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A New Color Demosaicing Method Using Asymmetric Average
Interpolation and Its Iteration
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SUMMARY This paper presents a color demosaicing method by intro-
ducing iterative asymmetric average interpolation. Missing primary colors
on a Bayer pattern color filter array (CFA) are estimated by an asymmet-
ric average interpolation where less intensity variation is assumed to be
of stronger significance, before sharpness of an initial estimate is further
improved by an iterative procedure. The iteration is implemented by an
observation process followed by a restoration process. The former is mod-
eled by blurring followed by CFA sampling and the latter is completely
as same as the color demosaicing method initially applied. Experimental
results have shown a favorable performance in terms of PSNR and visual
appearance, in particular, in sharpness recovery.
key words: color demosaicing, interpolation, iteration, asymmetric aver-
age

1. Introduction

Most of digital cameras use single-chip CCD sensors where
a color filter array (CFA) is widely used to sample primary
colors onto a Bayer pattern [1] shown in Fig. 1. As a result, a
color mosaic image is acquired. Imaging process for a color
mosaic image consists of a sequence of signal processing as
illustrated in Fig. 2. A target scene or image passes through
an anti-aliasing optical filter before sampling and quantiza-
tion. On a Bayer pattern mosaic image, green samples are
populated twice as many as red and blue samples, and two
thirds of dense original samples are missing. The task of
color demosaicing is thus to restore these missing color sam-
ples for producing a high resolution color picture which is
unknown.

Owing to fewer color samples and anti-aliasing fil-
tering, color demosaicing suffers from several difficulties.
They are false color, zipper effect, blurring, quantization
noise, and others. False color is a phenomenon in color re-
production where such a color different from the original is
produced at a pixel of interest. False color is often generated
at sharp edges and high-contrast areas, and is very notice-
able over constant hue areas such as achromatic surfaces and
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Fig. 1 Bayer pattern.

on fine texture regions. Zipper effect is a phenomenon such
that originally non-existent high frequency patterns come to
appear, and usually its pattern looks like a dotted line or
a fringe. Zipper artifacts tend to occur along high-contrast
edges and it can appear as an isolated dot at corners. False
color and zipper effect can happen simultaneously, if phase-
shifted interpolation would take place between different pri-
mary colors [2]. In addition, the same effect can cause differ-
ent artifacts depending on the local nature of images. Such
a representative phenomenon is confetti error [2] observed
at bright pixels in a dark neighborhood. Blurring effect is
caused by two mechanisms. The first is due to band-limiting
filtering by an optical system, and the other is due to the core
processing for interpolating missing samples. Quantization
noise is caused by poor quantization accuracy due to spa-
tial aperture of a CFA and aperture time in imaging, and can
be sometimes objectionable at dark and highlight uniform
areas.

Since there are so many problems to be solved in
color demosaicing, many sorts of demosaicing algorithms
are available at present [3]–[6]. Among them, Cok’s con-
stant hue-based interpolation (CHBI) is one of the great-
est contributions in this topic. The hue of the color on
an object surface is maintained to avoid abrupt changes in
CHBI. In particular, interpolation formulae are constructed
so as to keep ratios of R to G and B to G constant. Adap-
tive color plane interpolation (ACPI) proposed by Hamilton
and Adams is one of the best-performing demosaicing algo-
rithms ever before. In ACPI, interpolation orientation is se-
lected so that missing samples are interpolated along edges
rather than across edges. This is a spatially-adaptive inter-
polation, and offers favorable color reproduction quality in
terms of several aspects such as false color, zipper effect,
and mean squared error (MSE). Unfortunately, most of ex-
isting demosaicing algorithms produce excessively blurred
images in the sense of visual perception.

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers
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Fig. 2 Block diagram of image processing for color mosaicing.

