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SUMMARY In this paper, we propose an approach to solve
the power control issue in a DS-CDMA cellular system using ge-
netic algorithms (GAs). The transmitter power control developed
in this paper has been proven to be efficient to control co-channel
interference, to increase bandwidth utilization and to balance the
comprehensive services that are sharing among all the mobiles
with attaining a common signal-to-interference ratio(SIR). Most
of the previous studies have assumed that the transmitter power
level is controlled in a constant domain under the assumption of
uniform distribution of users in the coverage area or in a continu-
ous domain. In this paper, the optimal centralized power control
(CPC) vector is characterized and its optimal solution for CPC
is presented using GAs in a large-scale DS-CDMA cellular sys-
tem under the realistic context that means random allocation of
active users in the entire coverage area. Emphasis is put on the
balance of services and convergence rate by using GAs.
key words: digital cellular system (DS-CDMA), genetic algo-
rithms (GAs), power control strategy, dynamic power allocation,
balance of services

1. Introduction

Recently, direct sequence spread code division multi-
ple access (DS-CDMA) becomes a leading multiple ac-
cess technology for cellular wireless systems, in which
there have been significant works. In the literature,
there have been researches on power control algorithms
[1]–[3], channel allocation strategy [4], [5], expert sys-
tems [6], safe and distributed rate admission [7] in DS-
CDMA cellular systems and so forth. Efficient channel
reuse is of critical importance in the design of the cellu-
lar wireless system of higher capacity. Co-channel inter-
ference caused by the frequency reuse in each cell with
DS-CDMA is the single most restraining factor on the
system capacity. Transmitter power control schemes
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have been proposed to control this interference for a
given channel, in particular for DS-CDMA cellular sys-
tems [8], [9]. The main idea is to adjust the transmitter
power in each link in such a way that the interference
in other receivers is minimized. Maintaining sufficient
transmission quality in the actual links is an important
and obvious constraint.

Transmitter power control is an effective way to
increase the system capacity and transmission qual-
ity in cellular wireless systems. Transmitted power is
regulated to provide each user an acceptable connec-
tion while limiting the interference seen by other users.
Significant works are on power control strategy, such
as Refs. [1], [2] and [3] which have focused on central-
ized power control(CPC) and distributed power control
strategy (DPC). Reference [1] investigated just a sim-
plified case because of difficulties in computation and
search for an optimal solution. References [2] and [3]
have focused on maximizing the minimum SIR using a
complicated method to obtain a local optimum in the
solution space using DPC for simplicity.

In this paper, we first propose an approach to solve
the power control issue in a DS-CDMA cellular system
using genetic algorithms (GAs) to obtain a global opti-
mal solution. As is well known, GAs are powerful and
broadly applicable stochastic search and optimization
techniques based on the principles in the evolution the-
ory [10]–[12]. For the power control issue, most of the
previous studies [4]–[6] have assumed that the transmit-
ter power level is controlled in a constant domain under
the assumption of uniform distribution of users in the
coverage area or in a continuous domain. In this paper,
the optimal centralized power control (CPC) scheme
which helps in the design of distributed power control
schemes that are easy to implement is characterized and
its optimal solution for CPC is presented using GAs in
a typical case [1] and a large-scale DS-CDMA cellular
systems under the realistic context that means random
allocation of the active users in the entire coverage area.
Furthermore, Emphasis is put on the balance of services
and the convergence rate by using GAs.

This paper is organized as follows. In Sect. 2, fun-
damentals of GAs, CPC issue and how to use GAs to
solve the CPC issue in a DS-CDMA cellular system



ZHOU et al.: OPTIMAL ANALYSIS OF THE CELLULAR SYSTEM USING GAS
2437

are presented. Section 3 describes the important ge-
netic operators such as crossover, mutation and selec-
tion used in our investigation. Section 4 describes the
two situations in the DS-CDMA cellular system and
gives simulation results and discussions. Finally, con-
clusions are given in Sect. 5.

