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Flexible Zerotree Coding of Wavelet Coefficients

Sanghyun JOO†, Hisakazu KIKUCHI†, Shigenobu SASAKI†,
and Jaeho SHIN††, Members

SUMMARY We introduce an extended EZW coder that uses
flexible zerotree coding of wavelet coefficients. A flexible parent-
child relationship is defined so as to exploit spatial dependen-
cies within a subband as well as hierarchical dependencies among
multi-scale subbands. The new relationship is based on a partic-
ular statistics that a large coefficient is more likely to have large
coefficients in its neighborhood in terms of space and scale. In
the flexible relationship, a parent coefficient in a subband relates
to four child coefficients in the next finer subband in the same
orientation. If each of the children is larger than a given thresh-
old, the parent extends its parentship to the neighbors close to
its conventional children. A probing bit is introduced to indi-
cate whether a significant parent has significant children to be
scanned. This enables us to avoid excessive scan of insignificant
coefficients. Also, produced symbols are re-symbolized into sim-
ple variable-length binary codes to remove some redundancy ac-
cording to a pre-defined rule. As a result, the wavelet coefficients
can be described with a small number of binary symbols. This bi-
nary symbol stream gives a competitive performance without an
additional entropy coding and thus a fast encoding/decoding is
possible. Moreover, the binary symbols can be more compressed
by an adaptive arithmetic coding. Our experimental results are
given in both binary-coded mode and arithmetic-coded mode.
Also, these results are compared with those of the EZW coder.
key words: image compression, wavelet transform, zerotree cod-
ing

1. Introduction

Recently, Shapiro developed the EZW coder [1], which
utilizes dependencies among subbands decomposed by
wavelets [2]–[6]. This coder outperforms today’s JPEG
standard, ranging from low bit-rates to high bit-rates.
It can be also applied for lossless coding by using integer
wavelet transforms [7]–[12]. In particular, the proper-
ties of progressive transmission and encoding/decoding
ceasing option can be very important, depending on
the characteristics of available channels and application
scenarios.

Since the EZW coder was published, there have
been many developments in the field of image compres-
sion [11]–[26]. Some of them have been applied to three
dimensional images [13]–[15] as well as even to medical
images that usually require a high bit-rate coding [14],
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[15]. Some coders [16]–[18] offer improved results by the
modification of the EZW coder.

In the EZW coder, zerotrees are used to describe
many wavelet coefficients that are not so important to
reconstruct an image. The insignificant coefficients can
be represented as a few zerotree roots, and thus signif-
icant coefficients are efficiently described. The zerotree
is structured in such a way that a parent coefficient in a
subband connects to four child coefficients in the next
finer subband. This tree structure is suitable to exploit
the hierarchical dependencies among subbands.

Wavelet coefficients are described by four symbols
of zerotree root, isolated zero, positive and negative
in EZW. Symbols produced by the description are
entropy-coded to remove some redundancies that exist
among them. The efficiency of this entropy coding can
be more improved, if the spatial and hierarchical de-
pendencies are considered. That is, the produced sym-
bols can be entropy-coded as a higher-order Markov
source or context-based models [27]–[29]. In general,
the higher the order is, the lower the entropy is. On
the other hand, the memory and execution time in-
crease exponentially as the order.

In this paper, a new tree structure is introduced
to simultaneously exploit spatial dependencies within
a subband as well as hierarchical dependencies among
subbands. In addition, two effective techniques, prob-
ing bits and re-symbolization, are proposed to remove
some redundancies among the symbols produced by the
new treeing. In the new tree structure, a parent coeffi-
cient in a subband basically relates to four child coeffi-
cients in the next finer subband in the same orientation,
as is the same in the EZW. Then, the parent flexibly
extends its parentship onto at most five adjacent coef-
ficients that exist at the right and bottom of the basic
four children. The extension depends on the distribu-
tion pattern of significant coefficients.