On the other hand, digital cameras’ resolution is get-
ting higher in recent years, and there is still a strong demand
for high resolution and perceptually sharp imaging. Kim-
mel’s two-step superresolution algorithm [7] is one of the
leading works along this direction. In this paper, a differ-
ent approach is tried to address the problem for improving
sharpness and for reducing fine artifacts for a purpose of sta-
ble visual appearance and detail restoration in demosaiced
images. For detail restoration we restrict ourselves to ap-
ply short-kernel filters and introduce iterative refinements
for sharpness restoration [8]. Section 2 describes a set of
basic orientation/direction-adaptive interpolation for miss-
ing pixels. Section 3 describes an iterative refinement algo-
rithm modeled by a proposed asymmetric interpolation and
blurring followed by CFA sampling. Experimental results
are presented in Sect. 4, and conclusions follow.

2. Interpolation of Missing Primary Colors

Missing primary colors on a Bayer pattern CCD sensor have
to be interpolated to restore an unknown original picture.
Among all, one of the most important guidelines is a well-
known fact that neighboring primary colors are closely cor-
related with each other. This generally observed knowledge
on natural scene pictures was sophisticated into a constant-
hue principle [3] over an object surface, and any existing
color demosaicing method enjoys its benefit. Since green
samples are populated twice as many as those of red and
blue on a Bayer pattern, missing green pixels are at first in-
terpolated, before red and blue missing pixels are interpo-
lated with a help of dense green pixels. Another important
guideline for a better interpolation is to make an interpola-
tion along edges rather than across them. This principle is
implemented in ACPI [6] in conjunction with second-order
differences, and the interpolation is spatially-adaptive and is
switched among a few directional interpolations depending
on the local orientation of an edge.

On the other hand, the intensity variation along an edge
is not always uniform along one direction and its opposite
with respect to a target pixel to be interpolated. Although,
as far as the authors know, all of filtering-based interpolation
schemes use symmetric averaging along edges, it can be a
violation against the nonuniform intensity variations. Spa-
tially asymmetric averaging along an edge is hence intro-
duced in this study, where less intensity variation is assumed
to be of stronger significance in a sense of stable restoration
for details.

2.1 Interpolation of Missing Green Pixels

A missing green pixel on a Bayer pattern is located at a
crossing point centered between two pairs of adjacent green
samples at north and south and east and west orientations. In
order to find the orientation of an edge, a set of parameters
are defined as follows. The north-south indicator is defined
by

α = |G23 −G43| + γn + γs (1)

where

γn = |R13 − R33| (2)

and

γs = |R33 − R53|. (3)

In the same way, the east-west indicator is defined by

β = |G32 −G34| + γw + γe (4)

where

γw = |R31 − R33| (5)

and

γe = |R33 − R35|. (6)

It is a contrast that second-order differences, hence, sym-
metric orientation-indicators are defined in ACPI, while sep-
arate orientation-indicators are used in this work to allow
independent evaluations of two opposite directions along an
edge.

If α < β, it indicates that a vertical change is smaller
than a horizontal change, and thus it is more probable for
an edge to run vertically. Contrary, if α > β, an edge is
assumed to run horizontally.

The next conditioning for precise inspection of varia-
tions along edges is to check a possible bias in symmetry
between two opposite directions around a target pixel to be
interpolated. For instance, assume that α < β, and hence
the edge across a target pixel lies along the north-south ori-
entation, and if γn < γs, then the target green pixel value
will be assumed to be closer to its north pixel value than its
south. This is because strong zipper-effects are very notice-
able and annoying to the human eye, and such short-distance
artifacts are objectionable against sharp and stable edging
lines. Hence, less variation between a pair of opposite di-
rections along an edge is significant to reduce those artifacts
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for continuous silhouette and stable sharpness around edges.
As a result, a missing green pixel is estimated as follows.

If α < β,

G33 =



λ1G23 + (1.0 − λ1)G43

+ λ2
−R13 + 2R33 − R53

4
(γn < γs)

(1.0 − λ1)G23 + λ1G43

+ λ2
−R13 + 2R33 − R53

4
(γn > γs)

(7)

where λ1 and λ2 are weighting factors and 0 ≤ λ1 ≤ 1,
0 ≤ λ2 ≤ 1. If γn = γs, it means that two variations in
the opposite directions are identical, and an average of two
values calculated by two right-hand side equations above is
given as an estimate for the target green pixel.

