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SUMMARY In this paper, an algorithm of the median-cut
quantization (MCQ) is proposed. MCQ is the technique that re-
duces multi-valued samples to binary-valued ones by adaptively
taking the median value as the threshold. In this work, the search
process of the median value is derived from the quick-sort algo-
rithm. The proposed algorithm searches the median value bit by
bit, and samples are quantized during the search process. Firstly,
the bit-serial procedure is shown, and then it is modified to the
bit-parallel procedure. The extension to the multi-level quanti-
zation is also discussed. Since the proposed algorithm is based
on bit operations, it is suitable for hardware implementation.
Thus, its hardware architecture is also proposed. To verify the
significance, for the application to the motion estimation, the
performance is estimated from the synthesis result of the VHDL
model.
key words: adaptive quantization, median value, motion esti-
mation, VLSI

1. Introduction

The median-cut quantization (MCQ) is the technique
that reduces multi-valued samples to binary-valued
ones by adaptively altering the threshold as the median
value. MCQ has been found several applications in sig-
nal and image processing so far, such as color reduction
and preprocessing of low-power implementation [1]–[3].

The basic procedure of MCQ is as follows: firstly
sort given samples, secondly extract the median value,
and lastly quantize all samples by using the median
value as the threshold. The most significant step is
the sorting process. The sorting process has been a
principal problem in the area of computer engineering
so far. Thus, there are a lot of sophisticated techniques
for that [4].

Extracting the median value, however, does not
require the complete sorting. Indeed, in order to obtain
the median value, the pruning technique of the quick-
sort algorithm (QSA) is available. This algorithm can
extract an arbitrary position value as well as the median
value.

During the process of QSA, some values are used
to recursively divide a given set to two subsets. Such
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a value is referred to as a pivot. As well as the nor-
mal QSA, the question on the pivot selection, however,
still exists in the pruned QSA. In the article [5], a so-
lution to select the pivot is shown, and the number of
operations is improved.

In this paper, we consider developing an algorithm
of MCQ which is suitable for hardware implementa-
tion. This is motivated from the fact that most of the
applications are image and video processing, and they
require large amount of computation within a specified
time [6], [7]. In order to achieve this purpose, we adopt
the pruned QSA. The problem of this approach is how
to select the pivot. The method shown in the article [5],
however, does not take the quantization into account.

From this background, we propose a new pivot se-
lection method for MCQ with the pruned QSA. The
proposed method concurrently quantize given samples
while searching the median value bit by bit. Indeed,
a value consisting of some most significant bits of the
median value is used as the pivot during the search pro-
cess. This bit-level operation leads to an efficient hard-
ware implementation. Since the proposed algorithm
can take an arbitrary position value as the threshold,
the multiple execution with different thresholds yields
a multi-level quantization.

The organization of this paper is as follows. As a
preliminary, in Sect. 2, we briefly review MCQ and the
pruned QSA. In Sect. 3, we discuss the basic idea of
the proposed algorithm, and then show the bit-serial
procedure. We also modify it to the bit-parallel pro-
cedure. The extension to the multi-level quantization
is also discussed. The hardware architecture is pro-
posed in Sect. 4. The architecture is simple in the data
and control flow. To show the significance, in Sect. 5,
the application to the low-bit block matching motion
estimation is discussed [2], [3], [7]–[9], and estimate the
architecture by some synthesis results from the VHDL
model, followed by the conclusions in Sect. 6.

2. Review

As a preliminary, this section briefly reviews MCQ and
the pruned QSA.

2.1 Median-Cut Quantization (MCQ)

Let x(n) and y(n) be an input and the output for
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Fig. 1 Pruning technique of QSA.

MCQ, respectively, and let N be the number of sam-
ples. Then, the function of MCQ is represented as fol-
lows:

y(n) =
{
1, x(n) ≥ TM

0, otherwise , n = 0, 1, · · · , N − 1 (1)

where TM is the median value. Let u(n) be the ordered
sequence of x(n) with the increasing order. Then, TM

is obtained as follows:

TM = u(M), M = �N/2�, (2)

where the function �x� means the integer part of its
argument x. The threshold adaptively alters according
to the distribution of x(n).