2. Genetic Algorithms and the CPC Problem

2.1 GAs

There are currently three main avenues of this research:
Genetic Algorithms (GAs), Evolutionary Programming
(EPs) and Evolution Strategies (ESs). The usual form
of genetic algorithms was described by Goldberg. A
genetic algorithm is one of the stochastic search tech-
niques based on the mechanism of natural selection and
natural genetics, which differs from conventional search
techniques. It starts with an initial set of random so-
lutions termed as population. Each individual in the
population is called a chromosome composed of many
genes, and represents a possible solution to the problem
at hand. The chromosomes evolve through successive
iterations, called generations. During each generation,
the chromosomes are evaluated by exchanging related
genes using some measures of fitness. To create the next
generation, new chromosomes called offsprings, are gen-
erated by either merging two chromosomes at a current
generation using a crossover operator or modifying a
chromosome using a mutation operator. A new gen-
eration is formed by selection according to the fitness
values, and at the same time some of the parents and
offsprings are rejected so as to keep the population size
to be constant. Chromosomes of higher fitness have
higher probabilities of being selected. After many gen-
erations, the algorithm converges to the best chromo-
somes, which hopefully represents the optimal or sub-
optimal solution to the problem. Let P(t) and C(t)
be parents and offsprings in current generation t; the
general structure of genetic algorithms is shown in the
following procedure as in [13]

Procedure: A Genetic Algorithm
begin
t ← 0 ;
initialize P(t);
evaluate P(t);
while (not termination condition) do;
recombine P(t) to yield C(t);
evaluate C(t);
select P(t+1) from P(t) and C(t);
t←t+1;
end

end

There are two types of operations in GAs
· Genetic Operation: crossover and mutation
· Evolution Operation: selection

Crossover is the main operator. It operates on
two chromosomes at a time and generates offsprings
by combining both chromosomes or genes’ features. So
the crossover rate is defined as the ratio of the number
of offsprings produced in each generation to the popu-
lation size. This ratio controls the expected number of
chromosomes to experience the crossover operation. A
higher crossover rate allows deeper exploration of the
solution space and reduces the chances of settling in a
false optimum.

Mutation is a background operator that produces
spontaneous random changes in various chromosomes
or genes. The mutation rate is defined as the percentage
of the total number of genes in the population. the
mutation rate controls the rate at which new genes are
introduced into the population for trial.

2.2 The CPC Problem

As shown in Figs. 1 and 2, we assume N users and M
base stations. All users use the common radio chan-
nel in a DS-CDMA cellular system. Let pi denote the

Fig. 1 A typical case [1] of wireless cellular geometry.

Fig. 2 A large-scale DS-CDMA cellular system.
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transmitter power of user i so that P=[p1, p2, ...pN ] de-
notes the transmitter power vector of the DS-CDMA
cellular system. The corresponding received signal
power of user i at base station k is piL(i, k) where
L(i, k) denotes the gain for user i to base station k.
The interference seen by user i at base station k is∑N

j=1,j �=i pjL(j, k). It is assumed that the system is
interference-limited and therefore noise can be ignored.
A mobile user i uses the closest base station k. All
gains, L(j, k) are of positive values. The signal to in-
terference ratio (SIR) of mobile user i at its base station
k is then written by

SIRi =
piL(i, k)

α
∑N

j=1,j �=i pjL(j, k)

=
pi

α
∑N

j=1,j �=i pjGj,k

for 1 ≤ i ≤ N (1)

where

Gj,k =




L(j, k)
L(i, k)

for j �= i

0 for j = i
(2)

and, α is defined as the voice activity factor [4], [14]
when the voice activity detection is adopted. A typ-
ical value of α is 0.375 [14]. When the voice activity
detection is not used, α = 1.

In order to achieve the balance of services, the op-
timization problem of the same SIR for all users in the
system is expressed as [5], [6]

SIR−
opt = min

1≤i≤N
SIRi

SIR+
opt = max

1≤i≤N
SIRi (3)

where SIR−
opt and SIR+

opt are the minimum value of
SIRi and the maximum value of SIRi, i = 1...N , re-
spectively.

Due to the theorems and lemmas of R. Vijayan
and J. Zender [1], let us define G as an N ×N matrix
that has Gj,k as its elements. The matrix G has a few
important properties that are described as follows.

A. G is an irreducible nonnegative matrix
B. There exists a unique SIR∗ given by

SIR∗ = max
P∈�

SIR−
opt = min

P∈�
SIR+

opt (4)

where the feasible set � is given by

� = {P : 0 ≤ pi ≤ pmax, i = 1, 2, ...N}

So we have the same SIR∗ that is achievable by all
users. In a large-scale DS-CDMA cellular system and
when random allocation of users takes place in its cov-
erage area, it is not easy to find the optimized solution.
In this work, we adopt a GA to search a unique opti-
mized solution as fast as possible.

