any yi, y2, b1, bo. Thus
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Algorithm 2: (This algorithm returns the maximum p-
collection number.)
begin
[
whilei 21 do
for all v € L(3) do
for all w € U(v) do
if u is a leaf then
calculate R, ; {Case 1}
else
calculate R, using Ry (,); {Case 2}
fi;
od;
Uy «— the set of an arbitrary vertex of U(v);
while Uy # U(v) do
Uy — the set of an arbitrary vertex of U(v) — Uy;
U — U, uUs;
calculate Ry+ using Ry, and Ry, ;{Case 3}
U, U’
od;
od;
i—1i—1;
od;
calculate R, [0,p];
return( Ry, [0, p]);
end.

Eq.(3) holds even if y; and k; are allowed to be a
value such that Ny are not [y;, ki]-feasible, and if 3o
and ko are allowed to be values such that N, are not
[ya, ko]-feasible. If y7,y5, k}, ky are integers such that
Ry [y, k] = Ru, [y}, k1] + Ru, [y5, k3], then the union of
the maximum [y, k}]-collection set of N; and the max-
imum [y}, kb]-collection set of Ny is a maximum [y, k|-
collection set of N'.

Using the above consequences, we obtain Algo-
rithm 2 for the p-collection problem in a network with
tree structure. Let Ry denote the array of Ry [y, k]s for
all y and k. If |[U’| = 1, then this algorithm computes
Ry using Ry; otherwise using Ry, and Ry, where
U, is the set of an arbitrary vertex of U’, and where
U, = U’ — U,. That is, first the algorithm computes R,
for any arcs (u,v) incident from each vertex of L(I*),
next it calculates R, for any arcs (u,v) incident from
each vertex of L(I* — 1), and so on. Last it computes
R,,[0,p].

We examine the complexity of Algorithm 2. Let
d and n be the maximum degree of vertices and
the number of vertices in T, respectively. Let C =
max{|et (u,v)|,le” (u,v)| : (v,v) € A*}. If |U'| =1
(corresponding to Case 2), then the complexity of eval-
uating the value of Ry [y, k] is O(C), and the frequency
of evaluating is O(pnC). If |U’| 2 2 (corresponding to
Case 3), then the complexity of estimating the value of
Ry [y, k] is O(kC), and the frequency of estimating is
O(pndC). As k < p, the complexity of Algorithm 2 is
O(nd(pC)?), i.e., O(p?n*C?).

5. The Problem p/N/LBC

In this section we present an algorithm in a connected
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u fuv)=zi \4

N

Fig. 2 Removing the arc (u,v) with flow z; of a cotree.

network with cycles, applying Algorithm 2. This al-
gorithm is efficient in a network with few cycles. Let
N = (D,b*,c*,d*) be a connected network with D =
(V,A). Let T = (V,A’) denote a spanning tree, let
A’ =A-A' and letay,...,a,, be|A’|(= m) arcs of A7,
and let 2; be an integer such that ¢~ (a;) < 2; < ¢t (a)
for any 1 < ¢ £ m. The basic idea of this algorithm
is that for any a;(= (u,v)) with flow z;, we remove a;
from an adjoint network, and add a new arc from s to
u, which is different from the arc (s, ), such that e* of
the new arc are equal to —z;, and a new arc from s to
v, which is different from the arc (s,v), such that e* of
the new arc are equal to +z; (Fig.2).

For any v of V' we define two functions &'t and &'~
onV as

bE(@w) = b (v) + Zzi - sz,
i€l jed

where I = {1 < i < m : q; is incident to v} and
J={1<j<m:a;is incident from v} for any v of
V. Let N(z1,..., z,,,) be the network (T,b'%, c*| A/, d*).
The value of Hyy.,, . ..)(p) equals the maximum p-
collection number of the network obtained by chang-
ing c*(a;) 10 z; for 1 <4 < m. To calculate Hy(p),
we should evaluate the value of Hyy;, ... ...)(p) for any
c™(a1) £ z1 L ct(ar),...,c (am) £ 2m < ¢ (am). So
we obtain an algorithm for a connected network.
Algorithm 3:
Step 1: For all z,.. ., z;, calculate Hy(;, . ...)(p) ap-
plying N(zy,...,zy) to Algorithm 2.
Step 2: Hy(p) < max,,, . .. HN(oy,.oz) (D)
Since Algorithm 3 calls Algorithm 2 O(C™) times, the
complexity of Algorithm 3 is O(p*n2C™*2), that is,
O(p*n2CIAI-n+3)

