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A Design Method of Odd-Channel Linear-Phase
Paraunitary Filter Banks with a Lattice Structure

SUMMARY In this letter, a design method of linear-phase
paraunitary filter banks is proposed for an odd number of chan-
nels. In the proposed method, a non-linear unconstrained opti-
mization process is assumed to be applied to a lattice structure
which makes the starting guess of design parameters simple. In
order to avoid insignificant local minimum solutions, a recur-
sive initialization procedure is proposed. The significance of our
proposed method is verified by some design examples.

key words:  multirate filter banks, paraunitary system, linear-
phase filter, subband image coding, non-linear optimization

1. Introduction

The linear-phase (LP) and paraunitary (PU) properties
of filter banks are particularly significant for subband
coding of images [ 1]—[3]. Thus, several linear-phase pa-
raunitary filter banks (LPPUFBs) have been studied so
far[3]-[8]. In the article[4], a special case of such sys-
tems, which is known as the lapped orthogonal trans-
forms (LOT), was shown. Then, the more general sys-
tems were established [5],[6]. For even number of chan-
nels, such systems have been well developed, especially
with lattice structures|[3],[7],[8]. Those structures en-
able us to design LPPUFBs with a non-linear uncon-
strained optimization process. However, non-linear op-
timization processes are sensitive to their starting guess
and has no guarantee to yield the global minimum so-
lution. Thus, in order to avoid at least an insignificant
local minimum solution, a recursive initialization de-
sign procedure was proposed [8].

Recently, some approaches to construct odd-
channel LPPUFBs have been developed. Soman et al.
showed the existence of odd-channel LPPUFBs and pro-
vided the lattice structure[6]. Then, Nagai et al. im-
proved the lattice structure to cover larger class of LP-
PUFBs than Soman’s system [9],[10]. In the article[9],
in order to avoid the use of non-linear optimization,
the design problem is reduced to solving a set of lin-
ear equations iteratively. In compensation for this ap-
proach, object functions are restricted and some practi-
cal ones, such as coding gain, are excluded.

In this letter, we consider applying a non-linear op-
timization process to a lattice structure of odd-channel
LPPUFBs. In order to avoid at least insignificant lo-

Manuscript received December 19, 1997.
TThe authors are with the Department of Electrical Engi-
neering, Graduate School of Engineering, Tokyo Metropoli-

tan University, Hachioji-shi, 192-0364 Japan.

Shogo MURAMATSU' and Hitoshi KIYA', Members

cal minimum solutions, we provide a lattice structure
which makes the starting guess of design parameters
simple, and propose a recursive initialization design
procedure. The procedure starts from the design for
a non-overlapping system and evolutionarily increases
the design problem. This work can be regarded as a
modification of that for even-channel system [8]. This
letter is based on the article[16], and our method is
independently devised with the article[9].

All through this letter, the notations I"ps, Is, and
Jur denote the M x M diagonal matrix which has +1
and —1 elements alternatively on the diagonal, the iden-
tity matrix and the counter identity matrix[1],[11]. In
addition, O and o are the null matrix and vector, respec-
tively, and the superscript “I” on a matrix or a vector
represents the transposition.

2. Review of LPPUFBs

In this section, we review LPPUFBs. Figure 1 shows
a parallel structure of M-channel maximally decimated
filter banks[1], where Hy(z) and Fj(z) are the anal-
ysis and synthesis filters, respectively. When the re-
constructed output sequence #(n) is identical to the in-
put x(n) except for the delay and scaling, the analysis-
synthesis system is called perfect reconstruction (PR) fi-
ter banks. Let E(z) and R(z) be the M x M type-
I polyphase matrix of an analysis bank and type-II
polyphase matrix of a synthesis bank, respectively[1].
If E(z) and R(z) satisfy the condition that
R(2)E(z) = cz~NIy for some integer N and some
non-zero constant ¢, then the system has PR prop-
erty[1]. In addition, if E(z) holds the condition that

E(z)E(z) = I, (1)

Subband sequences

X(n) 0 Wit ,(\ E:IEM F;;(Ez)
gH,(z) M M F(z)%

Analysis bank

Fig. 1 M-channel maximally decimated filter banks. The box
including | M and TM denote the down- and up-sampler with
the factor M, respectively.

Synthesis bank
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then it is said to be paraunitary (PU), where E(z) is
the paraconjugation of E(z)[1]. The condition as in
Eq. (1) is sufficient to construct PR filter banks, since
the PR property is guaranteed by choosing the synthesis
polyphase matrix as R(z) = cz N E(z).