The sorting process of x(n) is not necessary to ob-
tain TM . It is sufficient to use the pruned QSA, which
will be shown in the followings.

2.2 Pruning Technique of QSA

Figure 1 briefly illustrates the pruning technique of
QSA [4], [5]. We firstly explain the case that the tar-
get is the median value TM . Then, we generalize the
discussion to any position value.

In Fig. 1, SC0 denotes the set of given samples x(n),
SCi is the subset of SC(i−1) which includes the median
value TM , that is, the candidates, and S̄Ci is its com-
plement in SC(i−1), that is, SC(i−1) = SCi ⊕ S̄Ci. xi−1

denotes the pivot of the i-th iteration.
For extracting TM , the procedure is represented as

follows, where M is the median position M = �N/2�:
Step 0: Initialize i, c as i = 0, c = 0.
Step 1: Increment i as i = i+ 1.
Step 2: Select an element xi ∈ SC(i−1) as the pivot.
Step 3: Divide SC(i−1) into the following two subsets:

SLi = {x(n) ∈ SC(i−1) : x(n) ≥ xi−1},
SSi = {x(n) ∈ SC(i−1) : x(n) < xi−1}.

Step 4: Let SCi = SLi when c + |SLi| > N − M − 1,
that is, TM ∈ SLi. Otherwise, let SCi = SSi and
update c as c = c+ |SLi|.

Step 5: Break if SCi = ∅. xi−1 is the target.

Step 6: Go to Step 1 until |SCi| = 1 or all elements in
SCi equal to each other.

Step 7: End. The/an element in SCi is the target.

Although the above procedure is described for ex-
tracting the median value TM , the target does not lim-
ited to it. Indeed, any position in the range from 0 to
N − 1 can take the place of the median position M .
The efficiency of this procedure highly depends on how
to select the pivot xi−1 ∈ SC(i−1) in Step 2.

3. The Algorithm

In this section, we consider applying the pruned QSA to
MCQ. The key point is the way of selecting the pivot.
Indeed, the pivot is chosen as a value consisting of some
most significant bits of the median value during the pro-
cess. Firstly, we propose the bit-serial procedure, and
then, modify it to the bit-parallel procedure to improve
the throughput.

3.1 Bit-Serial Procedure

In this paper, we assume that x(n) is an unsigned in-
teger, and let B and N be the number of bits and the
number of samples, respectively. Let us remind the
procedure described in Sect. 2.2. The basic idea of our
proposed algorithm is based on the following facts:

Fact 1: If the number of 1s in MSBs, or (B − 1)-th
bits, of all samples is larger than N − M − 1, the
MSB of TM must be ‘1,’ otherwise ‘0.’ Thus, by
dividing SC0 into SL1 and SS1 according to each
MSB, which implies the pivot x0 = TM&2B−1, it
is easily identified which the candidate is, where
‘&’ denotes the logical product.

Fact 2: If SSi is not the candidate, then the elements
all are necessarily smaller than TM , and should be
quantized to ‘0.’ Otherwise, the elements in SLi

should be quantized to ‘1.’
Fact 3: Assume that SC(i−1) has been divided into SCi

and S̄Ci with the pivot xi−1 = TM&(
∑i

b=1 2
B−b).

Then, dividing SCi into SL(i+1) and SS(i+1) accord-
ing to only the (B−i−1)-th bit corresponds to the
selection of the pivot as xi = TM&(

∑i+1
b=1 2

B−b).
Fact 4: The check if SL(i+1) is the candidate or not

is achieved by firstly counting 1s in the already-
quantized samples and on the (B− i−1)-th bits of
elements in SCi, and then evaluating if it is larger
than N − M − 1 or not. If not, SS(i+1) is the
candidate.

