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SUMMARY In this paper, we derive spatial correlation func-
tions of linear and circular antenna arrays for three types of an-
gular energy distributions: a Gaussian angle distribution, the
angular energy distribution arising from a Gaussian spatial dis-
tribution, and uniform angular distribution. The spatial correla-
tion functions are investigated carefully. The spatial correlation
is a function of antenna spacing, array geometry and the angular
energy distribution. In order to emphasize the research and their
applications in diversity reception, as an example, performance
of the antenna arrays with MRC in correlated Nakagami fading
channels is investigated, in which analytical formulas of average
BER for the spatial correlation are obtained.
key words: spatial correlated function, antenna array, Nak-
agami fading, MRC and diversity reception

1. Introduction

Next generation wireless communication is based on
a global system of fixed and wireless mobile services
that are transportable across different network back-
bones [1], [2], network service providers and network
geographical boundaries. In the complicated wireless
environments, multi-path fading severely impairs the
performance of mobile communication systems. Diver-
sity reception [3], [4] with smart antenna arrays using
signal processing method, has been recognized by most
third generation wireless transmission technologies pro-
posals as a way to enhance the capacity and the sys-
tem coverage by effectively combating the multi-path
fading. However, the diversity gain is reduced by the
correlation of the fading signals between the antenna
branches. Therefore these problems were focused in
many researches such as Refs. [5] and [6].

It is well known that correlation in fading across
multiple diversity results in a degradation of the diver-
sity gain obtained. Classic work on analysis of diversity
with correlated fading channels was done in Refs. [4]–
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[7], where they studied the special case of Rayleigh
fading. Reference [7] has proposed an approach to
study the effects of spatial correlation on system perfor-
mance, but the approach can be only used for two corre-
lated antenna arrays because the 2 dimensional and lin-
ear matrix transform was simply introduced for chang-
ing the correlated channels into independent channels.
Reference [8] considered the uniform angle distribu-
tion and only investigated the spatial correlation. Al-
though Gaussian spatial distribution model is proposed
in Ref. [9], this paper focused on unified channel model
derivations, and also investigated the spatial correla-
tion and frequency correlation coefficients. The spatial
correlation with circular antenna array geometries in
Gaussian angle distribution and Gaussian spatial distri-
bution, and the performance analysis in practical wire-
less channels have not been investigated.

In this paper, we derive spatial correlation func-
tions of linear and circular antenna arrays for three
types of angular energy distributions: a Gaussian an-
gle distribution, the angular energy distribution aris-
ing from a Gaussian spatial distribution, and uniform
angular distribution. The spatial correlation functions
are investigated carefully. The spatial correlation is a
function of antenna spacing, array geometry and the
angular energy distribution. In order to emphasize the
research and their applications in diversity reception,
as an example, performance of the antenna arrays with
Maximal Ratio Combining (MRC) in correlated Nak-
agami fading channels is investigated, in which analyt-
ical formulas of average Bit-Error-Rate (BER) for the
spatial correlation are obtained.

The rest of this paper is organized and presented
as follows. Section 2 gives the antenna array geometry
and spatial vector channel model. In Sect. 3, the spatial
correlation functions are derived. The numerical results
are given and discussed in Sect. 4. Finally, we conclude
this paper.

2. Array Geometry and Angular Energy Dis-
tribution

A. Array geometry
In antenna array system, an antenna array is used at
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the base station to receive information from users of
wireless networking operating under the same or dif-
ferent multiple access schemes such as FDMA, TDMA
and CDMA. The antenna array may assume different
geometries. In a linear array, the locations of the an-
tennas form a straight line, whereas in a planar array
(such as circular array), the positions of the antenna el-
ements are specified by two variables representing polar
or Cartesian coordinates. While the propagation delay
T between antennas encountered as the signal travels
across a linear array is only a function of the elevation
angle, both elevation and azimuth angles of arrival de-
fine the propagation delay in the case of planar arrays.
For simplicity, only azimuth plane is considered in the
geometry models. Figure 1 shows the antenna array
geometry used in our investigation where we have es-
timated a linear geometry as Fig. 1(a) and a circle of
radius R as Fig. 1(b) in which the antenna elements lie
about at a radius of r = R for our circular antenna
array.