In the same manner, if α > β

G33 =



λ1G32 + (1.0 − λ1)G34

+ λ2
−R31 + 2R33 − R35

4
(γw < γe)

(1.0 − λ1)G32 + λ1G34

+ λ2
−R31 + 2R33 − R35

4
(γw > γe).

(8)

In a special case of γw = γe, an average of evaluation val-
ues of two right-hand side equations above is given as an
estimate.

If α = β, all of four right-hand side entries in Eqs. (7)
and (8) are averaged as an estimate for the target.

2.2 Interpolation of Missing Red and Blue Pixels

Once all of missing green pixels have been interpolated, red
and blue primary colors at missing pixel locations are esti-
mated by the aid of dense green pixels. Since the missing
pixel arrangements of red and blue are identical, the interpo-
lation for blue primaries is explained here. There are three
spatial arrangements for a missing blue pixel. In the first
case, a missing blue pixel, typically as specified by B32 in
Fig. 1, is sandwiched by a pair of blue samples. In turn, in
the second case, a pair of blue samples are available to the
east and the west to a missing blue pixel, B23. Finally, in the
third case, a missing blue pixel, typically B33, is located at a
face-centered position of neighboring four blue samples.

Among them, as for the first two cases, a pair of the
closest blue samples is available along a specific orientation,
and the pair specifies its interpolation orientation among
vertical and horizontal orientations. A pair of green sam-
ples are always available along the other orientation, since
demosaicing of green samples have been completed in ad-
vance. The contribution from green pixels are calculated by
a second-order difference. The interpolation formulae for
missing blue pixels in the first and second cases are defined
by

B23 =
B22 + B24

2
+
−G22 + 2G23 −G24

2
(9)

B32 =
B22 + B42

2
+
−G22 + 2G32 −G42

2
(10)

and they are identical to those in ACPI.
After two types of blue pixel interpolations have been

completed as above, the third case-missing blue pixels are
computed. In this case, the target blue pixel originally lo-
cated at a face-centered position with respect to neighbor-
ing four blue pixels now accompanies two pairs of available
blue pixels at its closest vertical and horizontal positions. A
better interpolation orientation is selected in a similar way
to that developed for missing green pixels. However, on this
occasion, a pair of orientation indicators are defined by us-
ing a simple first-order difference between a pair of adjacent
green pixels either of which is located at the same position
to the target blue pixel. The vertical and horizontal orienta-
tion indicators for a missing blue pixels in the third case are
defined by

α = |B23 − B43| + |G23 −G33| + |G43 −G33| (11)

β = |B32 − B34| + |G32 −G33| + |G34 −G33| (12)

respectively. Depending on a comparison between α and β,
the third case-missing blue pixel is computed by

B33 =



B23 + B43

2
+
−G23 + 2G33 −G43

2
(α < β)

B32 + B34

2
+
−G32 + 2G33 −G34

2
(α > β).

(13)

If α = β, all entries in the right-hand side in the above equa-
tion are averaged as an interpolation value for the target blue
pixel.

3. Iterative Improvements

The color demosaicing algorithm presented in the previ-
ous section consists of a set of spatially-adaptive filtering.
As same as other existing and well-performing demosaicing
algorithms that are based on filtering, interpolating values
for missing pixels are computed by a wide-sense lowpass
filtering no matter what differential components are used
and whichever the averaging is symmetric or asymmetric.
Hence it is unavoidable for all of them to produce a blurred
restoration to some extent due to the interpolation filtering
and a band-limiting filtering involved with an optical sys-
tem. In order to overcome these difficulties and to restore
sharp images, an iterative procedure is introduced according
to some earlier lessons [9], [10].

Let A denote a bounded linear operator on a Hilbert
space, and it maps a vector, x, onto another y in the same
space. Needless to mention, any digital image is represented
by a vector in a Hilbert space, as long as its pixel values are
bounded. A series of processes illustrated in Fig. 2 for pro-
ducing a mosaic image captured on a Bayer pattern CCD
sensor is assumed to be modeled by A. Also, the restora-
tion process of demosaicing and deblurring is assumed to be
modeled by an adjoint operator, B, with respect to A. Note
that as long as the following equality holds for any x and y,
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B is referred to as an adjoint of A [11].