For the sake of simplification, we explained the
above facts by using the masked median value xi =
TM&(

∑i+1
b=1 2

B−b), which consists of the (i + 1) most
significant bits of TM , as the pivot. The pivot, however,
may be out of SCi. Precisely, the division according to
a bit corresponds to selecting the smallest element x(n)
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satisfying Eq. (3) as the pivot xi.

x(n) ≥ TM &

(
i+1∑
b=1

2B−b

)
. (3)

Figure 2 shows the C-like pseudo code of the pro-
posed algorithm. We refer to it as the bit-serial proce-
dure. In this paper, [x]b denotes the b-th bit of x. r(n)
and f(n) are one bit variable, where the former con-
tains both of the quantized samples and the b-th bit of
candidates, and the latter is the flag representing if it
has already been quantized. Although no quantization
operation appears in the procedure, flagging in the line
11 implies it. Table 1 shows an example of the process,
where B = 3 and N = 8.

With the proposed algorithm, NB +N cycles are
required for completion. Let us consider applying the
procedure to the block processing of size N , and de-
fine the throughput by the number of blocks processed
per cycle. Then, the throughput is evaluated as 1/NB,
because the output process in the line 17 can be over-
lapped right before the line 5 in the process for the next
block, and only NB cycles are required to complete one
block.

Fig. 2 Proposed bit-serial procedure of the median-cut quan-
tization.

Table 1 Example of the signal flow in the proposed method,
where B = 3, N = 8 and M = 4. r(b)(n) denotes r(n) in the
iteration for the b-th bit, ‘f’ is the flag which implies f(n) = 1
and (·)2 means the binary representation. In this example, the
median value TM results in 5 = (101)2.

n x(n) r(2)(n) r(1)(n) r(0)(n) y(n)

0 1 (001)2 - 0 f 0 f 0 0
1 7 (111)2 - 1 - 1 f 1 1
2 6 (110)2 - 1 - 1 f 1 1
3 5 (101)2 - 1 - 0 - 1 1
4 2 (010)2 - 0 f 0 f 0 0
5 6 (110)2 - 1 - 1 f 1 1
6 4 (100)2 - 1 - 0 - 0 0
7 0 (000)2 - 0 f 0 f 0 0

c 5 3 4 -
TM (1 - - )2 (10 - )2 (101)2 (101)2

3.2 Bit-Parallel Procedure

Some applications require for the throughput to be
larger than 1/NB. In the following, we modify the
bit-serial procedure so as to improve the throughput.
We refer to the technique as the bit-parallel procedure
because it operate multiple bits a cycle as a digit in
parallel.

Note that, in Fig. 2, the check in the line 8 depends
only on the result of the previous iteration. Thus, the
checking processes in the same iteration can be exe-
cuted concurrently. Based on this idea, we propose the
bit-parallel procedure. Let P be the digit size and a
divisor of N , and let K = N/P . We show the algo-
rithm in Fig. 3, where it is assumed that the bit array
of the input sequence x(n) is prearranged to a P -bit
digit x̂(m) such that

[x̂(m)]P−p−1 = [x(P · ((m))K + p)]B−�m
K �−1,

p = 0, 1, · · · , P − 1, m = 0, 1, · · · , KB − 1, (4)

where ((x))N denotes the integer of x modulo N .
For example, when P = 4, the sequence shown in

Table 1 is prearranged as follows:

x̂(0) = ([x(0)]7 [x(1)]7 [x(2)]7 [x(3)]7)2 = (0111)2
x̂(1) = ([x(4)]7 [x(5)]7 [x(6)]7 [x(7)]7)2 = (0110)2
x̂(2) = ([x(0)]6 [x(1)]6 [x(2)]6 [x(3)]6)2 = (0110)2

...
x̂(15) = ([x(4)]0 [x(5)]0 [x(6)]0 [x(7)]0)2 = (0000)2

The throughput of this prearrangement depends on the
peripheral circuit and how to implement it. Hence, we
here temporarily give an example. Provided one data
per cycle via one bus of width B bits, it can be imple-
mented by a buffer of size NB bits. The throughput
meets P/NB blocks/cycle, where P ≤ B.

In Fig. 3, the output ŷ(k), the flag f̂(k) and the in-
termediate result r̂(k) are P -bit digits. As a result, the
bit-parallel procedure increases the throughput from
1/NB blocks/cycle to 1/KB = P/NB blocks/cycle.

