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PAPER

Edge-Based Image Synthesis Model and Its Synthesis

Function Design by the Wavelet Transform

Makoto NAKASHIZUKA†a), Hidetoshi OKAZAKI†,
and Hisakazu KIKUCHI††, Regular Members

SUMMARY In this paper, a new image synthesis model
based on a set of wavelet bases is proposed. In the proposed
model, images are approximated by the sum of synthesis func-
tions that are translated to image edge positions. By applying
the proposed model to sketch-based image coding, no iterative
image recovery procedure is required for image decoding. In the
design of the synthesis functions, we define the synthesis func-
tions as a linear combination of wavelet bases. The coefficients
for wavelet bases are obtained from an iterative procedure. The
vector quantization is applied to the vectors of the coefficients to
limit the number of the synthesis functions. We apply the pro-
posed synthesis model to the sketch-based image coding. Image
coding experiments by eight synthesis functions and a compari-
son with the orthogonal transform methods are also given.
key words: edge detection, multi-scale image analysis, wavelet

transform, image coding

1. Introduction

Sketch-based image coding is one of the very low-
bit rate image compression techniques [1]–[5]. In the
sketch-based image coding [1], [3], [4], images are rep-
resented in the form of edge geometry and intensity
differences across edges. In decoding, images are recov-
ered by an iterative procedure. The iteration minimizes
a cost function that is defined by a constraint to the
smoothness in intensity changes on planar regions.

The wavelet transform [13] is employed for another
approach to image coding based on image edges [5], [7].
In Ref. [5], the wavelet maxima representation is defined
for characterization of image edges. If the basic wavelet
function corresponds to the first-order derivative of a
smoothing function, the wavelet maxima indicate the
positions of edges and describe multiscale behaviors of
edges. In Ref. [7], the two-dimensional wavelet trans-
form is sampled at the watershed and watercourse lines
which appear around image edges for image coding.
In image recovery from adaptive sampling of wavelet
transforms, POCS (Projection Onto Convex Sets) al-
gorithm [9] is applied. The procedure of image recov-
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ery corresponds to a sequence of successive projections
between two convex sets that are defined by given sam-
pling points of wavelet transforms. Iterative procedures
are required to recover the original image in the above
two sketch-based image coding methods.

In this paper, we propose a new edge-based image
representation [8]. By the representation, an approxi-
mation g(m,n) of the original image is obtained from
two-parts: a low-passed image and high-frequency com-
ponents around image edges by the following form

g(m,n) = q(m,n)

+
∑

(mc,nc)∈C

h(mc,nc)(m−mc, n− nc) (1)

where q(m,n) denotes the low-passed image that is ob-
tained from the original image. The high-frequency
components are recovered from the sum of synthesis
functions h(mc,nc) that are located on edge positions
(mc, nc). The set of two-dimensional coordinates C
consists of all edge positions that are detected from the
original image. The approximation of the original im-
age is reconstructed by only additions of the low-passed
image and the synthesis functions along image edges.
We refer to the proposed image synthesis model as an
edge-based image synthesis model . Since the approxi-
mation of the original image can be reconstructed by a
linear combination of the functions, the computational
cost for image decoding can be smaller than that of the
other edge-based image coding.

In Sect. 2, the wavelet transform and wavelet max-
ima representation that has been employed to previ-
ous works of the sketch based image coding are ex-
plained. Next, we propose the design of synthesis func-
tions h(mc,nc) in Eq. (1) from the wavelet bases. The
synthesis function design is split into two stages. The
first stage is the iterative procedure to get the coeffi-
cient vector that can reconstruct the approximation of
the original image by single inverse wavelet transform.
The second stage is the quantization of the coefficients
to wavelet bases to reduce the number of the synthesis
functions. The first and second stage are explained in
Sect. 3 and Sect. 4 respectively. In Sect. 5, the proposed
model is applied to sketch-based image coding and is
compared with some transform coding methods. The
simple image processing in the code domain that is ob-
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tained by the edge-based image synthesis model is also
demonstrated.