Fig. 3 Power allocation issue in a DS-CDMA cellular system.

In order to solve the power control by GAs, we
must define the relationship between the power allo-
cated to the users and the terms of GAs. As shown
in Fig. 3, the total power used here consists of a string
structure that is called a chromosome in GAs, of which
total length is the sum of the total power required by all
users in total in the system. The total power is divided
into N parts allocated to the N users. In order to use a
GA to solve the power allocation, each part is referred
to as a gene. By definitions, the crossover and muta-
tion between N parts will be processed on the related
genes. The components of the algorithm are examined
in the following subsections.

3. Performance Evaluation

3.1 Selection of N in the Simulation Environment

Several approaches to estimate the DS-CDMA cellu-
lar system capacity have been developed. One of the
most insightful capacity analysis is that developed by
Gilhousen et al. [14]. We employ this approach as a
reference for the selection of N throughout this inves-
tigation.

The accepted propagation model in the cellular en-
vironment is path loss attenuation, that is the product
of the fourth power of the distance and a log-normal
random variable of which standard deviation is 8 dB.
The authors in [14] assume a uniform density of users
per cell, the perfect power control and a normalized
hexagonal cell radius. They found the mean and vari-
ance for the total interference to signal ratio to be

E

(
I

S

)
≤ 0.247Nc, V ar

(
I

S

)
≤ 0.078Nc (5)

where Nc is the number of users per cell. Finally, the
authors in [14] find the outage probability for the re-
quired performance Pout = Pr(BER ≤ 10−3). The sys-
tem capacity reaches over Nc ≥ 30 users per cell when
Pout = 0.01 under IS-95 protocols [4]. Therefore the
total number of users in the system, N is the product
of Nc and the number of base stations.
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3.2 Objective Function

The objective function will essentially determine the
survival of each chromosome by providing a measure of
its relative fitness. The primary goal of an approach
to solve the power control problem is to decrease the
multi-user interference, to balance the services and to
achieve the optimized power allocation, while satisfying
the required quality of signal transmission. By assign-
ing the power to each user in order to satisfy the same
SIR for all users, a comprehensive objective function
that involves all of the considerations is described as

η(t) = |SIR+
opt(t)− SIR−

opt(t)| (6)

In order to retain the balance of services among all
users, we must minimize η(t) as small as possible.

3.3 Crossover

After reproduction, crossover proceeds with a probabil-
ity, pc. This operator takes two randomly chosen parent
individuals as input and combines them to generate two
offsprings. This combination is achieved by choosing
two crossing points in the strings of the parents and
then exchanging the allelic values between these two
points as shown in Fig. 4 if we use the binary encoding.
If we use the decimal encoding method(the real num-
ber), the exchanged amount by crossover must be deter-
mined by some kinds of decreasing functions. Accord-
ing to the fundamentals of CPC, preliminary simulation
results show that with the simple crossover operator, a
significant number of configurations will be generated.
In order to greatly speed up the convergence rate and
computation, evolution is then proceeded via the par-
tially matched crossover (PMX) [10] operator. At the
same time, we introduce a discarding strategy of the
invalid parents in the process of PMX crossover. Fur-
thermore, our solution representation allows us to fur-
ther reduce the search space. It is very much suitable
for investigating the practical large-scale CDMA cellu-
lar system and the optimal solution can be searched as
soon as possible. Our crossover operator will be referred

Fig. 4 Operators of genetic algorithms, such as crossover and
mutation.

to as adaptive partially matched crossover, abbreviated
to APMX.

In order to achieve APMX easily, each individual
is represented by a real number vector, that means the
decimal encode. We also created two First-In First-Out
(FIFO) stacks two stacks with stack depth, N , to store
the genes. All the genes are popped into the first stack
with the sequence from the gene with the maximum of
SIR to the gene with minimum SIR. The second stack is
used to store all genes with the sequence from the gene
with minimum SIR to the gene with maximum SIR in
the purpose of easy crossover and speed up in the con-
vergence rate. When we select the parents, based on
FIFO principle, select parents from those two stacks.
In this case, pop up two parents A and B from those
two stacks step by step; that means A is the gene with
the maximum of SIR, and B is the gene with the mini-
mum of SIR. The crossover is performed on two parents
A and B after determining the exchanged amount dur-
ing the entire crossover procedure by N times. At the
end of each generation, we will rank the individuals by
using FIFO stacks again and at the same time, discard
the worse individuals with the very significant changes
between SIR+

opt − SIR−
opt.