6. Conclusion

In this paper we extend the p-collection problem to a
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flow network with lower bounds. First we discuss com-
plexity of this problem to show NP-complete results of
the subproblems even for p/P/LBC. The complexity
of p/P/SCC remains open. Next we show a linear
time algorithm for 1/7/LBC, and a pseudo-polynomial
time algorithm with dynamic programming type for
p/T/LBC. Using the pseudo-polynomial time algo-
rithm, we show an exponential algorithm for p/N/LBC,
which is efficient in a connected network with few cy-
cles.

References

[1] M.R. Garey and D.S. Johnson, “Computers and Intractabil-
ity: A Guide to the Theory of NP-completeness,” Freeman,
San Francisco, 1979.

[2] S. Tsukiyama, “A new algorithm for p-collection prob-
lem on a tree-type flow network,” Proc. ITC-CSCC, vol.2,
pp.721-724, 1996.

[3] K. Watanabe, H. Tamura, and M. Sengoku, “Problems of
where to locate p sinks in a flow network,” Proc. IEICE 7th
Karuizawa CAS Workshop, pp.339-344, 1994,

[4] K. Watanabe, H. Tamura, and M. Sengoku, “Problems of
where to locate p-sinks in a flow network,” IEICE Trans.,
vol.J78-A, no.8, pp.938-946, 1995.

[5] K. Watanabe, H. Tamura, and M. Sengoku, “Problems of
where to locate p-sinks in a flow network: Complexity
approach,” Proc. IEICE 8th Karuizawa CAS Workshop,
pp.413-418, 1995.

[6] K. Watanabe, H. Tamura, and M. Sengoku, “Problems of
where to locate capacitated p sinks in a flow network,” Proc.
JTC-CSCC, pp.758-761, 1995.

Kaoru Watanabe was born in Nii-
gata, Japan on April 13, 1967. He re-
ceived the B.E. and M.E. degrees from
Niigata University in 1990 and 1992, re-
spectively. He is presently working to-
ward the Ph. D degree at Niigata Univer-
sity. He received the Paper Award from
IEICE in 1996. He is interested in graph
theory and algorithm theory.



WATANARBE et al: LOCATING SINKS IN A FLOW NETWORK WITH LOWER BOUNDS
657

Hiroshi Tamura was born in Saitama
prefecture, Japan, November 16, 1959. He
received the B. Educ., M.S. and Ph.D.
degrees from Niigata University in 1982,
1986 and 1990, respectively. In 1990, he
joined the staff at the Graduate School of
Science and Technology, Niigata Univer-
sity as a Research Associate. In 1991, he
was an Associate Professor at Center for
Cooperative Research, Niigata University.
He is presently an Associate Professor at
Niigata Institute of Technology. His research interests are in com-
putational geometry, network theory and graph theory. He re-
ceived the Paper Award from IEICE in 1992 and 1996. He is a
member of IPS of Japan and the Mathematical Society of Japan.

Keisuke Nakano was born in Nii-
gata, Japan, on April 22, 1966. He re-
ceived the B.E. and M.E. degrees from
Niigata University in 1989 and 1991, re-
spectively. He received the Ph.D. degree
from Niigata University in 1994. He was
with Niigata College of Technology from
1994 to 1996. He is now a Research Asso-
ciate of Graduate School of Science and
Technology, Niigata University. His re-
search interests include performance eval-
uation of mobile information networks.

Masakazu Sengoku was born in
Nagano prefecture, Japan, on October 18,
1944. He received the B.E. degree in elec-
trical engineering from Niigata Univer-
sity, Niigata, Japan, 1967 and the M.E.
and Ph.D. degrees from Hokkaido Uni-
versity in 1969 and 1972, respectively. In
1972, he joined the staff at Department of
Electronic Engineering, Hokkaido Uni-
versity as a Research Associate. In 1978,
he was an Associate Professor at Depart-
ment of Information Engineering, Niigata University, where he
is presently a Professor. His research interests include network
theory, graph theory, transmission of information and mobile
communications. He received the Paper Award from IEICE in
1992 and 1996. He is a member of IEEE and IPS of Japan