2. Wavelet Maxima Representation

The discrete dyadic wavelet transform [5], [13] is de-
fined by the inner products between the wavelet bases
and an image. Usually, the one-dimensional discrete
wavelet transform is computed from the discrete-time
filterbanks. In two-dimensional case, the filterbanks
are applied to the original image along horizontal and
vertical direction. The two-dimensional wavelet trans-
form has the property of spatial orientation selectivity.
We select the two-dimensional wavelet transform that
can be computed by the discrete filterbank in Fig. 1
for the edge detection and analysis [5]. In this filter
bank, the horizontal and vertical edges are detected
from the filter outputs separately. The J-th scale dis-
crete dyadic wavelet transform of the original image
{f(m,n)}0≤m<Nx,0≤n<Ny

is represented as set of the
sequences:

{{WH
j f}1≤j≤J , {WV

j f}1≤j≤J , {SJf}} (2)

where we denote WH
j f and WV

j f as

WH
j f = {WH

j f(m,n)}0≤m<Nx,0≤n<Ny
(3)

for the horizontal direction wavelet transform and

WV
j f = {WV

j f(m,n)}0≤m<Nx,0≤n<Ny
, (4)

for the vertical direction wavelet transform respectively.
SJf denotes the lowest frequency component that is
complement to the wavelet transform as

Sjf = {Sjf(m,n)}0≤m<Nx,0≤n<Ny
. (5)

For convenient, we represent the two-dimensional dis-
crete dyadic wavelet transform as the vector that is de-
fined by the multiplication between the transform ma-
trix W and the vector f which represents the image
pixel by the form as

f = [f(0, 0) · · · f(Nx − 1, 0)
f(0, 1) · · · f(Nx − 1, Ny − 1)]T . (6)

Fig. 1 Filter bank structure for two-dimensional discrete
dyadic wavelet transform for two-directional decomposition
(* denotes complex conjugate).

The wavelet transform is denoted as

Wf . (7)

In the form of (7), the elements of Wf is represented
as:

Wf = [wH
(0,0) · · ·wH

(Nx−1,0),w
H
(0,1) · · ·wH

(Nx−1,Ny−1),

wV
(0,0) · · ·wV

(Nx−1,0),w
V
(0,1) · · ·wV

(Nx−1,Ny−1), s]
T

(8)

where

wH
(m,n) = [WH

1 f(m,n) · · ·WH
J f(m,n)] (9)

for the horizontal wavelet transform and

wV
(m,n) = [WV

1 f(m,n) · · ·WV
J f(m,n)] (10)

for the vertical wavelet transform. The component s in
Eq. (8) denotes the lowest frequency component as

s = [SJf(0, 0) · · ·SJf(Nx − 1, 0)
SJf(0, 1) · · ·SJf(Nx − 1, Ny − 1)]. (11)

Let assume that the inverse wavelet transform that is
performed by reconstruction filter bank in Fig. 1 is now
also represented as the matrix W̃. If the pair of the
course and inverse wavelet transform achieves perfect
reconstruction, the inverse wavelet transform satisfies

f = W̃Wf . (12)

The wavelet maxima representation [5] are given
from the maxima positions of the amplitude of the dis-
crete dyadic wavelet transform. If the basic wavelet
is defined as the first derivative of a smoothing func-
tion, the modulus maxima appear at image edge posi-
tions and characterize the edges by its multiscale na-
ture [5]. Now, let assume that the set of the coordi-
nates where modulus maxima appear on the j-th scale
wavelet transform are defined as CH

j for horizontal
wavelet transform and CV

j for vertical wavelet trans-
form, respectively. The maxima representation M can
be represented as the form:

M = ZWf (13)

where Z is a diagonal matrix of which elements are
zero or one. The number of rows and columns of Z
are equal to the number of the dimension of Wf . Only
the diagonal elements of Z that are allocated to the
maxima positions that included in CH

j or CV
j and the

lowest frequency component s are one. The image re-
covery from the maxima representation is the problem
that the image recovery from above incomplete set of
the wavelet transform. Obviously, it is impossible to
recover the original image by the inverse wavelet trans-
form. In Ref. [5], POCS [9] is applied to recover the
original image from the maxima representation. For
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POCS algorithm, the constraints for the recovered im-
age are described by the convex sets. After convergence
of the iterative projections, we can get the recovered
image that satisfies all constraints.