For a unique solution to our problem [1] and to
speed up the convergence rate, we design the APMX
algorithm in which nonlinear decreasing functions for
determining the amount of exchanged power are used in
the crossover operation. The crossover is performed by
the combination of two parents, pi(t) in t-th generation
with SIR+

opt and pj(t) in t-th generation with SIR−
opt.

It is expressed as follows.

pi(t+ 1) = pi(t)− λpj(t)
pj(t+ 1) = pj(t) + λpi(t) (7)

where the three types of nonlinear decreasing func-
tions for the crossover factor, λ are introduced in the
crossover operation.

Case 1: λ =
1

β + µt
(8)

Case 2: λ = e−ξt (9)

Case 3: λ = τ−γt (10)

where β, µ, ξ, τ , and γ are control parameters in three
functions. They will determine the convergence rate of
the GA.

In Eq. (8), β and µ are control parameters used to
determine the amount of exchanged power between the
two parents in t-th generation. If β and µ are large
enough, the amount of exchanged power will decrease
rapidly. In order to flexibly control the decreasing rate
of this function, two parameters are used. In Eq. (9),
the exponential function with a single control param-
eter, ξ, is defined for the same purpose. If ξ is large,
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the amount of exchanged power will decrease rapidly.
Equation (9) can be generalized into Eq. (10). This
two-parameters function offers rich flexibility in getting
a better convergence rate.

3.4 Mutation

The mutation operator provides opportunities for long
jumps from local minima. This is because the crossover
operator might lead to falling into a local minimum of
the fitness function, since the generated offsprings tend
to be very similar to their parents. The mutation op-
erates with a probability pm and creates a new gener-
ation by modifying one or more of genes in an existing
individual as shown in Fig. 4. A low level of mutation
serves to prevent any one element in the chromosome
from remaining fixed to a certain value in the entire
population. On the other hand, a high level of muta-
tion will essentially result in a random search. To main-
tain a balance between such extremes, an appropriate
value for pm has been suggested to be 0.01 [10]. During
the mutation, as the crossover operator, the discarding
strategy of the invalid individuals is adopted.

3.5 Selection

The selection operator produces individuals with higher
potential to be optimal solutions. The selection oper-
ator is very important as it must usually accomplish a
trade-off between two opposite and undesirable tenden-
cies. Thus, individuals with higher fitness have more
chances to reproduce by themselves. On the other
hand, if only the most fitting individuals are selected
for generating a new generation, it may result in a quick
convergence rate to local optimal solutions. Therefore
we adopted those two stacks. The same parents, A and
B will be selected twice for reproducing new offsprings.
It is more advantageous to select a more fitting individ-
uals and at the same time, to discard worse individuals.
Using this procedure, qualified individuals have higher
probabilities of being chosen. According to the simple
selection procedure based on a roulette wheel [13], the
probability of any individual to be selected from the
population can be defined as

ψ(t) = 1−
|SIR+

opt(t)− SIR−
opt(t)|∑N

j=1 SIRj(t)
(11)

3.6 Termination Criteria

In this paper, to achieve the balance of services at the
receivers and speed up the convergence rate by using
GAs, to individuals in the current population are pro-
cessed by the genetic operators described in the above
subsections to form a new generation. When the best
candidate in a certain generation does not violate any

of constraints in the problem, the search will be termi-
nated. In each iteration step, the search can also be
terminated, when there are no significant changes in
the difference between SIR+

opt(t) and SIR−
opt(t). The

genetic algorithm will be implemented under the fol-
lowing stopping conditions.

|η(t)| ≤ δ (12)

where, δ is the termination constant.

4. Simulation Results

Needless to mention, the performance of the GAs in
solving CPC problem has to be investigated. In addi-
tion, this investigation can be expected to offer more
useful knowledge for designing the algorithms to DPC
[2]. This is important for the system operators and sys-
tem designers. In this work, two types of DS-CDMA
cellular systems have been examined, which may be di-
vided into a typical example obtained in Ref. [1] and a
large-scale DS-CDMA cellular system.