By using this flexible treeing, insignificant coeffi-
cients are more likely to be related with zerotree roots
and significant coefficients are more likely to be related
with significant parents. On the contrary, the total
number of produced symbols can increase by as many
as the extended parent-child relationship would have.
A probing bit is introduced to reduce the number of
symbols to be produced. It indicates whether a par-
ent has significant children to be scanned. Also, since
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all subbands do not always require the same kinds of
symbol alphabets, produced symbols for parents and
children are re-symbolized into binary codes according
to a pre-defined procedure.

Due to those efforts, the proposed coder outputs a
binary symbol stream, and the stream gives a good per-
formance without any additional entropy coding such as
adaptive arithmetic coding. Moreover, the performance
can be improved, when the stream is entropy-coded by
an adaptive arithmetic coding. Our coder is compared
with the EZW coder in two modes: a binary-coded
mode and an arithmetic-coded mode. For comparison,
four coders are prepared in Fig. 1, where produced sym-
bols can be fed to an adaptive arithmetic coder as a
zeroth order Markov source (memoryless source).

This paper is organized as follows. The EZW coder
is reviewed in Sect. 2. Section 3 introduces a new coder
and shows how to produce a binary symbol stream. The
probing bit and the re-symbolization process are ex-
plained in detail. In Sect. 4, the proposed FZW coders
are compared with the EZW coder in three ways: FZW-
B to EZW-B, FZW-A to EZW-A, and FZW-B to EZW-
A. (For these abbreviations, refer to Fig. 1.) Conclu-
sions follow in Sect. 5 and several points are suggested
for further improvements.

Fig. 1 The FZW and EZW coders.

2. Embedded Image Coding Using Zerotrees of
Wavelet Coefficients

The EZW coder encodes images in an “embedded”
fashion from their dyadic wavelet representations. The
goal of the embedded coding is to generate a single
encoded bit-stream that permits to be truncated to
achieve any desired bit-rate, while giving the best pos-
sible reproduction at that rate. This coder encodes
wavelet expansion coefficients in order of importance
with respect to a sequence of thresholds. The initial
threshold is set as a maximum power of two smaller
than the largest coefficient. The threshold value is
halved as the significance map has been generated at
each bit plane. For every threshold, two passes are per-
formed: a dominant pass and a subordinate pass. All
significant coefficients with respect to a given threshold
are found in the corresponding dominant pass, where
four symbols are used for signaling the dominant pass
to the decoder.

In this coder, trees are structured according to a
rule such that a parent coefficient in a subband relates
to four child coefficients in the next finer subband. Note
that a parent coefficient only in the DC subband relates
to three child coefficients in the coarsest three AC sub-
bands (See Fig. 2). A zerotree root (ZTR) symbol is
generated for a coefficient such that it is insignificant
and has no significant descendants. An isolated zero
(IZ) symbol is generated, if a coefficient itself is insignif-
icant but it has significant descendants. The other two
symbols, POS and NEG, are used for a significant coef-
ficient to describe its sign. All coefficients are scanned
in such a way that no children are scanned before their
parents. Owing to the scanning order, a few ZTR sym-

Fig. 2 Parent-child relationship for 3-scale decomposition.
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bols can describe many insignificant coefficients.
Significant coefficients found in previous dominant

passes are refined in the subsequent subordinate pass.
A subordinate pass makes the lower or higher decisions
on the approximation value with respect to a given
threshold to minimize errors between the reconstructed
and original coefficients. That is, a coefficient in the
upper half of the uncertainty interval is coded with the
symbol UPPER, while a coefficient in the lower half
is coded with the symbol LOWER. By reading the
subordinate symbols corresponding to significant co-
efficients and knowing the threshold, the decoder can
determine the interval and can approximately recon-
struct the significant coefficients. Therefore, from the
decoder’s viewpoint, the rough estimates of significant
coefficients are more refined as more subordinate passes
are developed.

Four symbols are needed for the dominant passes,
except for the finest three AC subbands that have no
IZ symbols. Two symbols are needed for subordinate
passes. Those symbols are output as a symbol stream
and they are entropy-coded by an adaptive arithmetic
coder [30].