Two closed convex sets are defined by the wavelet
maxima representation in the vector space of which di-
mension corresponds to the original wavelet transform
Wf [5]. One convex set V is the set that consists of
wavelet transforms of all possible images. The projec-
tion PV onto the set V is realized by the pair of course
and inverse wavelet transform as WW̃. Other convex
set Γ is the set of all vectors that preserve the values
of wavelet maxima and the lowest frequency compo-
nent. The projection operator PΓ onto Γ is the oper-
ator that replace the values of the wavelet transform
with the known values of the wavelet transform which
are preserved in the maxima representation. Since the
both sets are convex, the iteration guarantees the con-
vergence to the wavelet transform which exists in the
intersection of two sets and is the closest to the ini-
tial wavelet transform [5], [9]. In Ref. [5], the condition
of the smoothness of the wavelet transform is applied
to the iteration to avoid irregular oscillations between
two consecutive maxima. In Ref. [6], the wavelet max-
ima representation is extended to the wavelet extrema
representation which includes modulus minima of the
wavelet transform to achieve higher reconstruction pre-
cision.

The compact image coding is achieved in Ref. [5]
by selection of the significant edges which are detected
from the single scale. The iterative procedure of which
iteration includes the pair of the course and inverse
wavelet transform is required for decoding from the im-
age coding based on the wavelet maxima. So, the com-
putational cost for the image reconstruction is larger
than other orthogonal transforms coding.

3. Image Decomposition Based on Wavelet
Maxima

In this section, we derive an edge-based image represen-
tation d that gives the approximation g of the original
image f by a single inverse wavelet transform as:

g = W̃d. (14)

Now, the elements of the coefficient vector d is defined
as

d = [dH
(0,0) · · ·dH

(Nx−1,0),d
H
(0,1) · · ·dH

(Nx−1,Ny−1),

dV
(0,0) · · ·dV

(Nx−1,0),d
V
(0,1) · · ·dV

(Nx−1,Ny−1),u]T .

(15)

where

dH
(m,n) = [DH

1 (m,n) · · ·DH
J (m,n)] (16)

for the horizontal direction wavelet basis and

dV
(m,n) = [DV

1 (m,n) · · ·DV
J (m,n)] (17)

for vertical direction. Both dH
(m,n) and dV

(m,n) are re-
ferred as the partial coefficient vectors. The component
u denotes the coefficients which correspond to the low-
est frequency component of the image as

u = [U(0, 0) · · ·U(Nx − 1, 0),
U(0, 1) · · ·U(Nx − 1, Ny − 1)]. (18)

To describe the characteristic of image edges, non-
zero elements of DH

j (m,n) and DV
j (m,n) only exist

on the maxima positions that included in {CH
j }1≤j≤J

and {CV
j }1≤j≤J . So, the coefficient vector d satisfies

d = Zd (19)

where Z is a diagonal matrix which defines sampling
points of the wavelet transform for the wavelet maxima
representation in (13). The number of the non-zero
elements in d depends on the number of the maxima
positions and is Nx × Ny + A where A denotes the
number of entire wavelet maxima. The number of un-
known elements in d is larger than the number of pix-
els in the original image. There is no unique solution
of d. The singular value decomposition [10] can ob-
tain the least square vector d that minimizes the norm
of the error between the original image f and the ap-
proximation g. However, the singular value decompo-
sition requires operations to the matrix of which size
is (NxNy + A) × (NxNy). The number of elements in
the matrix and the computational cost for the singular
value decomposition are proportional to the square of
the number of pixels in the original image. It is im-
practical to apply the singular value decomposition to
the such huge matrix which consists of all wavelet bases
that are allocated to the maxima positions.

To reduce the computational costs for derivation
of the coefficient vector d, we propose an iterative al-
gorithm based on a pair of inverse and course wavelet
transform. The iterative algorithm produce the coeffi-
cient vector d that satisfies following three conditions:

condition 1. it satisfies d = Zd
condition 2. it minimizes the error between the

wavelet transform of the original image and the
approximation of the original image |Wf − Wg|

condition 3. it minimizes the norm of the coefficient
vector |d| under the conditions 1 and 2.

The norm of the coefficient vector d is not be bounded
by conditions 1 and 2. The range of amplitude of ele-
ments in the coefficient vector have to be small for fi-
nite word-length representation to reduce word-length
or quantization error. We hence introduce the condi-
tion 3 to minimize the variance of amplitude of elements
in d.