If the antennas are widely spaced (often eight
wavelength apart), then the signals received by one an-
tenna element are likely to be independent or uncorre-
lated from the signals received by the adjacent antenna
element of the array. This condition is due to the dif-
ference in the scattering effects on the signal amplitude

(a) Linear antenna array

(b) Circular antenna array

(c) 4-element antenna array and 8-element antenna array

Fig. 1 Signal angle determination in (a) linear antenna array
and (b) circular antenna array, and (c) 4-element antenna array
and 8-element antenna array.

and phase at different points in space, each occupied by
one antenna. This space sampling method is referred
to as spatial diversity. To make use of spatial diversity,
the output of the antennas are compared and the an-
tenna with the strongest signal then is chosen to feed
into the receiver. However, choosing from or combining
the antenna output, such as MRC investigated in this
paper, when they are diverse in space is known to yield
a enough improvement in the received signal.

With the antennas closely spaced (often apart by
a distance smaller than or equal to half a wavelength),
the waveforms incident on different antennas on longer
can be assumed uncorrelated or independent. The re-
lationship among the output level from the antennas is
one of the prime characteristics of smart antennas in ra-
dio mobile communications. These outputs are linearly
or nonlinearly combined through optimum or adaptive
signal processing techniques to significantly increase the
quality of the communication links, reduce the required
amount of transmitted power and increase the number
of users.

B. Angular energy distribution
The first model for a spatial channel is a Gaussian angle
distribution which is commonly used [8], [9]. Thus the
angular distribution function can be represented as

p(θ) =
κ√
2πσ

e−(θ−φ)2/2σ2
(1)

for θ ∈ [−π + φ, π + φ]

where φ and σ are the mean direction of arrival and
the standard deviation of the distribution. κ is the
normalization factor, to make p(φ) a physical density
function, i.e.

κ =
1

erf( π√
2σ

)
(2)

where erf(x) = 2√
π

∫ x

0
e−t2dt is the error function.

Note when the angular spread is small, κ is almost equal
to unity.

A second model for a spatial channel which is com-
monly used is a Gaussian spatial distribution. This
kind of distribution models the scatterers surrounding
the receiver using a bi-variate Gaussian distribution in
space. In other words, the scatterers have the position
(x, y) with the probability as

p(x, y) =
1

2πσs
e
− (x−x0)2+(y−y0)2

2σ2
s (3)

where σs is the standard deviation in both x and y
directions and (x0, y0) is the center of the distribu-
tion. To find the distribution of the angle-of-arrival,
i.e. the angular energy distribution for determining the
spatial distribution, we make the coordinate transform
by x = r sin(θ) and y = r cos(θ) into Eq. (3). Further
if we define R =

√
x20 + y20 and φ = tan−1(x0/y0), the
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following formula can be obtained

p(θ) =
1
2π

e
− R2

2σ2
s +

R cos(θ − φ)√
2πσs

· e−
R2 sin2(θ−φ)

2σ2
s ·Q

(
−R cos(θ − φ)

σs

)
(4)

where Q(x) = erfc(x/
√
2)/2. For simple calculation in

correlated functions, Eq. (4) is nearly identical to the
Gaussian angle distribution of Eq. (1) when values of
θ − φ are small. From Eq. (4), for larger R/σs and
smaller θ−φ we can approximate Gaussian spatial dis-
tribution using a Gaussian angle distribution as Eq. (1)
in which with σ = σs/R.

Another common assumption for angular energy
distribution is a uniform distribution. A uniform dis-
tribution of angular energy is defined as

p(θ) =
1
2∆

, for θ ∈ [φ−∆, φ+∆] (5)

where 2∆ is the range of angles about a central angle-
of-arrival φ.

3. Spatial Correlated Functions and Perfor-
mance Analysis

3.1 Spatial Correlated Functions

A. Linear array

As shown in Fig. 1(a), we consider a plane wave signal
arriving at an linear array from angle of arrival signal θ
with respect to the normal bisecting two points of inter-
est separated by d meters. The array response vector
v(θ) for linear geometry can be written as

v(θ) =




1
e−j2π d

λ cos(θ)

e−j2π 2d
λ cos(θ)

.

.