Note that the bit-serial procedure can be regarded
as a special case of the bit-parallel procedure for P = 1.

3.3 Multi-Level Quantization

The pruning technique of QSA described in Sect. 2.2
can be used to obtain any position element of the input
x(n). This implies that a Q-level quantization is simply
achieved by multiply executing the Q−1 processes with
Q − 1 different thresholds TMq given as in Eq. (5).

TMq = u(Mq), Mq = �Nq/Q�,
q = 1, 2, · · · , Q − 1, (5)

where u(n) is the ordered sequence of x(n). As a result,
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Fig. 3 Proposed bit-parallel procedure of the median-cut quan-
tization, where “ones” is the function that returns the number
of 1s on its argument, and “ext” is the function that extends its
1-bit input to P -bit digit.

Fig. 4 Proposed procedure of the multi-level quantization,
where {ŷ�} and {T̂Mq} denote the sets of ŷ�(k) and TMq , respec-
tively. “encode” encodes its Q − 1-bit inputs to L-bit outputs,
and “decode” is the inverse function, where [x]p means the p-th
bit of x and (·)2 is the binary representation. All of x̂(m), r̂�(k),

f̂q(k), d̂q, ŝq and t̂q are P -bit digits.

encoding the results of Q−1 processes yield the Q-level
quantized output.

Let Q be a power of 2 and L be log2(Q). The al-
gorithm of the Q-level quantization can be represented
as shown in Fig. 4, where only the bit-parallel type is
considered because it covers the bit-serial procedure.

Note that each process is not required to indepen-

dently store the intermediate results. The functions
“encode” and “decode” realize the sharing of them.
The function “y = decode(x)” decodes the unsigned
integer x of (L− 1)-bit into the (Q− 1)-bit digit y such
that

[y]b =
{
1, x > b

0, otherwise
, b = 0, 1, · · · , Q − 2. (6)

For example, when L = 2, decode(0), decode(1),
decode(2) and decode(3) return (000)2, (001)2, (011)2
and (111)2, respectively. On the other hand, “x =
encode(y)” is the inverse.

Note that the procedure described in Sects. 3.1 and
3.2 can be regarded as a special case of the multi-level
procedure for L = 1.

4. The Architecture

Our proposed algorithm is suitable for hardware im-
plementation since the data and control flow are quite
simple. In this section, we propose the hardware ar-
chitecture. As was mentioned before, the multi-level
bit-parallel algorithm as shown in Fig. 4 covers the two-
level bit-serial and bit-parallel procedures. Thus, we
consider the architecture only for the multi-level bit-
parallel algorithm. We firstly show the data path ar-
chitecture, and then the control unit.

4.1 Data Path

The architecture of the proposed data path is shown
in Fig. 5. It is considered as a synchronous system.
Figs. 5 (a) and (b) show the architectures of the top
module and the q-th processing element (PEq), respec-
tively. Each PEq contributes the parallel processing for
q in the list shown in Fig. 4.

CLK and RST are the clock and reset signals, respec-
tively. UPD, CLR and b are the update signal for Counter
C and Register T, and the clear signal for Shift Regis-
ters F and R, and the bit pointer of width �log2(B)�,
respectively, which are generated by the control unit
as shown later, where �x� denotes the smallest integer
larger than or equal to x.

All of x̂, x̂syn, t̂q, ŷq, ŝcurq, ŝpreq, r̂
 are P -bit dig-
its, where x̂syn is the synchronized signal of x̂ to CLK.
ŝcurq and ŝpreq correspond to ŝq in the list shown in
Fig. 4, where the former is the value in the current it-
eration, and the latter is that of the previous iteration,
respectively. “N − Mq − 1” is a constant.

In the proposed architecture, we adopt shift reg-
isters for storing f̂q and r̂q, because they remove the
logic circuit required for pointing the k-th elements of
f̂q(k) and r̂q(k).