To get the coefficient vector d, we define two con-
vex sets X and Y in the vector space of which dimension
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is equal to the wavelet transform. The convex set X is
defined by the condition 1 and is the set of vectors that
have non-zero elements only on the positions where the
wavelet transform is sampled for the wavelet maxima
representation. Any elements x in X satisfies

x = Zx. (20)

The other convex set Y is the set of vectors that obtain
the original image f by the inverse wavelet transform.
Any elements y in Y satisfies

f = W̃y. (21)

The projection operator onto the convex set X is now
defined as PX and can be implemented as:

PX(v) = Zv (22)

for any vector v. Next, the projection operator onto
the convex set Y is defined as PY and is represented
as:

PY (v) = v + p(v) (23)

for any vector v. p(v) is the difference between the
vector and its projected point onto Y . p(v) has to
satisfy

f = W̃(v + p(v)). (24)

since the inverse wavelet transform of every elements in
Y corresponds to the original image. If any p(v) sat-
isfy Eq. (24), then WW̃p(v) can also satisfy Eq. (24)
instead of p(v). To achieve the projection onto the con-
vex set Y , p(v) has to be defined as the vector of which
norm is minimum while satisfying the above Eq. (24).
Since a pair of the inverse and course wavelet transform
WW̃ is the projector onto the set of the wavelet trans-
forms [5] and is nonexpansive, the vector p(v) of which
norm is minimum has to satisfy

|p(v)| = |WW̃p(v)|. (25)

The vector that satisfies both conditions (24) and (25)
is only the wavelet transform of the difference between
the inverse wavelet transform of v and the original im-
age as

p(v) = W(f − W̃v). (26)

The vector p(v) is equal to the error between the
wavelet transform of the original image and the wavelet
transform W̃v.

Next, the non-expansive map T is defined by a pair
of projectors as

T = PXPY . (27)

If there exist the intersection of two convex sets X and
Y , the iterative procedure from any initial coefficient
vector d(0)

d(i+1) = T (d(i)) (28)

converges to one of the fixed points that are included
in the intersection of X and Y [9]. The inverse wavelet
transforms of every elements in the intersection obtain
the original image. However, the existence of the inter-
section depends on the sampling points of the wavelet
maxima. If the intersection does not exist, then the
iteration converges to one of fixed points of T that is
closest points to Y on X [11]. Any fixed point of T on
X minimizes the error between Wf and WW̃d. We
can hence get the coefficient vector that satisfies the
conditions 1 and 2. However, there is no guarantee
that the given fixed point satisfies the condition 3. So,
we define the cost function θ(d)

θ(d) =
1
2
|d|2 (29)

for the iteration. The iterative procedure that obtain
the fixed point of T which minimizes the convex func-
tion is investigated in Ref. [12]. The cost function θ(d)
is imposed on the iteration in Eq. (28). The iteration
in Eq. (28) is modified to

d(i+1) = (1 − λi+1)T (d(i)). (30)

In this paper, the sequence λi is defined as 1/i that
is found in [12]. d(i) converges to the fixed point that
minimizes the cost function θ and is unique since the
cost function is a convex function [12]. We can hence
get unique coefficient vector d that satisfies conditions
1, 2 and 3.

After the iteration, we get the coefficient vector d
that satisfies

d = T (d) = Zd + ZWf − ZWW̃d. (31)

By substituting Zd = d and g = W̃d to Eq. (31), we
get the relation between the wavelet maxima represen-
tation in (13) and the approximation g as

M = ZWg. (32)

This relation indicates that the coefficient vector d ob-
tains the approximation g that preserves the values of
the wavelet transform at maxima positions and the low-
est frequency component of the original image.

To compute iteration in Eq. (30), the coefficient
vector and the wavelet transform of the original im-
age have to be stored during the iteration. Other re-
quirement for storage is only for the inverse and course
wavelet transform. The entire size of storage for imple-
mentation of the iteration is proportional to the number
of pixels of the original image. Since the computational
cost for the course and inverse wavelet transform is pro-
portional to the number of pixels, the entire computa-
tional cost is also proportional to the number of pixels
in the original image and the number of the iterations.
In image coding application based on the coefficient
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vector d, the iterations are done in the encoding pro-
cess. The approximation of the original image can be
reconstructed by a single inverse wavelet transform as
Eq. (14).