.

e−j2π (M−1)d
λ cos(θ)




where d and M are the antenna spacing and number
of the antennas. The array spatial correlation between
the m and n element of antenna array can be expressed
as [1]–[3]

ρ(m,n) = E[vm(θ)vn(θ)∗]

=
∫

θ

vm(θ)vn(θ)∗p(θ)dθ (6)

where p(θ) is the angular distribution function of inci-
dent signal. The real and imaginary parts of ρ(m,n)
for the linear arrays with uniform distribution of Eq. (5)
are given [8], respectively as

Re[ρ(m,n)] = J0(Zl) + 2
∞∑

k=1

J2k(Zl) cos(2kφ)

· sinc(2k∆) (7)

Im[ρ(m,n)] = 2
∞∑

k=0

J2k+1(Zl) sin((2k + 1)φ)

· sinc((2k + 1)∆) (8)

In Eqs. (7) and (8), Zl = 2π (m−n)d
λ and Jn(x) is the

modified Bessel function of the first kind. If the inci-
dent signal is not the uniform distribution, the incident
signal is following the Gaussian angle distribution. We
can use Eq. (6) and derive in the similar way, such as
the real and imaginary parts of ρ(m,n) for the linear
arrays with Gaussian angle distribution of Eq. (1) are
described, respectively as

Re[ρ(m,n)] = J0(Zl) + 2κ
∞∑

k=1

J2k(Zl) cos(2kφ)

· e−2k2σ2
Re[erf(

π + i2kσ2√
2σ

)] (9)

Im[ρ(m,n)] = 2κ
∞∑

k=0

J2k+1(Zl) sin((2k + 1)φ)

· e−(2k+1)2σ2/2Re[erf(
π + i(2k + 1)σ2√

2σ
)]

(10)

B. Circular array

From the geometry of circular array shown in Fig. 1(b),
the antenna elements are arranged to form a circular
with the radius of R. Like the linear array, the array
response vector v(θ) can be written as

v(θ) =




e−j2π R
λ sin(ξ) cos(θ−Ψ1)

e−j2π R
λ sin(ξ) cos(θ−Ψ2)

.

.

.

e−j2π R
λ sin(ξ) cos(θ−ΨM )




where R is the circular radius of antenna array shown
in Fig. 1(b) and λ is the wavelength. ξ is the elevation
angle where ξ = 90 degrees (only azimuth is consid-
ered). Ψi is the angle of i − th element in azimuth
plane. Using the same definition in Eq. (6), it is shown
in the Appendix A that real and imaginary parts of the
correlation function ρ(m,n) with the circular geometry
for the uniform distribution can be written as [8], [9]

Re[ρ(m,n)] = J0(ZC) + 2
∞∑

k=1

J2k(ZC) cos(2k(φ− γ))

· sinc(2k∆) (11)

Im[ρ(m,n)] = 2
∞∑

k=0

J2k+1(ZC) sin((2k + 1)(φ− γ))

· sinc((2k + 1)∆) (12)

where,



LETTER
1719

ZC =
√
Z2
1 + Z2

2 (13)

In Eq. (13), Z1 = 2πR
λ [cos(Ψm) − cos(Ψn)] and Z2 =

2πR
λ [sin(Ψm)−sin(Ψn)]. In Eqs. (11) and (12), sin(γ) =

Z1/ZC and cos(γ) = Z2/ZC . If the incident signal is
not the uniform distribution, the incident signal follows
the Gaussian angle distribution. As the derivation will
be presented in the following Appendix B, the real and
imaginary parts of ρ(m,n) for the circular arrays with
Gaussian angle distribution of Eq. (1) are described as

Re[ρ(m,n)] =
κ√
π

∫ π√
2σ

− π√
2σ

e−y2
[J0(ZC) +

2
∞∑

k=1

J2k(ZC) cos(2k(γ +
√
2σy + φ))]dy

(14)

Im[ρ(m,n)] =
κ√
π

∫ π√
2σ

− π√
2σ

e−y2

[
2

∞∑
k=0

J2k+1(ZC)

· sin((2k + 1)(γ +
√
2σy + φ))

]
dy

(15)

3.2 Performance Analysis

In order to emphasize the above research in diversity
reception, as an example, performance of the antenna
arrays shown in Fig. 1(c) with MRC in correlated Nak-
agami fading channels is investigated, in which analyt-
ical formulas of average BER for the spatial correlation
are obtained.