4.1 Typical Example

In Ref. [1], an example was illustrated in a CPC scheme
in a smaller scale of only three mobiles using the same
channel. The link gains given by G matrix is as follows.
 1.0× 10−4 4.82253× 10−9 3.57346× 10−10

1.52416× 10−8 6.25× 10−6 3.50128× 10−9

7.67336× 10−10 2.44141× 10−8 1.23457× 10−6




Power control simulation has been done for the example
to get the optimized solution. Figures 5 and 6 show the
results of the situations with and without FIFO stacks
when using Eq. (8) as the crossover function. The ge-
netic algorithm with FIFO stacks is superior to that
without FIFO stacks in 50 generations. As seen in
Figs. 5 and 6, the FIFO stack-free algorithm converges
to the level of δ = 0.01 after 200 and more generations,
while the FIFO stacks algorithm converges in the 160th
generations. These results have been observed in use of
Eq. (8). The parameters, β = 1 and µ = 1, imply that
the amount of exchanged power between two genes are
large, and hence a better convergence rate has been
obtained.

Figures 7 and 8 show the convergence rate of users’
SIR to a target SIR with Eq. (9) solved by the genetic
algorithm with and without FIFO stacks. Again, the
APMX algorithm with FIFO stacks has shown a bet-
ter performance. When ξ = 0.01, users’ SIR reach the
target SIR in near 270 generations. On the other hand,
the target SIR has been satisfied at near 40th gener-
ation when ξ = 0.1, which wins a better convergence
rate. As ξ increases, it takes a short processing delay
time for a given convergence. Based on the simulation,
we see that ξ should be controlled carefully in order to
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Fig. 5 SIR+
opt and SIR−

opt versus the generation using Eq. (8)

without FIFO stacks (δ = 0.01 dB, α = 1, pc = 1, pm = 0.01,
N = 3).

Fig. 6 SIR+
opt and SIR−

opt versus the generation using Eq. (8)

with FIFO stacks (δ = 0.01 dB, α = 1, pc = 1, pm = 0.01,
N = 3).

ensure the convergence to the optimum.
Figures 9 and 10 show the convergence rate of the

users’ SIR to a target SIR with Eq. (10). In this sit-
uation, the simulation results show that APMX algo-
rithm with FIFO stacks slightly improves the conver-
gence rate. That is, the users’ SIR reaches the target
SIR in the 18th generation without FIFO stacks and in
the 14th generation with FIFO stacks when τ = 20 and
γ = 0.1.

For the above examples, if we use equal transmit-
ter power, three different values in SIR in three mo-
biles are 42.85 dB, 25.23 dB and 16.90 dB, respectively.
Throughout the simulations, we obtained three results
of equal SIR as 24.74 dB, and this is the same to the

Fig. 7 SIR+
opt and SIR−

opt versus the generation using Eq. (9)

without FIFO stacks (δ = 0.01 dB, α = 1, pc = 1, pm = 0.01,
N = 3).

Fig. 8 SIR+
opt and SIR−

opt versus the generation using Eq. (9)

with FIFO stacks (δ = 0.01 dB, α = 1, pc = 1, pm = 0.01,
N = 3).

result in Ref. [1]. We also found the unique solution
of the power allocation problem, and the solution are
1.79× 10−3, 8.67× 10−2 and 5.11× 10−1, respectively.
In addition, one can see an improvement of 7.8 dB in
minimum SIR by the CPC strategy.

4.2 Large-Scale DS-CDMA Cellular System

In our simulation environment, we consider the system
as a general multi-cell DS-CDMA cellular system on
a rectangular grid shown in Fig. 11. In this system,
there are nine base stations with (x, y) coordinates as
(10000i+10000, 10000j+10000) for 0 ≤ i, 0 ≤ j. The
x and y coordinates of each user are independent uni-
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Fig. 9 SIR+
opt and SIR−

opt versus the generation using Eq. (10)

without FIFO stacks (δ = 0.01 dB, α = 1, pc = 1, pm = 0.01,
N = 3).

Fig. 10 SIR+
opt and SIR−

opt versus the generation using

Eq. (10) with FIFO stacks (δ = 0.01 dB, α = 1, pc = 1,
pm = 0.01, N = 3).

formly distributed random variables between 0–60 km.
According to Sect. 3.1, experiments are conducted for
the number of users, N as 9Nc and one hundred power
vectors are considered in each generation for GAs. Fig-
ure 11 shows the positions of base stations and an exam-
ple of randomly distributed users in the system when
we set Nc = 30 users/cell. In this figure, there are
high-density user distribution in some cells such as 1st,
5th and 9th cells and low-density areas in 3rd, 4th and
6th cells. During investigation, each user is assigned
to its nearest base station. The path loss exponent
used, while calculating the channel gains of the users,
is taken to be four in our wireless environments. Based
on our large-scale simulation system, at the beginning

Fig. 11 Simulation environment for the number of active users,
Nc and nine base stations (Nc = 30 users/cell).