Since the inverse wavelet transform is defined as
the linear combination of the synthesis wavelet bases,
the approximation result (14) can be also represented
as:

g(m,n) = q(m,n)

+
J∑

j=1

∑

(mc,nc)∈CH
j

ψH
j (m−mc, n− nc)DH

j (mc, nc)

+
J∑

j=1

∑

(mc,nc)∈CV
j

ψV
j (m−mc, n− nc)DV

j (mc, nc)

(33)

where q(m,n) is the lowest frequency component as:

q(m,n) = φ ∗ U(m,n) (34)

where * denotes the two-dimensional convolution. The
two-dimensional function ψH

j and ψV
j denote the j-th

scale horizontal and vertical synthesis wavelet bases
which are obtained by the filter bank structure in Fig. 1.
φ denotes the J-th scale scaling function of the wavelet
transform. The approximation of the original image
can be reconstructed by the addition between the low-
passed image q(m,n) and the synthesis wavelet bases.

For image coding application by the wavelet max-
ima representation, sampling points of the wavelet
transform are defined on the wavelet transform at a sin-
gle scale [5]. In this case, the coefficients of the wavelet
transform at all scales are sampled at the same position.
If the coefficients vector d is derived from two sets of
maxima positions CV and CH which are detected from
a single scale, Eq. (33) is expressed to

g(m,n) = q(m,n)

+
∑

(mc,nc)∈CH

hH
(mc,nc)

(m−mc, n− nc)

+
∑

(mc,nc)∈CV

hV
(mc,nc)

(m−mc, n− nc) (35)

where the synthesis functions are defined as

hH
(mc,nc)

(m,n) =
J∑

j=1

ψH
j (m,n)DH

j (mc, nc) (36)

for horizontal edges and

hV
(mc,nc)

(m,n) =
J∑

j=1

ψV
j (m,n)DV

j (mc, nc) (37)

for vertical edges. Let us define the edge positions as

Fig. 2 Illustration of edge-based image synthesis model.

Fig. 3 (a) original image, (b) horizontal edges and (c) vertical
edges for decompostition, (d) lowest frequency component and
(e) approximated image.

C = CH ∩ CV , the image approximation in the for-
mula (1) is now achieved. Figure 2 shows the illustra-
tion of the image reconstruction by the proposed rep-
resentation. Approximated image can be reconstructed
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Table 1 Filter coefficients for a quadratic spline wavelet [5].

Fig. 4 Relationship between the approximation error and the
number of iterations.

by additions between the lowest frequency component
q(m,n) and the synthesis functions hV

(mc,nc)
(m,n) or

hH
(mc,nc)

(m,n).
Figure 3 shows the example of the image approx-

imation by the proposed method. Table 1 shows the
filter bank coefficients for the wavelet transform. Fig-
ure 3(a) shows the original image. Figures 3(b) and (c)
show the positions of the edge that are detected from
the wavelet maxima at scale j = 2. CH

j and CV
j are

defined as Figs. 3(b) and (c) for all scales j. 12,613 and
12,350 edge positions are detected in horizontal and ver-
tical direction wavelet, respectively. Figure 3(d) shows
the lowest frequency component u in the coefficient vec-
tor given after 100 iterations. The approximation that
is reconstructed from the coefficient vector d by the
inverse wavelet transform is shown in Fig. 3(e). The re-
construction precision is 34.2 dB in peak-to-peak SNR.
Figure 4 shows the relationship between the approxi-
mation error in p-p SNR and the number of iterations.

4. Synthesis Function Design by the Vector
Quantization

In Sect. 3, the partial coefficient vectors
{dH

(m,n)}(m,n)∈CH , {dH
(m,n)}(m,n)∈CV are obtained for

the image decomposition. In this section, we apply the
vector quantization to the coefficient vector to limit the
number of the synthesis functions. VQ is now applied
for all set of the partial coefficient vectors. Since the
each wavelet basis is not orthogonal to the others, it
is difficult to minimize the approximation error for the

original image by VQ. VQ is hence applied to minimize
the error defined as

E =
∑

(m,n)∈CH

‖dH
(m,n) −Q[dH

(m,n)]‖

+
∑

(m,n)∈CV

‖dV
(m,n) −Q[dV

(m,n)]‖ (38)

where Q[·] denotes the quantization. After VQ, the syn-
thesis functions that are defined by the representative
vectors and the wavelet bases approximate the partial
coefficient vectors. The representative vectors that are
included in the VQ codebook are defined as:

yH
i = [yH

i,1, y
H
i,2 . . . y

H
i,J ]T (39)

for horizontal edges and

yV
i = [yV

i,1, y
V
i,2 . . . y

V
i,J ]T (40)

for vertical edges. i indicates the index of the repre-
sentative vector and is limited to the number of the
code-book. By the substituting Eqs. (39) and (40) to
Eq. (36) and Eq. (37), the synthesis functions of which
number is limited to the number of the code-book is
given. Each synthesis function is approximated by one
of the representative synthesis functions