A. Physical Description
Considering a receiver with M diversity branches, let
the received instantaneous signal envelope Ak at the
k-th branch be characterized by the Nakagami-m dis-
tribution, with pdf given by [10], [11]

pAk
(Ak) =

2
Γ(mk)

(mk

Ωk

)mk

A2mk−1
k e

−mk
Ωk

A2
k (16)

where k = 1, 2, . . . ,M . Γ(.) is the Gamma function.
Ωk = mean(A2

k) is the average power of k-th branch.
mk is the fading parameter. As mk becomes smaller,
the degree of fading becomes more severe. The Rayleigh
distribution and one-sided Gaussian distribution are
special cases with mk = 1 and mk = 0.5, respectively.
The fading parameter mk can be any real value greater
than or equal to 0.5, but we will consider the cases
of integer values of mk only, considering that the mea-
surement accuracy of channel is typically only of integer
order.

MRC diversity combining scheme is used in our
investigation. Assuming flat fading and perfect knowl-
edge of channel, the instantaneous SNR χ at the output

of MRC combiner is given by

χ =
Es

N0

M∑
k=1

A2
k =

M∑
k=1

χk (17)

where, χk = Es

N0
A2

k is the instantaneous input SNR per
symbol for k-th branch at the MRC combiner.

In addition, for simplification we restrict our anal-
ysis to the case of identical branch fading parameters,
i.e., mk = m for k = 1, 2, . . . ,M . Then the general ex-
pression for the characteristic function of χ is obtained
from Ref. [11] in terms of the covariance matrix, Λ of
correlation coefficients. That is,

Φχ(t)=
∣∣∣IM − t

m
·H · Λ

∣∣∣−m

(18)

where IM is M × M identity matrix and H =
diag{mean(χ1),mean(χ2), . . . ,mean(χM )} with
mean(χk) being the average input SNR per symbol for
the k-th branch at the MRC combiner, and Λ is

Λ =




1 B∗
12 B∗

13 . . . B∗
1M

B12 1 B∗
23 . . . B∗

2M
...

...
...

...
...

B1M B2M B3M . . . 1




M×M

Here, Bkl = bkl + iβkl and bkl = blk, βkl = −βlk [10],
[11] which are referred as correlation coefficients and
the asterisk indicates the complex conjugate. Here, the
correlation coefficients are just the analytical formulas
in Sect. 3.1 as bkl = Re[ρ] and βkl = Im[ρ].

B. BER Performance
The average BER in the presence of fading is obtained
by averaging the conditional error probability over the
pdf of χ, i.e.,

PBER =
∫ ∞

0

P (e|χ) · p(χ) · dχ (19)

Here, as simple examples the differential binary phase-
shift-keying (DBPSK) and non-coherent binary orthog-
onal frequency-shift-keying (NBFSK) are considered in
our investigation. The conditional error probability is
given by [2],

P (e|χ) = 1
2
exp(−aχ) (20)

where a is the parameter of modulation method. If
a = 1/2, it corresponds to NBFSK modulation and
a = 1, corresponds to DBPSK. Then from Eq. (19), the
average BER, PBER can be written as [11]

PBER =
1
2

∫ ∞

0

exp(−aχ) · p(χ) · dχ

=
1
2
Φχ(t)

∣∣∣
t=−a

=
1
2

∣∣∣IM +
a

m
·H · Λ

∣∣∣−m

(21)
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4. Numerical Results

4.1 Spatial Correlated Functions

A. Linear Geometry
From Eqs. (7)–(10), we know that the spatial correla-
tion is a function of the antenna spacing d in the linear
geometry, incident angle of signal θ and the angular
energy distributions. Figure 2 shows the spatial corre-
lation for φ = 30 degrees versus d/λ for a uniform an-
gular distribution with various angular spreads ∆. It
is apparent that increasing antenna separation between
elements always reduces their correlation and the cor-
relation decreased quickly as ∆ increases, but with the
variation in sin form. In Fig. 2, if the antenna spacing
d increases, all the curves will not reach the zero point
quickly for all values of φ 	= 0 degrees and ∆ � 180
degrees.

Figure 3 shows the spatial correlation for φ = 30
degrees versus d/λ for a Gaussian angle distribution
with various angular spreads σ. If d increases, all the
curves will not reach the zero point quickly and also
varies with smooth envelope vibration.