〈Ax, y〉 = 〈x, By〉, (14)

where 〈a, b〉 stands for an inner product between a and b.
Although it is hard to design well-performing algo-

rithm modeled by an adjoint operator to a specific mosaic-
ing process of A, the previously developed asymmetric av-
erage interpolation can be one of approximations among
infinitely-many possible adjoint operators, because it per-
forms color demosaicing as well or better as existing well-
performing demosaicing algorithms for many images. This
has been experimentally investigated.

There is another assumption in developing a geomet-
ric iteration model. Quantization is involved with the mo-
saicing process, and it is a nonlinear operation. Quantiza-
tion is assumed to be linearized in such a way that it is re-
placed by an identity operator accompanying a quantization
noise source. In the following development, the quantiza-
tion noise is neglected.

Hence an iterative procedure is formulated in the clas-
sical Landweber-type iteration [12] as follows. Let the orig-
inal image to be restored be x0, and its color mosaic image is
denoted by y0. Since y0 is produced by a linear system con-
sisting of a sequence of blurring and CFA sampling, the fol-
lowing geometric model for the mosaicing process is valid
to work.

y0 = Ax0 (15)

Since a restored image is produced by B that is identical to
the asymmetric average interpolation developed in the pre-
vious section, the following restoration model is employed.

By0 = BAx0 (16)

Adding x0 to both sides of the above equation before a sim-
ple manipulation, one can thus obtain

x0 = By0 + (I − BA)x0, (17)

where I stands for the identity operator. To convert this
equation into an iterative formulation by means of a series
of recurrence expressions, a conventional notation such as
xn = Byn, where n stands for the iteration count, is assumed.
As a result, one obtains

x0 = By0 + (I − BA)xn. (18)

This equation is finally interpreted into an update formula by
replacing the left-hand side notation and the equality symbol
with xn and a substitution symbol, respectively. The result
is as follows. (Refer to [11] for mathematical details on this
issue.)

xn ← By0 + (I − BA)xn−1 (19)

Starting from a given mosaic image, y0, and an initial image
denoted by x0

† in the above equation, restoration images are
successively produced.

If the above iterative formula is successively substi-
tuted into itself, it is straightforward to find another expres-
sion as follows.

xn =

n−1∑

k=0

(I − BA)kBy0 + (I − BA)nx0 (20)

where n starts from one, and x0 is given as By0, which is a
demosaiced image produced by the method in the previous
section.

4. Experimental Results

For ease of reference, demosaicing by the iterative asym-
metric average interpolation, which refers to the entire de-
mosaicing method presented in this paper, is abbreviated
to IAAI, whereas demosaicing by iteration-free asymmet-
ric average interpolation described in Sect. 2 is referred to
as AAI.

Our experiments are separated into two parts. In the
first part, several featuring pictures are tested to make vi-
sual inspection of the characteristics of the method devel-
oped in this paper. The other part consists of several com-
parisons between IAAI and ACPI in terms of objective mea-
sures for natural scene pictures. Performance comparisons
are made between IAAI and ACPI, because a thorough com-
parative study on representative existing demosaicing meth-
ods is available in Ref. [2], where ACPI is concluded as one
of the best performing methods among others in a compre-
hensive point of view. In particular, according to the litera-
ture, ACPI outperforms best for images with sharp edges.

Two weighting factors in Eqs. (7) and (8) were fixed
as λ1 = 0.6 and λ2 = 0.4. The number of iterations in IAAI
was fixed at five. In all experiments, the anti-aliasing optical
filter was simulated with the following impulse response.

1
16


1 2 1
2 4 2
1 2 1

 (21)

Its transfer function is expressed by H(z−1
h , z

−1
v ) = 1

16 (1 +
z−1

h )2(1 + z−1
v )2, and has a double zero at the horizontal and

vertical Nyquist frequency for a digital image of which sam-
ples locate on the rectangular grid.