Next, let us show the LP property of filter banks.
We assume that the elements of the polyphase matrix
E(z) is real, causal and FIR of order N. On this as-
sumption, the corresponding analysis filters Hy(z) are
also real, causal and FIR, and the order results in
K =(N+1)M — 1. If E(2) holds

)T = E(2), )

then each analysis filter Hy(z) for even k is symmetric
and one for odd k is antisymmetric

In this letter, we consider constructing LPPUFBs
for odd M, which satisfy both Egs. (1) and (2). For the
sake of convenience, the order N of a polyphase matrix
is sometimes referred to as the overlapping factor.

Z_NFJV[E(Z_l

3. Lattice Structure

For an odd-channel LPPUFB of overlapping factor
N = 2L, it can be verified that the product form

E(z) =
L
p* {H REZQE@)Rong(z)} RpoCJdu (3)

=1

provides a lattice structure, where

C:
L Té o 1] T2 o Jum
7[ OS & ] OT \/5 OT 7(4)
2 A Jua o —Tu
2 2

where &5 and & 4 denote arbitrary (M +1)/2x (M+1)/2
and (M —1)/2 x (M — 1)/2 orthonormal matrices, re-
spectively. In addition,
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where Wy is an (M 4+ 1)/2 x (M + 1)/2 orthonor-
mal matrix, and all of Weg, Ugy and U, are (M —

) /2 x (M —1)/2 orthonormal matrices. Furthermore,
Qg (z) = BAg(z)B and Q(z) = BAo(2)B, where
{ IM__l_ } ; (7
2
II\/I 1
02 IIM+1 ) (8)
=

1 Iu o T
B=-—| o' v2 o |. 9)

\/E IJ\I2 1 (o] ‘—IM;l

Figure 2 shows the lattice structure, which consists of
(M +1)/2 symmetric and (M — 1)/2 anti-symmetric fil-
ters. The counterpart synthesis bank holding PR prop-
erty is simply obtained as the paraconjugation of anal-
ysis bank because of the PU property [1].

The product form in Eq. (3) is obtained in the sim-
ilar way to the approach for even M shown in the ar-
ticle[ 8], where it should be noted that the overlapping
factor NV is even when M is odd[12]. The product form
guarantees both of the PU and LP properties, since the
the order-increasing process

E3011)(2) = Rp 11Qr(2) R0 1+1Q0 (2) E24(2)
(10)

holds both of the PU and LP properties when () is
PU and LP, where E,,(z) denotes a polyphase matrix
of LPPUFBs whose overlapping factor is m.
Substituted &g = I% and @ = —J%, Eq.(3)
results in the factorization given in the articles[9],[10].
The factorization was shown to be minimal and com-
plete for odd-channel LPPUFBs whose filters all have
length (IV + 1)M. Note that any choice of #g and P4
does not affect the minimality and the completeness. As
we will show, proper choice of these matrices makes the
starting guess of the design parameters simple, and these

Ry, = [ “(/;Ee U ] (5 matrices contribute only for the starting guess and are
Bl fixed during the design phase.
Wog o O
Rog= | o 1 oF |, (6) 4. Design Procedure
O o Ugy
By controlling the matrices Wgy, Wy, Ur, and Ugy,
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Fig. 2 Proposed lattice structure of A-channel LPPU analysis filter bank for an odd

number of channel M.
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we can design LPPUFBs for odd M. Since Wk, can be
characterized by (M +1)(M —1)/8 plane rotations, and
each of the others can be done by (M — 1)(M — 3)/8
ones[1], a non-linear unconstrained optimization pro-
cess can be used to design them. Any non-linear opti-
mization, however, has no guarantee to yield the global
minimum solution, and the result is sensitive to the start-
ing guess. In this section, let us consider avoiding in-
significant local minimum solutions in this approach.

4.1 The Recursive Initialization Approach

The lager overlapping factor is, the more complex the
starting guess becomes. One of the feasible approaches
to guess the starting point is an evolutionary approach,
which starts from lower order problems and uses the
results as the starting points for higher order ones. For
even number of channels M, such an approach has been
developed [8]. It is based on a technique of delay re-
alization with the lattice structure. Similarly, we can
provide such an approach for odd M. Note that, how-
ever, the lattice structure is slightly different from that
of even one. Therefore, some modification is required
in terms of the parameter mapping.

In the following, let us show our proposed design
procedure with an evolutionary approach and a tech-
nique of delay realization for odd M, which will be
shown as a lemma. The proposed procedure is as fol-
lows, where N is the overlapping factor, that is, the
order of the polyphase matrix:

Step 1: Start with proper FEy(z), for example, by
putting the M-point type-I DCT (DCT-I) as the ma-
trix C and letting Rgy = Ip;. Then, set £ = 0 and
optimize Eo(z).