The timing performance is as follows:

• Throughput [blocks/cycle]: P/NB
• Latency [cycles]: NB/P + (Prearrangement)
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(a) Top module

(b) The q-th processing element (PEq)

Fig. 5 Architecture of data path, where hatched box consists of noncombinational logic
component. CLK and RST are the clock and reset signals, respectively. UPD, CLR and b are
the control signals.

Table 2 Size of registers. N , B, P and L are the number
of samples per block, the number of bits, the digit size and the
number of quantization bit. P is assumed to be a divisor of N .

Component Size of Register (bit)

Shift Reg. R L × N/P × P

Shift Reg. F (2L − 1)× N/P × P

Counter C (2L − 1)× �log2(N)�
Register T (2L − 1)× B

Latch X P
Control Unit �log2(N/P )�+ �log2(B)�

In addition, Table 2 summarizes the size of registers,
where P is assumed to be a divisor of N .

Note that, when the quantization bit L is one, the
number of PEs is reduced to one. Thus, the circuit for
“encode” and “decode” is removed. When the digit
size P is one, the circuit “ones” of each PE is removed.

4.2 Control Unit

Figure 6 shows the architecture of the control unit. The
control unit has KB states {Sb,k} for b = 0, 1, · · · , B−1

Fig. 6 Architecture of the control unit, where K = N/P .

and k = 0, 1, · · · , K − 1, where K = N/P . These states
translate to another as follows:

• Any state Sk,b translates to S0,0 if RST = 0.
• Sk,b translates to S((k+1))K ,b if k �= 0 and RST = 1.
• S0,b translates to S1,((B−1+b))B

if RST = 1.

The output functions are defined by

• UPD = 0 when S0,b for any b, otherwise UPD = 1.
• CLR = 0 when Sk,B−1 for any k, otherwise CLR = 1.

The control flow is quite simple because each state
translates to either S0,0 or another.
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Fig. 7 Timing chart, where B = 3, N = 8 and P = 2.

An example of the timing chart is given in Fig. 7,
where B = 3, N = 8 and P = 2. The threshold TMq

and the output ŷq are available when CLR is low.

5. Estimation

In this section, in order to show the significance of the
proposed architecture, we show the timing, area and the
power estimation. Firstly, we consider applying it to
the low-bit motion estimation [2], [3], [7]–[9], and then
the influence of the parameters to the area is discussed.

5.1 Application to Low-Bit Motion Estimation

The video compression standards MPEG and H.263
employ the motion compensated prediction coding
technique for exploiting the temporal correlation [7].
The motion compensation requires to be preceded by
the motion estimation, which is known to dominate
most of the computation. Thus, a lot of realization
issues has been discussed so far. The low-bit motion
estimation technique is a solution to efficiently imple-
ment it [2], [3], [7]–[9]. The estimation follows a quanti-
zation, and, in the articles [2], [3], [9], it is shown that
an adaptive quantization is suitable and MCQ is the
good candidate for it.

Let Fh × Fv be the number of pixels per frame,
and Ft be the number of frames per second (fps). Since
the quantization is applied to each macro block, the
number of blocks that the quantization has to complete
a second is derived as (Fh × Fv × Ft)/N [blocks/sec],
where N is the number of pixels in a macro block.

The throughput of the proposed MCQ is P/NB
blocks/cycle. Thus, the condition for the clock period
tCLK is derived as follows:

tCLK <
P

Fh × Fv × Ft × B
[sec]. (7)

The broadcast video quality is specified by Fh ×
Fv = 720 × 480 pixels, Ft = 30 fps and B = 8bits [7],
where we assume that the quantization is applied only
to the luminance component. Thus, tCLK is required to
be smaller than 12P [nsec].

In order to estimate the performance, we mod-

Table 3 Estimation from the synthesis results of the proposed
MCQ, where B = 8 and CLK is constrained to the period tCLK =
10P [nsec]. “(met)” means no violation is occurred.