3. Flexible Zerotree Coding of Wavelet Coeffi-
cients (FZW)

The parent-child relationship used in EZW is drawn
in Fig. 2 for three-scale wavelet decomposition. For in-
stance, each parent coefficient in subband HL2 relates
to four child coefficients at the same spatial locations
in subband HL1. This relationship is modified to give
flexibility between a parent and its children.

3.1 Extension in the Parent-Child Relationship

The basic four children mentioned before are referred
to as leading children. To explain the flexible parent-
child relationship, a part of Fig. 2 is enlarged in Fig. 3.
Unlike EZW, P1 relates to the leading children, C11,
C21, C31, and C41, and flexibly extends its parentship
onto at most five adjacent coefficients, C51, C61, C71,
C81, and C91, that exist at the right and bottom of the
leading children. Note that Cij denotes the ith child
for the parent Pj .

Every nine children of a parent, say P1, are clas-
sified into four groups of G11, G21, G31, and G41 as
shown in the figure, where Gij means the ith group for
the parent Pj . First, P1 connects to G11 that consists
of the leading children. Then, the connection is flexi-
bly extended to G21, G31, and G41 depending on the
significance of C21, C31, and C41. For example, assume
that C21 and C41 are significant. The children of P1 are
defined as G11 and then the parent-child relationship is
extended to G21 and G41, because some of the leading
children, C21 and C41, are significant. Hence, P1 has
eight children except C71.

Fig. 3 Parents, children, and groups in the flexible relation-
ship. A group consists of four children and its name is written in
the center of them.

In this way, every parent can take care of at
most nine children, and actual parent-child relationship
varies in a flexible manner depending on the distribu-
tion pattern of significant coefficients. P2 also has four
child groups of G12, G22, G32, and G42. Three chil-
dren, C71, C81, and C91, of P1 can be read as the top
three children, C12, C22, and C52, of P2. Note that P4

does not define G34 and G44 as its child groups, because
G34 and G44 cover the children, C17, C27, and C57, in
another different subband.

Every parent in all subbands except LL, HL3,
LH3, and HH3, flexibly relates to its children. A parent
in subband LL relates to three children in the coarsest
AC subbands, HL3, LH3, and HH3 (See Fig. 2).

3.2 A Significance Map

Once a group has been activated, children in that group
are scanned until they are found as significant. This
scanning is processed before a dominant pass and is re-
ferred to as a pre-dominant pass. Unlike EZW, signif-
icant coefficients with respect to a given threshold are
searched through the two passes: pre-dominant pass
and dominant pass.

A particular significance map is prepared for these
passes. The significance map has the same dimen-
sion as an original image, and all significant coefficients
are found by referring this map. This map is filled
with symbols that represent the significance informa-
tion about all pixels. Also, pixels that have children
include probing bits information to indicate scanning
of their children.

Significant pixels to be found are described as POS
and NEG. The significant pixels found in the earlier
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passes are described as SE to differentiate from pixels
to be found in current passes. In the significance map,
following four symbols are used.

SE: Significant coefficient already found in an earlier
pre-dominant or dominant pass. This symbol is
not transmitted.

SC: Significant coefficient to be newly found in the cur-
rent pre-dominant or dominant pass. This symbol
is changed with POS or NEG, when it is transmit-
ted.

ZTR: Insignificant coefficient that has no significant
descendants

IZ: Insignificant coefficient that has significant descen-
dants

Our purpose is to find SC symbols from the sig-
nificance map, and the significance map for n-scale de-
composition is made by the following procedure.

Step 1. Initialize all pixels with ZTR and set all prob-
ing bits for pixels that have children to OFF.

Step 2. Mark significant pixels found in the earlier
passes with SE.

Step 3. Mark significant pixels to be found in the cur-
rent pre-dominant and dominant passes with
SC.