Fig. 12 SIR in dB versus the number of users without power
allocation (p1 = p2 = . . . pN = 1, α = 0.375, N = 270).

of iterations, power vectors are always initialized using
a random approach to generate them.

Figure 12 shows the users’ SIR versus the number
of users when we set the equal power to each user. We
see that the large variations in each user’s SIR appear.
This implies that some users have better transmitting
quality, and some have worse quality, and it does not
satisfy our purpose for balancing the services, especially
in an integrated wireless cellular system.

In Sect. 4.1, we observed that GAs with FIFO
stacks has a better convergence property to produce
the unique optimal solution. In the investigation of a
large-scale DS-CDMA cellular system, unless the FIFO
stacks are adopted, it takes a very long processing de-
lay time. For real-time applications, this strategy will
be useless for solving the CPC problem in such a sys-
tem. The FIFO stacks genetic algorithm can be a better
and enough approach to realistic large-scale problems.
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Fig. 13 SIR+
opt and SIR−

opt versus the generation using Eq. (8)

with FIFO stacks for the large cellular system (δ = 0.1 dB, α =
0.375, pc = 1, pm = 0.01, N = 270).

Figure 13 shows the convergence rate of users’ SIR be-
ing maximum value of SIR and with minimum value of
SIR by Eq. (8), respectively. We see that SIR∗ reaches
the target optimal value after about 50 generations as
β = 10 and µ = 1. When β = 1 and µ = 1, it shows
better results, because the SIR reaches the target opti-
mal value after near 15 generations.

Figures 14 and 15 show the convergence rate of
the users’ SIR being maximum value of SIR and min-
imum value of SIR by Eqs. (9) and (10), respectively.
The maximum SIR decreases and the minimum SIR in-
creases rapidly toward the optimal value at the begin-
ning of evolution and approaches slowly but steadily to
the optimal value based on the required δ. For δ = 0.1,
SIR will reach the optimal solution in near 37th gener-
ation when ξ = 0.1 and in just the 7th generation when
ξ = 0.5, as shown in Fig. 14. In Fig. 15, SIR hits the
optimal solution in near 55th generation as γ = 0.1 and
τ = 2, and in just the 13th generation as γ = 0.1 and
τ = 20.

As a result, the final unique optimal solution, that
is the best SIR∗, takes the value of −11.812542 dB
whatever the nonlinear decreasing functions are used
in GAs. In Ref. [14], Bit-Error-Rate is given as BER ≤
10−3 to get better transmission quality. To achieve this,
the bit-energy to noise density ratio, Eb/N0 must be
larger than 7 dB in the DS-CDMA system where SIR =
(Eb/N0)/PG, and processing gain, PG =Wss/Rb. Wss

is the spreading bandwidth and Rb is the informa-
tion bit rate. When IS-95 protocol (Wss = 1.25MHz,
and Rb = 9.6 kbps) is used in the system, SIR ≥
−14 dB. From the constraint relationship between SIR
and BER, the converged SIR value can be used to check
if the transmission quality satisfies the system trans-
mission requirements or not. Based on the relationship
among SIR, Wss and Rb, the results are also useful to
design the varying-processing gain DS-CDMA systems
which have attracted much attention recently.

In order to achieve this purpose, the power alloca-

Fig. 14 SIR+
opt and SIR−

opt versus the generation using Eq. (9)

with FIFO stacks for the large cellular system (δ = 0.1 dB, α =
0.375, pc = 1, pm = 0.01, N = 270).

Fig. 15 SIR+
opt and SIR−

opt versus the generation using

Eq. (10) with FIFO stacks for the large cellular system (δ =
0.1 dB, α = 0.375, pc = 1, pm = 0.01, N = 270).

tion plot by CPC has been obtained as shown in Fig. 16
for the system structure of Fig. 11. One can see that
a larger amount of power will be allocated to users lo-
cated at the boundaries among the cells. The largest
power demanded by users is located at the coordinates
approximately (0, 40000) and the smallest power is lo-
cated at approximate (10000, 30000) around the 4th
BS. We also see that the power allocation graph of the
users located in 3rd and 6th cells slowly varies and with
a little amount power required because of lower density
of users in this area shown in Fig. 11.