Digit size P 1 2 4 8
Clock period tCLK [nsec] 10 20 40 80

L = 1 10.16 19.51 33.10 36.52
Max. data - (met) (met) (met)

arrival time [nsec] L = 2 13.04 19.52 36.03 39.08
- (met) (met) (met)

Total cell area L = 1 7.16 7.09 7.05 7.34
×105 [µm2] L = 2 17.88 17.82 17.79 18.68

Net switching L = 1 243.7 130.3 69.6 35.0
power [mW] L = 2 611.3 329.4 182.1 87.3

eled the proposed architecture by VHDL as an edge-
triggered synchronous system [10]. Table 3 shows the
estimation of the synthesis results, where the Synopsis
design tools Ver.1998.02 [11] are used with the linear
model of the standard cell library EXDLIB provided by
VDEC for 0.5µm triple-metal CMOS technology [12].
The environments are set as follows:

• No driving cell is set to CLK. Inverters are set to all
inputs except for CLK as driving cells.

• An inverter is set to each output as load.
• The operating condition is set to “WCCOM.”
• The wire load is set to “10× 10.”
• Toggles are occurred every rising edge of CLK for
all inputs and each static probability is 0.5, except
for RST.

The above environments are chosen as a temporary ex-
ample. Because more practical environments highly de-
pend on the peripheral circuits and operating condition,
we here simply assume that all input and output ports
are connected to inverters and a clock tree would be
generated for CLK. WCCOM is the worst operating con-
dition defined in EXDLIB. The toggles are set as the
worst case in terms of the input switching power.

The constraints are as follows:

• CLK is constrained to tCLK = 10P [nsec].
• Area is not constrained.
From Table 3, we see that the bit-parallel proce-

dure meets the specified processing time whereas the
bit-serial procedure (P = 1) cannot. This is because
the larger digit size P is, the larger throughput is.
Increasing the period tCLK results in the considerable
saving of the power consumption. The main reason is
that the switching power consumption is almost propor-
tional to the clock frequency among comparable scale
CMOS circuits [13].

On the other hand, area is estimated to be almost
flat. From Table 2, it is seen that the digit size is insen-
sitive to the size of registers. The total cell area in the
case P = 1 is larger than those for P = 2 and P = 4.
This is because the synthesis tool tries to satisfy the
timing constraint by using a lot of large cells.

Each critical path, which occurs maximum data
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(a) MCQ and linear array (b) PEn

Fig. 8 Linear array architecture of motion estimator with
MCQ, where L denotes the number of quantized bits.

arrival time, results in one from either Register T or the
control unit to Register T through the nets for [TMq ],
˜d̂q, scurq, cq and the succeeding components “ones,”
adder and comparator.

5.2 1-Bit and Full-Bit Motion Estimator

Let us investigate a 1-bit motion estimator (ME) with
MCQ and compare it with a full 8-bit architecture. As
an example, we consider a linear array architecture with
16 processing elements (PEs) of sum of absolute differ-
ence (SAD) for full-search block matching motion esti-
mation, where the search window is of size 31× 31 [7].

Figure 8 (a) shows an architecture with MCQ,
where L denotes the number of quantized bits and the
component Median-cut Quantizer is assumed to be a
bit-serial MCQ. The component Q quantizes the in-
put according to the thresholds {TMi}. Figure 8 (b) is
the internal architecture of each PE, where the com-
ponents D, MUX, |R − S|, + and ACC are a delay
element, multiplexer, combinational logic for absolute
difference, adder and an accumulator, respectively.

For the 1-bit case, L equals 1, and the size of the
buffer memory Reference Block Memory, which con-
tains samples in a macro block, is 16 × 16 = 256 bits.
On the other hand, the full-bit architecture takes 8 as
L. The components Median-cut Quantizer and Q are
removed. However, Reference Block Memory become
of size 16× 16 = 256 bytes, that is 2048 bits.

In the followings, the common intermediate for-
mat (CIF) is assumed. CIF is specified by Fh × Fv =
352 × 288 pixels, Ft = 30 fps and B = 8bits [7]. Thus,
from Eq. (7), the clock period tCLK should be less than
41.10 [nsec], where P = 1. The linear array ME, how-
ever, requires 4096 cycles to complete the operations
for a macro block, and the clock period t′CLK should sat-
isfy the condition t′CLK < N/(Fh × Fv × Ft × 4096). It
results in t′CLK < 20.55 [nsec].