Step 4. Set the scale m to 2.
Step 5. For each parent Pe at (i, j) in subbands HLm,

LHm, and HHm,

• Inspect the significance of four children
(2i, 2j), (2i+1, 2j), (2i, 2j+1), and (2i+1,
2j + 1) in G1e.

• If one of them is either SC or IZ and if it
is not included in any other active groups,
then

– switch G1e and the probing bit of Pe

to ON .
– if the pixel (i, j) has been marked

with ZTR, replace the pixel by IZ.
– if each pixel of (2i+1, 2j), (2i, 2j+1),

and (2i+1, 2j+1) is SE or SC, switch
the corresponding group among G2e,
G3e, and G4e to ON.

• Else if the child group G1e has been al-
ready ON, then

– if each pixel of (2i+1, 2j), (2i, 2j+1),
and (2i+1, 2j+1) is SE or SC, switch
the corresponding group among G2e,
G3e, and G4e to ON.

• Else do nothing.

Step 6. If m is smaller than n, increase m by 1 and go
to Step 5.

Step 7. For each parent (i, j) in subband LL,

• If one of the pixels, (i + p, j), (i, j + q),
and (i + p, j + q), is SC or IZ, then

– if the pixel (i, j) has been marked
with ZTR, replace the pixel by IZ,
where p and q represent the num-
bers of horizontal and vertical pixels
in the LL subband.

Step 8. Stop.

Some coefficients are found as significant by scan-
ning active groups in the pre-dominant pass, where
only the pixels that has been not yet marked with
SE are scanned. Since these significant coefficients are
described through this pass, many zerotree roots in
the subsequent dominant pass can be produced from
coarser subbands. The significant coefficients that have
been not found in the pre-dominant pass are described
in the subsequent dominant pass. The bit-saving pro-
cess described in the previous sub-section can be per-
formed in this dominant pass.

3.3 Re-Symbolization Process

The pre-dominant and dominant passes are executed
with the help of the significance map. SC symbol is
changed into POS or NEG to indicate the sign of a co-
efficient and SE symbol is neglected. Therefore, four
symbols of POS, NEG, IZ, and ZTR are generated in
these two passes. All subbands do not always need the
same number of symbol alphabets. Note that the DC
subband, LL, needs no NEG symbols, and the finest
AC subbands, HL1, LH1, and HH1, need no IZ sym-
bols. In particular, the area of the finest subbands is
three quarters of the total area. It is wasteful to use
2-bit symbols throughout the entire set of all subbands.

Therefore, all symbols produced from pre-
dominant and dominant passes are re-symbolized ac-
cording to the definition given in Table 1. In the table,
one bit is assigned for differentiating ZTR symbol from
the other symbols. One more bit is assigned for dif-
ferentiating IZ symbol from SC symbol, but this aug-
mented bit is not used for the finest subbands. SC
symbol is encoded into POS or NEG by augmenting
another bit, and again this augmentation does not ap-
ply for the DC subband.

3.4 One-Bit Probe and Bit-Saving Operation

In FZW, the probing bit is generated to avoid redun-

Table 1 Zerotree symbols and binary symbols in the re-sym-
bolization of a significance map.

Subbands ZTR IZ
SC

SE
POS NEG

LL 0 10 11 N/A Don’t Code

HL1, LH1, HH1 0 N/A 10 11 Don’t Code

Others 0 10 110 111 Don’t Code



JOO et al: FLEXIBLE ZEROTREE CODING OF WAVELET COEFFICIENTS
1121

dant scans for insignificant descendants. It has two
states between ON and OFF. The role of probing bits
is to indicate whether a parent has a significant child
of SC and IZ that should be scanned because of its
significance.