Step 2: Imtlahze Eo41y(2) by using Ege(z) as
Ej41)(2) = 271 Eg(2), and increment £ as £ «— £+ L.
Step 3: Opt1m1ze E5(2), and go to Step 2 until the or-
der 2/ reaches to N, that is, £ reaches to L = N/2.
This procedure is applicable to any object function.
Furthermore, there is a simple mapping procedure by
which the initialization in Step 2 can be achieved in the
lattice structure. The procedure is based on the follow-
ing lemma: .
Lemma 1: Let E,(z) be a matrix of order n provided
as in Eq. (3) and £ = n/2. When

Ry = R e O i
EL — 102 — o T 3 ( )
2
E,.(z) can be represented as follows:
E,(2) =2"1E,_2(2), (12)

where E,_o(z) is a polyphase matrix of order n — 2,
which satisfies the LP and PU properties.

proof: Substituted Eq.(11), RpeQg(2)RoeQo(2) re-
sults in z71I;. Hence, from Eq.(3), Eq.(12) holds. O
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Equation (12) implies that E,(z) is identical to
E, _,(z) except for the delay. Thus, when E,_5(z) has
good performance, for example high coding gain and
stop-band attenuation, so does E,(z). From this fact,
in order to design E,,(z), well-designed E,,_(z) should
be a good candidate for the starting guess, appended the
section PT RyyQy(2)RosQo(z) P with the matrices in
Eq.(11).

In addition, our proposed procedure at least guar-
antees that the performance of the resulting system is not
worse than that of the lower order system. In this point
of view, our proposed structure is preferable since, by
simply choosing the matrices #s and @4 as (M +1)/2-
point DCT-I and (M —1)/2-point type-III DCT (DCT-
I1Y), respectively, the matrix C' in Eq.(3) can be set as
the M -point DCT-1[13], which provides a good starting
guess of Eo(z) with Rgo = I s for most practical object
functions. In other words, insignificant local minimum

solutions can be avoided.
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(a) Filters designed for maximizing coding gain G for
AR(1) process with p =0.95. Grc = 9.65 [dB].
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(b) Filters designed for maximizing minimum stop-band
attenuation, where each transition-band width is set to
7/2M = /18 [rad]. As = 30.88 [dB].

Fig. 3 Design examples: amplitude responses of 9 analysis fil-
ters, where M = 9, N = 6 (L = 3) and the length of each filter is
63.
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4.2 Design Examples

In order to verify the significance of our proposed
method, we show some design examples, where C is
fixed as the M-point DCT-I matrix. Figure 3(a) and
(b) give the amplitude responses of 9 analysis filters
designed for coding gain Gpg for AR(1) process with
the correlation coefficient p = 0.95[14], and those
for minimum stop-band attenuation Ag, respectively,
where M = 9, N = 6(L = 3) and each analysis fil-
ter has M(N + 1) = 63 tap length. For maximiz-
ing Ag, transition-band width of each filter is set to
7/2M = w/18[rad]. These examples are obtained by
using the routines ‘fminu’ for (a) and ‘minimax’ for (b)
provided by MATLAB optimization toolbox[15]. The
resulting coding gain and minimum stop-band attenu-
ation are Gp¢ = 9.65 [dB] and Ag = 30.9 [dB], respec-
tively.

In Fig.4, the resulting Grc and Ag are shown
for M = 3,5,7 and 9. The coding gain Grc is
maximized for AR(1) process with p = 0.95, and the
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(a) Grc for an AR(1) signal with p = 0.95.
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(b) Ag with transition-band width #r/2M [rad].

Fig. 4 Resulting coding gain Grc and minimum stop-band
attenuation Ag versus overlapping factor V.
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minimum stop-band attenuation Ag is maximized with
the transition-band-width 7/2M [rad]. Figure 4 shows
that, as the overlapping factor (or the order of polyphase
matrix) IV increases, both of Gr¢ and Ag increase for
M = 5,7 and 9. This illustrates that the recursive ini-
tialization procedure does not yield worse solution than
that of the system which is used as the starting guess.
This statement is also true for M = 3. However, the per-
formance does not improved even if the order increases.
This is because the LPPU condition is crucial for this
case.

5. Conclusions

In this letter, a design method of LPPUFBs was pro-
posed for an odd number of channels. In the proposed
method, we assumed that an unconstrained non-linear
optimization process is applied to a lattice structure
which makes the starting guess of design parameters sim-
ple. In order to avoid insignificant local minimum solu-
tions, a recursive initialization procedure, which starts
from the design for a non-overlapping system and evo-
lutionarily increases the design problem, was proposed.
This work can be regarded as a modification of that
for even-channe! system[8]. By showing some design
examples, we verified the significance.
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