From the above discussion, we estimate the area

Table 4 Comparison between 1-bit ME with MCQ and full
8-bit ME, where L is the number of quantized bits. The clocks
of periods 40 [nsec] and 20 [nsec] are supplied to MCQ and ME,
respectively.

(a) Total cell area (µm2) (b) Net switching power (mW)

L 1 bit 8 bits

MCQ 6.90 -
ME 7.87 21.56
Total 14.77 21.56

L 1 bit 8 bits

MCQ 55.16 -
ME 137.50 693.35

Total 192.66 693.35

and power of MCQ and linear array ME by the synthe-
sis results from their VHDL models with the constraints
tCLK = 40 [nsec] and t′CLK = 20 [nsec], respectively. Envi-
ronments are chosen to be the same with that made in
the previous subsection. We estimate the performance
of MCQ and linear array ME independently because
of the difference in their clock periods. There are sev-
eral strategies to implement the whole system with one
clock signal such as clock gating for MCQ, doubling
the throughput of each PE in ME and so forth. In this
paper, we omit to detail the implementation, but give
simple estimation.

Table 4 (a) shows the total cell area for both MCQ
and ME unit, that is, the shaded region in the figure.
From the table, the area of 1-bit ME is about 70% of
that of full-bit one. Furthermore, considerable reduc-
tion on the area for the buffer memory, Reference Block
Memory, is achieved when L is 1. On the assumption
that the buffer area proportionally increases with the
capacity, we can roughly estimate that the area is re-
duced to 1/8. The area for Q is relatively quite smaller
than the other components.

The estimated power consumption is given in Ta-
ble 4 (b). It is seen that about 70% saving of the power
consumption is achieved by introducing a 1-bit ME with
MCQ, where the other components such as the buffer
memory are not taken account of.

5.3 Discussions on Area

The proposed architecture is quite simple in the data
and control flow. Hence, the total cell area is mostly
occupied by the non-combinational area. Figure 9
shows the estimation of the total cell area and the
combinational area, where the CLK is constrained to
tCLK = 80 [nsec] for all case. The environments are the
same with that used in the estimation given in Sect. 5.1.

From Fig. 9, we see that the total cell area increases
approximately in proportion to the number of sam-
ples N whereas the combinational area relatively keeps
small area. P does not affect the area as much as N ,
since it affects just the size of Latch X and some com-
binational logic circuits such as “ones” and the adder
for Counter C. The result is explained by Table 2.
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(a) Total cell area (L = 1) (b) Combinational area (L = 1)

(c) Total cell area (L = 2) (d) Combinational area (L = 2)

Fig. 9 Cell area, which is estimated by Synopsis design compiler Ver.1998.02 from the
VHDL model with the standard cell library EXDLIB provided by VDEC for 0.5µm triple-
metal CMOS technology, where B = 8. CLK is constrained to 80 [nsec].

6. Conclusions

In this paper, we proposed an algorithm of the median-
cut quantization, and the hardware architecture. The
search process of the median value is derived from the
pruning technique of the quick-sort algorithm. In the
proposed method, a bit-level pivot selection is pro-
posed. The selection was shown to correspond to se-
lecting the masked median value, and enables us to
quantize given samples concurrently. Since the search
process is done bit by bit and gives quite simple data
and control flow, it is suitable for hardware implemen-
tation.

Firstly, we proposed the two-level bit-serial pro-
cedure and then modified it to the bit-parallel one so
as to improve the throughput. The extension to the
multi-level quantization was also discussed. Then, we
proposed the hardware architecture for the multi-level
bit-parallel procedure.

In order to show the significance, we gave the tim-
ing, area and the power estimation from the synthesis
result of the VHDL model. We firstly considered apply-
ing it to the low-bit motion estimation, and discussed
the influence of the parameters to the total cell area.
It was shown that the larger digit size P releases the
time constraint and decrease the power consumption
without significant increasing of the total cell area.
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