B. Circular Geometry
The correlation functions between the antenna elements
in circular geometry are derived and an antenna array
with 8 elements as shown in Fig. 1(b) is adopted as an
example for numerical results. Please note that all the
formulas can be used to evaluate the antenna arrays
with many more elements. We selected the element 1
with Ψ1 = 0 degrees and element 4 with Ψ4 = 120
degrees as a test situation. From Eqs. (11)–(12) and
(14)–(15), we know that the correlation is a function of
the circular radius R, incident angle of signal θ, and the

Fig. 2 Spatial correlation versus d/λ with uniform distribu-
tion of angular energy (φ=30 degrees) for linear arrays shown in
Fig. 1(a).

angular energy distributions. Figure 4 shows the spa-
tial correlation for φ = 30 degrees versus R for a uni-
form angular distribution with various ∆. It is appar-
ent that increasing R always reduces their correlation
and the correlation decreased quickly as ∆ increases,
but also with the variation in sin form. Figure 5 shows
the spatial correlation for φ = 30 degrees versus R/λ
for a Gaussian angle distribution with various σ. Not
like Figs. 2 and 4, all the curves are with no envelope
vibration.

Summarizing the results of Figs. 2–5, it shows the
correlation decreases with increasing angular spread.
The largest correlation is achieved at ∆ = 0 and σ = 0.
The consequences of this behavior of the correlation are
two fold: Firstly, if the angular spread is rather small,

Fig. 3 Spatial correlation versus d/λ with Gaussian distribu-
tion of angular energy (φ=30 degrees) for linear arrays shown in
Fig. 1(a).

Fig. 4 Spatial correlation between the elements 1 and 4 versus
R/λ with uniform distribution of angular energy (φ=30 degrees)
for circular arrays shown in Fig. 1(b).
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Fig. 5 Spatial correlation between the elements 1 and 4 versus
R/λ with Gaussian distribution of angular energy (φ=30 degrees)
for circular arrays shown in Fig. 1(b).

the output signals of the elements of the antenna array
are strongly correlated. In this situation, if one antenna
element is in a fading dip, all others will be in the same
dip too. No diversity gain can be provided in this sit-
uation. Secondly, if the angular spread is rather large,
the signals of different elements of the antenna array are
only weakly correlated. The signals can be combined
by using various combining algorithms, such as MRC,
Selection Diversity and Equal Gain Combining. The
antenna array is effective as a diversity arrangement
and the better diversity gain can be obtained.

Here, although the numerical results for a Gaus-
sian spatial distribution defined as Eq. (3) are not given,
the formulas for using a Gaussian angle distribution to
model the Gaussian spatial distribution have been de-
rived. Therefore we can make the relative translation
to approximate a Gaussian spatial distribution with an
equivalent Gaussian angle distribution by the equiva-
lent Eq. (4).

4.2 Results of BER for Circular Antenna Arrays

A. BER performance with Gaussian angle distribution

Figure 6 shows the average BER of DBPSK for M =
4, 8 branches, circular geometry shown in Fig. 1(c),
MRC combining, with R = 1/4λ, a Gaussian angle
distribution with fixed angular spread σ = 30 degrees,
in m = 0.5 (Gaussian channel) and m = 1 (Rayleigh
channel) fading channels. The diversity gain can be ob-
tained by increasing from M = 4 to M = 8. We can
see whenM = 8 and m = 1 in Rayleigh fading channel,
BER performance will be greatly improved compared
with M = 4. For comparison, from Ref. [11] the re-
quired SNR is 35 dB as BER = 10−3 and m = 1 at
the case for no diversity (M = 1). The diversity gain
is near 16.5 dB for M = 4 and 28.5 dB for M = 8 when

Fig. 6 BER Performance versus SNR per symbol with Gaus-
sian angle distribution for circular antenna arrays shown in
Fig. 1(c) (DBPSK a=1, R/λ = 1/4, σ = 30 degrees and φ = 30
degrees).

Fig. 7 BER Performance versus σ and ∆ for circular antenna
arrays shown in Fig. 1(c) (DBPSK a=1, R/λ = 1/4 and φ = 30
degrees).

the antenna elements are arranged in a circular antenna
array shown in Fig. 6.

B. Sensitivity to σ and ∆

Figure 7 shows the average BER of DBPSK for M =
4, 8 versus the angular spread σ and ∆ respectively, at
fixed SNR in m = 1 fading channels. Since large an-
gular spread σ and ∆ reduce the correlation, the aver-
age BER decreases. With the increasing of the angular
spread, BER difference for the uniform angular distri-
bution and Gaussian angle distribution will be smaller
and converge on the same values according to the nu-
merical results. It should be noted that the antenna
array with Gaussian angle distribution can give better
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performance at σ = ∆. BER performance can be im-
proved by increasing M . However the use of a large M
is often restricted by the implementation complexity.
This means the BER performance improvement for a
small M is the most significant.