ξH
i (m,n) =

J∑

j=1

ψH
j (m,n)yH

i,j (41)

or

ξV
i (m,n) =

J∑

j=1

ψV
j (m,n)yV

i,j. (42)

Figure 5 shows the several image approximation exam-
ples after the vector quantization. We suppose that
the low-bit rate image compression by the proposed
approximation model and select only significant edges.
The edges are detected from the maxima of the wavelet
transform at j = 2. Moreover, we suppose that the
small modulus maxima are insignificant and set the
threshold to maxima. Only the maxima which is larger
than the threshold are recorded to image approxima-
tion. The threshold value is set as 1/8 of maximum
modulus of the wavelet transform at j = 2. Figures 5(a)
and (b) show the vertical and horizontal maxima posi-
tions that are obtained after the thresholding operation
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Fig. 5 (a) Detected edges from Fig. 3(a), the reconstructed image with (b) 32 (c) 16
and (d) 8 synthesis functions.

from the original image in Fig. 2(a). In the synthesis
function design, we apply the LBG algorithm [14] to
the partial coefficient vectors. The reconstruction re-
sult with 32, 16 and 8 synthesis functions are shown in
Figs. 5(c) to (e). The smoothness or sharpness of the
edges are lost by the reduction of the number of the
synthesis functions. Although, 16 or 8 synthesis func-
tions are enough to represent outlines of the original
image. Next section, the entropy coding is applied to
the edge geometry and the indices of the synthesis func-
tions that are allocated to the edge positions to achieve
the image compression and coding.

5. Application to Image Coding

In Sects. 3 and 4, the image approximation by the form
of (1) has been described. The entire image is now rep-
resented as a linear combination of the scaling functions
and the synthesis functions of which number is limited
by the codebook of VQ. In this section, we apply the
edge-based image synthesis model to the sketch-based
image coding.

In the coding experiments, the edge-based image
synthesis models are derived from three images Bar-
bara, Lena and CG in Fig. 6. The maximum scale of
the wavelet transform is set as J = 3. During the im-
age encoding process, the image edges are detected from
the maxima positions of the wavelet transform at scale
j = 2 of an original image. To achieve high compression
ratio, we set the thresholds on modulus maxima of the
wavelet transform. Only the wavelet maxima of which
amplitude are larger than 1/8 of the maximum ampli-
tude of the wavelet transform at j = 2 is detected as

Fig. 6 Images for coding experiments and detected edges. (a)
Barbara, (b) Lena and (c) CG.

the edges. Moreover, we suppose that short edges are
insignificant for the human perception, we set a thresh-
old on the length of the edges. The edges of which
length are shorter than four pixels are eliminated in
the image coding experiments. The edge positions that
are detected from the original images are also shown in
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Fig. 7 Eight synthesis functions for the vertical edges in Fig. 6(a).

Fig. 6.
Every image is coded by its own different code-

book. The number of representative vectors is set as
eight. The eight synthesis functions for the vertical
edges in Fig. 6(a) are shown in Fig. 7. In encoding the
edge geometry, we employ the chain coding [16]. Since
the image which consists 256× 256 samples are coded,
the coordinate of the start position of a edge curve is
recorded in 16 bits. The chain codes for horizontal
edges or vertical edges include four types of symbols
(up, down, straight, stop) or (left, right, straight, stop).
The examples of the chain code are shown in Fig. 8. The
chain codes are recorded after run-length Huffman cod-
ing. The indices of the synthesis functions are coded
along edges. Since the pixel intensity changes slowly
along edges, just a single vector index that is dominant
among consecutive three edge positions. Sequences of
vector indexes are coding by run-length coding. The
lowest frequency component q(m,n) of the model is
down-sampled by factor 8 and is quantized to 6 bits.

Fig. 8 Examples of edges and chain codes. (a) an example of
a vertical edge and (b) an example of horizontal edge.

After quantization, the lowest frequency component is
coded by predictive coding and Huffman coding. The
decoding from the proposed model is realized by en-
tropy decoder and additions of eight synthesis functions
to the decoded lowest frequency component.