Then how and when are the probing bits gener-
ated? Assume that the encoder is now going to scan a
particular subband with a significance map and probing
bits information. That means all coarser subbands have
been already coded. All parents in the parent subband
have been already coded with SE, SC, ZTR, and IZ, and
have their own probing bits. When one of the parents
is SE or SC and its leading child group is inactive, its
probing bit is generated to inform whether the leading
child group is going to be scanned. If the probing bit is
ON, the leading child group will be scanned and then a
flexible extension will be followed. Otherwise, do noth-
ing for the children. If the parent is IZ, the probing
bit must be ON and the leading child group must be
inactive. In this case, a probing bit is not generated,
because it is predictable. Then the leading group scan
and the flexible extension are followed. In the case of
ZTR, the probing bit is OFF. This is also predictable
and no children are scanned.

Once the children scan for the parent has been fin-
ished, the process moves to the next parent. All par-
ents have their own probing bits in the entire process
of encoding. Among the probing bits, a part of them
are output: only the probing bits belonging to SE and
SC parents that have inactive leading child groups are
output to inform the scan of children.

This probing bit works well over a wide range of
bit rates: low, middle, and high bit rates. There has
been such kind of trials to avoid redundant scans in
ZTE [19]. In ZTE, the use of zerotrees has been modi-
fied by defining a new set of symbols designed for very
low bit rate coding of video. Since many insignificant
coefficients are likely to appear particularly in very low
bit rate coding, an efficient handling of them is strongly
required. The new symbol set defined in ZTE reflects
well this requirement and is composed of zerotree root
(ZR), valued zerotree root (VZR), and value (V).

• VZR is a symbol for a significant coefficient that
has no significant descendants. In FZW, VZR can
be considered as a significant symbol of POS and
NEG when the probing bit of its significant symbol
is OFF.

• V is a symbol for a coefficient that has significant
descendants. In FZW, V can be considered as a
symbol among IZ, POS, and NEG when the prob-
ing bit of the symbol is ON.

It can be said that the probing bit in FZW plays
a role in differentiating VZR from V. However, two
schemes have different sets of symbols and different use.
Moreover, ZTE finds significant coefficients through
one-pass, and then scalar quantization follows. In con-

trast, FZW finds significant bits rather than significant
coefficients through multi-pass (pre-dominant passes
and dominant passes), and then successive approxima-
tion quantization follows in subordinate passes.

A significant parent Ps connects with the leading
children in G1s by outputting a probing bit. Since
a significant parent usually has many children to be
scanned, this probe enables us to avoid excessive scan
of insignificant children. After the first group is acti-
vated, the other groups, G2s, G3s, and G4s, can be ac-
tivated depending on the significance of C2s, C3s, and
C4s among the leading children.

Assume that the probing bit of a parent coefficient
is ON. It means that there exists at least one child to be
newly found as significant among the leading children.
Since it implies that at least one child is not coded as
ZTR, we can save the coding budget for that child. This
bit-saving is applied to significant parents and those
parents that have been coded with IZ.

3.5 FZW Coder

The algorithm of FZW is summarized as follows.

Algorithm of the FZW coder

Step 1. Decompose an image into a collection of mul-
tiscale subbands by using a wavelet transform.

Step 2. Find the maximum coefficient among all coef-
ficients.

Step 3. Decide an initial threshold from the maximum
coefficient.

Step 4. Make a significance map with respect to a
given threshold.

Step 5. Execute a pre-dominant pass.
Step 6. Execute a dominant pass.
Step 7. Execute a subordinate pass.
Step 8. Divide the threshold by two.
Step 9. If the threshold is smaller than 1, then stop.

Else go to Step 4.

This encoding algorithm can be terminated at any
time, and the decoder can reproduce an image at any
bit rate allowed by the extent of the received informa-
tion.

4. Experimental Results and Discussions

To compare the performance between the FZW and
EZW coders, we have simulated on two test images of
Lena and Barbara (512×512 in grey scale). All simula-
tions have been performed with a 6-scale biorthogonal
wavelet transform by using a 9/7-tap filter bank [31].
(See also Table 2) A reflection extension has been im-
plemented at the image border. To reproduce an image
from received binary symbols, the output bit stream in-
cludes seven bytes of header information: four bytes for
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Table 2 9/7-tap filter bank coefficients.

n Analysis Synthesis
0 0.852699 0.788486
1 0.377402 0.418092
2 −0.110624 −0.040689
3 −0.023849 −0.064539
4 0.037828

(a) Barbara

(b) Lena

Fig. 4 Performance comparisons among FZW-B, EZW-B, and
SPIHT-B. Compressed size varies from 2,048 to 32,768 bytes.

the horizontal and vertical dimensions of the image and
one byte each for the filter bank, the level of the wavelet
decomposition, and the initial threshold, respectively.