5. Conclusions

In this paper, we have derived generalized spatial cor-
relation functions for three distributions of angular en-
ergy for a linear antenna array and a circular antenna
array. The generalized formulas allow the correlation
to be found for any practical standard deviation and
antenna array geometry. To emphasize the work, we
also investigate the average BER performance of a cir-
cular antenna array with MRC combining in Nakagami
fading environment. The numerical results clearly illus-
trate the flexibility of this analysis in determining the
effects of compact antenna array configuration and the
operational wireless environment. These results also
will be used and play the key role in designing smart
antenna systems use signal processing methods in con-
junction with multiple antennas to achieve significant
improvements in capacity and range for wireless mobile
communications.
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Appendix A: Derivation of Spatial Correlation
Function for Uniform Distribu-
tion

As description in Sect. 2-B, we wish to show that spatial
correlation function for a circular antenna array when
the arrival signals are following a uniform angular en-
ergy distribution. According to the definition of corre-
lation function in Eq. (6) and the uniform distribution
function shown in Eq. (5), we can obtain the correlation
function formula as

ρ(m,n) =
∫

θ

vm(θ)vn(θ)∗p(θ)dθ

=
1
2∆

∫ φ+∆

φ−∆

e−j2π R
λ (cos(θ−Ψm)−cos(θ−Ψn))dθ

(A· 1)

If we define Z1 = 2πR
λ [cos(Ψm) − cos(Ψn)] and Z2 =

2πR
λ [sin(Ψm) − sin(Ψn)]. So ZC =

√
Z2
1 + Z2

2 can be
defined. Let sin(γ) = Z1/ZC and cos(γ) = Z2/ZC , then
Eq. (A· 1) can be transformed as

ρ(m,n) =
1
2∆

∫ φ+∆+γ

φ−∆+γ

e−jZC sin(ζ)dζ (A· 2)

where ζ = γ + θ. In this formula, e−jZC sin(ζ) =
cos(ZC sin(ζ)) − j sin(ZC sin(ζ)) can be expressed by
the modified Bessel functions as follows

cos(ZC sin(ζ)) = J0(ZC) + 2
∞∑

k=1

J2k(ZC) cos(2kζ)

sin(ZC sin(ζ)) = 2
∞∑

k=0

J2k+1(ZC) sin((2k + 1)ζ)

(A· 3)

After substituting Eq. (A· 3) into Eq. (A· 2) and inte-
grating it, the real and imaginary parts of the correla-
tion function ρ(m,n) of circular antenna arrays for a
uniform distribution can be expressed as Eqs. (11) and
(12).

Appendix B: Derivation of Spatial Correla-
tion Function for Gaussian Angle
Distribution

As the same derivation in Appendix A, we derive corre-
lation function of the circular antenna array for a Gaus-
sian angle distribution, Eqs. (14) and (15) in this Ap-
pendix. First, let us assume a Gaussian distribution for
angular energy such that the distribution function can
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be represented as Eq. (1) as follows

p(θ) =
κ√
2πσ

e−(θ−φ)2/2σ2

where, θ ∈ [−π + φ, π + φ] (A· 4)

where κ is the normalization factor that is expressed by
Eq. (2), to make p(θ) a physical density function.

Then like the same definitions in Appendix A, we
know that the spatial correlation function can be de-
termined as

ρ(m,n) =
κ√
2πσ

∫ π+φ

−π+φ

e
−( θ−φ√

2σ
)2
e−jZC sin(γ+θ)dθ (A· 5)

If we let χ = θ−φ√
2σ

, then the parameter θ can be

transformed as θ =
√
2σχ + φ and make a change of

variables, so χ ∈ [− π√
2σ
, π√

2σ
]. Therefore we obtain

ρ(m,n) =
κ√
π

∫ π√
2σ

− π√
2σ

e−χ2
e−jZC sin(γ+θ+

√
2σχ)dχ

=
κ√
π

∫ π√
2σ

− π√
2σ

e−χ2
cos(ZC sin(γ + θ +

√
2σχ))dχ

+
κ√
π

∫ π√
2σ

− π√
2σ

e−χ2
cos(ZC sin(γ + θ +

√
2σχ))dχ

(A· 6)

Now, substituting Eq. (A· 4) into Eq. (A· 6), we can get
the real and imaginary parts of ρ(m,n) equations shown
as Eqs. (14) and (15).