4.1 Visual Appearance

An orientation detection view for interpolating green pri-
mary is displayed in Fig. 3, where vertical and horizontal
interpolations are printed in sky-blue and dark red, respec-
tively. One can see that orientation-adaptive interpolation
correctly works depending on local orientation of edge lines.

Figure 4 shows local fine views of IAAI and ACPI for a
geometric pattern shown in (a). Note that images are magni-
fied in their display for ease of visual inspection, and every
step is equivalent to a pixel pitch. Sharp edge recovery and
satisfactory color reproduction are observed in IAAI.

†Do not confuse this notation with the former one about x0.
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Fig. 3 Orientation detection view. (a) Original picture. (b) Footprints
of orientation-adaptive interpolation. Vertical in sky-blue and horizontal in
dark red.

Fig. 4 Local fine views of interpolation. (a) Original. (b) IAAI. (c)
ACPI.

Fig. 5 Zipper effect inspection. (a) Original. (b) IAAI. (c) ACPI.

Fig. 6 Stripe pattern-edges inspection. (a) Original. (b) IAAI. (c) ACPI.

Figures 5 and 6 show a few demosaiced images for a
visual inspection of zipper effects and false color artifacts.
In particular, the original picture in Fig. 6 has a single pixel-
pitch stripes that cannot be restored from a Bayer pattern
mosaic image because of the worst case in the sampling the-
ory. Objectionable zipper effects and strong false colors are
noticeable to the eye in ACPI-produced images. In contrast,
no zipper effects are noticeable in IAAI-produced images,
and the intensity of false colors is found to be significantly
weak.

Color reproduction and edge recovery for particular
stripe edges/textures can be visually inspected as shown in
Figs. 7 and 8. The demosaiced images by IAAI are better
than those by ACPI, and sharpness recovery for edges and
quite satisfactory color reproduction have been obtained.

Fig. 7 Color reproduction and edge recovery inspection, left parrot. (a)
Original. (b) IAAI. (c) ACPI.

Fig. 8 Color reproduction and edge recovery inspection, right parrot. (a)
Original. (b) IAAI. (c) ACPI.

Fig. 9 Iterative PSNR improvement. Test image: parrots (512 × 768).

4.2 Objective Metrics

Figure 9 shows a plot of incremental improvements in peak-
signal to noise ratio (PSNR)†, as iteration progresses. As
seen in the figure, the convergence rate of iteration is con-
siderably fast for all primaries to reach a level close to the
convergence.

Figure 10 shows a set of test images†† used in exper-
iments. Pixel values in original images are of 8-bit accu-
racy for every primary color. A part of party image and its
color demosaicing results are shown in Fig. 11. The color
reproduction by IAAI is very close to the original in visual
appearance, and is sharper than that by ACPI. In particular,
their difference is visually perceivable on a checker ribbon

†PSNR is defined by 10 log10(2552/MS E), where MSE stands
for mean squared error.
††party, picnic, portrait: Sony sRGB Standard Images, 1999.

http://www.colour.org/tc8-04/test images/Sony/
parrots: Kodak Photo CD Sampler No.3, USA IMG0060
cafeteria, bicycle: Graphic Technology -Prepress Digital Data
Exchange-, Standard Colour Image Data (SCID), Japanese Stan-
dards Association, 1995.
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Fig. 10 Test images.

Fig. 11 Color reproduction comparison.

and a silver fork.
Tables 1, 2, and 3 list PSNR, maximum absolute er-

rors, and CIELAB color difference† ∆E∗ab, respectively, for
a comparison between ACPI and IAAI as well as AAI. As
seen in Table 1, IAAI outperforms ACPI in every primary
color reproduction. The performance of AAI which is just
a core processing for IAAI is competitive to that of ACPI.
A merely supplemental comment is exposed as follows; an

iterative demosaicing algorithm that is made of ACPI as a
substitution of AAI was experimented, and the result was
discouraging.