First, we compared the performances of FZW-
B and EZW-B. Both coders produce binary symbol
streams through the re-symbolization procedure, and
they have been compared in terms of the length of bit
streams. In FZW-B, one probing bit for a significant
parent is output to indicate whether the parent needs
to connect with its children, before they are scanned.
Although the probing bit enables us to save 1-bit bud-
get for a child that is not ZTR, the bit-saving operation
has not been implemented in our simulations. The bit-
saving can be combined to obtain better performances,
but the programming will be more complicated.

As can be seen in Fig. 4, FZW-B shows remarkable
performances comparing with EZW-B. FZW-B owes its
preformance to the two points as follows.

(a) Barbara

(b) Lena

Fig. 5 Performance comparisons among FZW-A, EZW-A, and
SPIHT-A. Compressed size varies from 2,048 to 32,768 bytes.

• One-bit probe in conjunction with the significance
map avoid excessively many scans for insignificant
coefficients and ease the task for efficient extension
in the flexible treeing.

• Flexible parent-child relationship allows us to find
efficient description in which significant children
can be connected with fewer parents and thus
many zerotree roots are produced from coarser
subbands.

In the next experiments, entropy coding is applied
to get better performances. In FZW-A, the symbol
streams produced by FZW-B are coded by an arith-
metic coding. On the other hand, EZW-A excludes the
re-symbolization process to keep the original EZW al-
gorithm as it is. Entropy coding has been performed
as zeroth order Markov sources with a maximum fre-
quency count of 256 by Jones’ adaptive arithmetic
coder [32]. Although we use the zeroth order entropy
coding in this experiment, a higher-order entropy cod-
ing [28], [29] will offer better performances. The perfor-
mance curves are given in Fig. 5. The performance dif-
ferences between FZW-A and EZW-A are not as large
as those between FZW-B and EZW-B. This means
that the frequencies of symbols produced by FZW-A
are strongly affected by the probing bits.
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(a) Barbara

(b) Lena

Fig. 6 Performance comparisons between FZW-B and EZW-
A. Compressed size varies from 2,048 to 32,768 bytes.

Our main purpose is to show some effectiveness of
our proposed techniques: flexible treeing, a probing bit,
and re-symbolization. They are applied to the EZW
coder that is referred to as the most well-known zerotree
coder. Our improvements in performance can be eval-
uated as effectiveness of the proposed techniques. Just
as the reference purpose for broad readership, we give
the plots for SPIHT [16] in Figs. 4 and 5. As well known
for its good performances in the literature, SPIHT out-
performs FZW in both arithmetic coding and binary
modes. If the proposed techniques are adjusted to the
SPIHT coder with adequate modifications, they may
cause different result.

It is also interesting to compare the performances
between FZW-B and EZW-A. Figure 6 gives the com-
parisons between FZW-B and EZW-A. While FZW-
B shows better performances for the Barbara image,
EZW-A offers better performances for the Lena image.

Let us consider the different results. When the im-
ages are reconstructed only with the coefficients that
are greater than 8 in magnitude, the reproduced im-
ages are of 39.59 dB and 39.16 dB in PSNR for Barbara
and Lena, respectively. This suggests that a reasonable
image can be obtained at thresholds greater than 8.
Table 3 shows the numbers of coefficients to be found
as significant with respect to several thresholds. From

Table 3 The number of significant coefficients with respect to
a given threshold in different subbands.