All coding results are compared with transform
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Fig. 9 (a) Original image, (b) proposed method, (c) JPEG and
(d) EZW (Left: Entire decoded images. Right: Partial display
of decoded images).

coding methods. Base-line JPEG and EZW [15] coders
are employed to compare with the proposed method.
JPEG and EZW are based on DCT and the biorthogo-
nal wavelet transform, respectively. The wavelet filter-
bank of EZW coder is selected as 9-tap QMF. Figures 9,
10 and 11 show the coding result of 256×256 images by
the proposed model. The results of JPEG and EZW
at the same bit-rates are also shown. The bit-rate and
peak-to-peak SNR of the coded images are shown in
Table 2, where SNR before coefficient quantization are
also shown. The data amount for each components that
comprise the lowest frequency component, code for the
edge positions, the code-book of VQ and the vector
index allocated to each edge position are given in Ta-

Fig. 10 (a) Original image, (b) proposed method, (c) JPEG
and (d) EZW (Left: Entire decoded images. Right: Partial dis-
play of decoded images).

ble 3. Almost half of the entire data is spent for the
edge positions. The data amount for the edge geome-
try increases in proportion to the number of the edge
positions. In Table 4, the number of the edge positions
for each original image is shown. The average bit rate
is about 2.5 bits to record the position of an edge pixel.

In the coding result of Fig. 9, fine textures appear
over the entire original image. SNR before quantiza-
tion is the lowest among three test images. The de-
coded image of the proposed method loses all of fine
textures and details. SNR after coding is lower than
the transform coding methods. However, the outlines
of objects are still reserved well. The original image
shown in Fig. 11 consists of planer regions. In cod-
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Fig. 11 (a) Original image, (b) proposed method, (c) JPEG
and (d) EZW (Left: Entire decoded images. Right: Partial dis-
play of decoded images).

Fig. 12 (a), (b) Extracted edges from Figs. 10(a) and (c) the decoded image.

Table 2 Coding results for test images.

Table 3 Data amount of coding images of each component.

Table 4 Edge geometry for each image.
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ing results by the transform coders, distortions appear
around the position where the intensity changes. By
contrast, these distortions are not found in the image
by the proposed model. Since the zero-crossing points
of synthesis functions only exist on edge positions, il-
legal oscillations are not created around edges. SNR is
higher than other conventional transform methods for
the image that does not include fine texture and small
edges.

Finally, an example of object extraction in the
code domain is presented. The edges that indicate a
human face are extracted from the coded data rather
than a decoded image. The extracted edges are shown
in Figs. 12(a) and (b). The edge selection itself is
performed manually. The decoded image is shown
in Fig. 12(c). The data for synthesizing the image
Fig. 12(c) amounts to 1,567 bytes. In the proposed cod-
ing method, the coded data correspond to the edge ge-
ometry of an original image. The image coding by the
proposed model will be feasible for such a code domain
image processing.

6. Conclusions

We have proposed a new image synthesis model based
on the wavelet transform. An image is approximated
by the synthesis functions that are translated to the
edge positions. We have also proposed a synthesis func-
tion design by an iterative procedure using a pair of
the course and inverse wavelet transforms. We apply
the proposed model to the sketch-based image coding.
By the proposed model, only additions of the synthesis
functions are required for the image synthesis. In cod-
ing experiments, the image coding by using eight syn-
thesis functions is demonstrated. Image edges are bet-
ter preserved than transform coding methods. By this
property, the proposed method can be apply to image
coding for edge-based image processing such as image
measurement, acquisition and many computer vision
applications. For the derivation of the coefficient vec-
tor, we have imposed three conditions as convex sets
and a convex function. Other conditions will be in-
troduced for the specific application. The application
specific conditions are future subject.

In image compression experiments, the compres-
sion results in our study are limited in extremely high
compression ratios. Textures and fine structure of im-
ages are almost removed in the encoding process. By
encoding the residual that represents removed compo-
nents, a layered image coding will be implemented. If
the synthesis functions are designed as the integer co-
efficient functions, the decoding process can be imple-
mented by only integer additions and the coding error
between the decoded image and the original image will
be also an integer. By encoding this integer-valued er-
ror, the proposed coding method would be applied to
lossless compression. The application of the proposed

coding method is also future subject.
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