†It is defined by ∆E∗ab =
√

(∆L∗)2 + (∆a∗)2 + (∆b∗)2, where
L∗ is referred to as lightness. a∗ and b∗ are referred to as
redness-greenness and yellowness-blueness, respectively and rep-
resent chroma components. ∆ stands for the difference between
two quantities in issue.
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Table 1 PSNR in dB.

Red Green Blue
Image name (size) AAI IAAI ACPI AAI IAAI ACPI AAI IAAI ACPI

party (1200×1600) 33.05 36.19 33.07 32.31 36.63 32.24 31.38 34.55 31.37
picnic (1200×1600) 34.61 35.18 34.37 34.99 35.56 34.79 33.72 33.85 33.57
portrait (1200×1600) 34.31 36.20 34.32 33.43 36.48 33.05 33.06 36.33 33.05
parrots (2048×3072) 40.40 41.40 40.38 41.51 42.75 41.36 40.40 41.26 40.42
parrots (1024×1536) 40.88 43.37 40.84 41.63 43.93 41.38 40.75 43.39 40.72
parrots (512×768) 36.43 40.20 36.46 37.10 41.57 37.03 36.18 40.90 36.19
bicycle (1920×1536) 24.69 29.42 24.62 24.54 29.21 24.48 24.03 28.50 23.96
cafeteria (1920×1536) 21.42 24.76 21.40 21.34 24.84 21.34 21.45 24.64 21.43
lighthouse (768×512) 29.37 35.02 29.35 29.57 35.08 29.57 29.74 35.13 29.70
Fig. 7(a) 30.02 23.22 29.93 23.77 29.70 22.63
Fig. 8(a) 33.33 28.25 34.36 26.96 34.30 26.14

Table 2 Maximum absolute error.

Red Green Blue
Image name (size) AAI IAAI ACPI AAI IAAI ACPI AAI IAAI ACPI

party (1200×1600) 109 108 98 123 118 122 132 120 134
picnic (1200×1600) 130 115 136 97 84 97 121 109 121
portrait (1200×1600) 83 91 85 103 79 99 102 81 97
parrots (2048×3072) 111 56 115 54 32 53 107 62 112
parrots (1024×1536) 69 45 65 66 61 66 72 59 70
parrots (512×768) 53 40 50 46 35 43 45 27 45
bicycle (1920×1536) 174 197 169 174 197 169 180 197 173
cafeteria (1920×1536) 210 198 209 201 198 198 201 203 208
lighthouse (768×512) 106 57 92 98 60 84 98 71 92
Fig. 7(a) 45 65 61 66 59 70
Fig. 8(a) 29 42 27 43 27 45

Table 3 Color difference.

Average Median
Image name (size) AAI IAAI ACPI AAI IAAI ACPI

party (1200×1600) 1.49 1.42 1.49 0.49 0.48 0.49
picnic (1200×1600) 3.72 3.68 3.76 0.77 0.67 0.76
portrait (1200×1600) 1.36 1.31 1.36 0.48 0.47 0.48
parrots (2048×3072) 0.48 0.41 0.49 0.39 0.37 0.39
parrots (1024×1536) 0.36 0.31 0.36 0.30 0.28 0.30
parrots (512×768) 0.51 0.40 0.51 0.37 0.31 0.37
bicycle (1920×1536) 1.96 1.63 1.96 0.91 0.82 0.91
cafeteria (1920×1536) 4.40 4.15 4.40 1.92 1.57 1.91
lighthouse (768×512) 0.92 0.61 0.92 0.51 0.44 0.51
Fig. 7(a) 1.17 2.31 0.91 1.84
Fig. 8(a) 0.81 1.56 0.67 1.25

As listed in Table 2, in most cases, the maximum abso-
lute errors in IAAI-produced images are smaller than those
in ACPI-produced images in individual color channels. On
the other hand, AAI produces larger maximum absolute er-
ror than ACPI in most test images. These seemingly con-
tradictory results imply that there are very few occasions for
asymmetric interpolation to fail in faithful estimation at the
expense of stable and sharp edging property. However, the
excessive enhancement effect occuring at few pixels in AAI
is likely modified throughout iteration.