Thre- N N N N(4) N(3) N(2) N(1)
shold (LL) (6) (5)
8192 27 0 0 0 0 0 0
4096 35 0 0 0 0 0 0
2048 2 1 0 0 0 0 0
1024 0 32 5 0 0 0 0
512 0 47 69 17 0 0 0
256 0 53 139 134 60 0 0
128 0 30 170 336 355 296 86
64 0 10 144 489 858 1838 2528
32 0 6 103 569 1466 3903 5197
16 0 8 68 529 1948 5370 9244
8 0 3 36 400 2126 6710 15427
4 0 0 17 289 2041 7680 26365
2 0 1 7 155 1489 8708 41364
1 0 0 2 78 954 6736 41011

(a) Barbara

Thre- N N N N(4) N(3) N(2) N(1)
shold (LL) (6) (5)
8192 26 0 0 0 0 0 0
4096 37 0 0 0 0 0 0
2048 1 5 0 0 0 0 0
1024 0 25 9 0 0 0 0
512 0 44 74 16 0 0 0
256 0 36 117 121 29 0 0
128 0 35 117 334 331 42 0
64 0 17 137 416 794 584 4
32 0 14 111 503 1230 1808 499
16 0 8 103 469 1489 3397 2631
8 0 3 50 439 1848 5478 8470
4 0 2 24 356 2254 9651 28305
2 0 3 12 202 1950 11247 51940
1 0 0 10 102 1139 7952 45918

(b) Lena

N(m) represents the total number of significant coefficients
with respect to a given threshold in different subbands, HLm,
LHm, and HHm, except that N(LL) is the number in subband
LL.

the comparison between the two tables, we know that
Barbara image involves more significant coefficients in
finer subbands for the thresholds above 8 than the Lena
image does. That is, it can be interpreted that the flex-
ible tree is especially effective to exploit coefficients in
the higher frequency subbands.

Comparing the 1-to-4 parent-child relationship
used in the EZW coder with the flexible parent-child
relationship, the latter allows more significant children
to belong to significant parents. As a result, signifi-
cant children are connected with fewer significant coef-
ficients, and thus more zerotree roots can be produced
in coarser subbands. In other words, efficient zerotree
roots are made. This is likely to appear, when there
are many significant children in higher subbands. This
analysis for the flexible treeing can be supported by the
comparisons in Fig. 6.

We have described two coders: FZW-A and FZW-
B. Especially FZW-B has an advantage that gives
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Table 4 Execution time for encoding/decoding.

Thresholds∗ FZW-A EZW FZW-B
8 4.2 4.0 3.2

Encoder
16 3.6 3.4 2.8
8 3.0 2.6 1.9

Decoder
16 2.5 2.1 1.5

(in second)

* Thresholds are given to indicate stopping points of en-
coding/decoding; where encoding/decoding is processed
up to the corresponding subordinate pass with respect
to the threshold.

fast encoding/decoding by replacing the adaptive arith-
metic coding with re-symbolization. Table 4 has been
added to compare the execution time among FZW-A,
FZW-B and EZW. This was done with a DOS/V com-
puter equipped with a Pentium-II 266MHz processor.

5. Conclusions

We have proposed a modified EZW coder that im-
plements a flexible zerotree coding of wavelet coeffi-
cients. In the proposed coder, a flexible parent-child
relationship is defined so as to exploit spatial depen-
dencies within a subband as well as hierarchical depen-
dencies across subbands. The produced symbols are
re-symbolized into binary codes.

The binary symbol streams produced by the FZW
and EZW coders are compared in length. In this sim-
ulation, the FZW coder showed remarkable improve-
ments. The improvements have been resulted from the
flexible parent-child relationship, the probing bit and
re-symbolization. In arithmetic-coded mode, FZW-A
offered better performances than EZW-A. Moreover
the performances of FZW-B are competitive with those
of EZW-A incorporated with arithmetic coding.

Performances of the FZW coder can be more im-
proved by using the bit saving algorithm that was not
implemented in the experiments. Also, further im-
provements can be achieved by a higher-order adaptive
arithmetic coding.
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