4.3 Discussions

We have shown that GAs with FIFO stacks improve the
search process for the optimal power allocation solution
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Fig. 16 Allocation of transmitted power for Fig. 11 in the
entire coverage area.

by CPC. The simulation results showed that GAs are
robust for the power allocation problems, especially for
solving large-scale DS-CDMA cellular systems which
will be a main approach used in IMT-2000.

In our model, the search vector of the power are
presented as numeric strings using the real number en-
coding. In the investigation, three general genetic op-
erators are employed. In order to speed up the conver-
gence rate, three types of nonlinear decreasing functions
and APMX algorithm with FIFO stacks have been de-
fined. The control parameters of those functions can
be determined either by a sophisticated techniques or
by experience. In our investigation, the control param-
eters have been used, and they may not be optimal,
yet they are still feasible at least for resolving the CPC
problem that has been left as a difficulty in the vast
literature.

In summary, according to the simulation results,
the advantages and limitations in using GAs for solv-
ing the power control problem in DS-CDMA cellular
systems, in particular for the large-scale DS-CDMA cel-
lular system are listed as follows.

1. Simplicity: Genetic algorithms do not have so
many mathematical requirements about the optimiza-
tion problem; they only depend on the evolutionary
nature of the solutions regardless to the specific inner
structure or behaviors. Then, it is very suitable for
some problems which could not be formulated theoreti-
cally. Throughout the CPC issue, we can see this point.

2. Effectiveness: The ergodicity of evolution op-
erators make GAs very effective for searching a global
solution. It proceeds very well for setting the CPC
problem, has been successful to find the unique opti-
mal solution from our simulation results.

3. Flexibility: GAs are flexible for introducing
other techniques in the searching process. For example,
in our model we introduced the nonlinear decreasing
functions and FIFO stacks to speed up the convergence
rate.

4. Practicality: In spite of some literature about

the CPC problem, because of its complication, there are
no reports to deal with a large-scale DS-CDMA cellu-
lar system with a practical user distribution. We solved
this real time problem using GAs with the nonlinear de-
creasing functions and FIFO stacks in our model. This
may lead to its beginning to define practical system
problems encountered in real systems.

5. Convergence: In order to make a success in set-
ting problem, GAs must be guaranteed to converge. It
may be trapped a illegal solutions because of its blind
search, which can be its limitation in solving some prob-
lems. Thus, when we use GAs, illegal solutions must be
carefully processed. By introducing some better strate-
gies and by adjusting control parameters of penalty
functions, we are always able to obtain a legal solu-
tion. Based on this experience, better results could be
obtained. It is the difficult point to settle a problem by
GAs.

6. Robustness: Although we have been success-
ful in CPC problem statement using GAs and all the
results show the convergence with a targeted SIR, the
processing delay time has not yet been studied in this
paper, because it is not realistic to get an exact model.
According to the results, if the convergence rate is
slower, the longer processing delay time will be re-
quired. In the future works, many search techniques for
global optimization, such as simulated annealing (SA)
[15], tabu search (TS) [16] and so forth can be used for
the CPC problem and the investigation on the process-
ing delay time will become an important topic since the
processing delay time depends on the CPU speed and
the computer system load. The processing delay time
will be an important parameter for determining which
approach is the best when we adopt GAs, SA and TS
approaches.

5. Conclusions

In this paper, we reformulated the power control prob-
lem in DS-CDMA cellular systems as a target optimiza-
tion problem and solved this problem using GAs. Ac-
cording to the simulation results, it has been shown
that genetic algorithms are robust for optimal power
allocation.

In this investigation, to speed up the convergence
rate and to filter out the illegal solutions, we introduced
nonlinear decreasing functions and FIFO stacks. Then
we have effectively simulated the centralized power con-
trol in a large-scale DS-CDMA cellular system and ob-
tained better results.

The main benefit of these simulation results is,
therefore, that they provide an estimate of CPC and it
can be developed as some basics for the design of DPC
in the system. Furthermore, they provide the reference
results when we design the burst admission algorithms
or a DS-CDMA cellular system with varying processing
gains.
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Further studies should, therefore, be devoted to be
the algorithms used in GAs and the other approaches
for solving the CPC problem. Of special interest are the
DPC problems in which whether genetic algorithms,
simulated annealing and tabu search could be adopted
and their efficiency should be studied.
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