In Table 3, CIELAB color difference, ∆E∗ab, is tabulated
in two statistical values of average and median. CIELAB is
one of the most widely accepted device-independent color
spaces. By literature [13]–[17], it is hard for the eye to per-
ceive ∆E∗ab smaller than 0.3, 0.6, 1.2, 2.3, 2.5 or 3.0. By con-
tast, if it exceeds ten, the difference is too large for relative

comparison to become insignificant [2]. The critical limit
differs by literature, and of course depends on viewing con-
ditions and the perceptual capability of individuals. It would
be of benefit to give a citation to typical values of average
∆E∗ab in four commercial graphic CRT monitors; 0.63, 0.83,
0.97, and 1.90 are listed in Ref. [18]. For most test images,
average ∆E∗ab in IAAI-produced images is around 0.4 to 1.6,
excepting the cases for picnic (1200 × 1600) and cafeteria
(1920×1536). In contrast, most of median values shows 0.3
to 0.9 which are smaller than 1.0. In addition, IAAI is found
to produce smaller color difference than ACPI. It is hence
reasonable to claim that color reproduction fidelity in IAAI
color demosaicing is satisfactory.
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5. Conclusions

In this paper, an iterative color demosaicing algorithm has
been developed based on asymmetric average interpolation
for Bayer pattern mosaic images. Experimental results have
shown that the proposed method restores satisfactory images
in most natural scene and portrait images in terms of subjec-
tive visual appearance and several objective metrics such as
PSNR and CIELAB color difference.
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Appendix: Computational Complexity

The computational complexity involved with AAI (asym-
metric average interpolation) and IAAI (iterative AAI) is an-
alyzed. It is summarized in Table A· 1 with a comparative
reference to ACPI. Note that every entry shows the num-
ber of required operations per pixel, and one pixel consists
of three color components of red, green, and blue. Filter-
ing and correction imply the computation for blurring and
update operation for iteration. As found in the table, AAI
and ACPI have almost the same computational complexity.
A single iteration in IAAI requires additional computation,
which is 1.5 times high as that of AAI and ACPI. Experi-
ments agreed with this theoretical counts. The total com-
plexity is in proportion to the number of pixels of an image.

Table A· 1 Computational complexity per pixel.

Operations ACPI AAI Filtering Correction
additions 45.0 45.5 12.0 6.0

multiplications 19.5 16.5 18.0 0.0
absolute value 8.0 13.5 0.0 0.0

conditional branch 2.0 2.5 0.0 0.0
total 74.5 78.0 30.0 6.0

Yoshihisa Takahashi received B.E. and
M.E. degrees from Niigata University in 2003
and 2005, respectively. At present, he continues
his study for Ph.D. at Niigata University. His re-
search interests include digital signal processing
and image processing. He is a student member
of ITE.

Hisakazu Kikuchi received B.E. and M.E.
degrees from Niigata University in 1974 and
1976, respectively, and Dr.Eng. degree from To-
kyo Institute of Technology in 1988. From 1976
to 1979 he worked at Information Processing
Systems Laboratory, Fujitsu Ltd., Tokyo. Since
1979 he has been with Niigata University, where
he is a professor of electrical engineering. He
was a visiting professor at Electrical Engineer-
ing Department, University of California, Los
Angeles during a year of 1992 to 1993. He holds

a visiting professorship at Chongqing University of Posts and Telecom-
munications, China, since 2002. His research interests are in the areas
of image/video processing and digital signal processing. Dr. Kikuchi is a
member of IEICE, ITE, IIEEJ (Institute of Image Electronics Engineers of
Japan), Japan Society for Industrial and Applied Mathematics, Research
Institute of Signal Processing, IEEE, and SPIE. He served the chair of Cir-
cuits and Systems Group, IEICE, in 2000 and the general chair of Digital
Signal Processing Symposium, IEICE, in 1988 and Karuizawa Workshop
on Circuits and Systems, IEICE, in 1996.



2116
IEICE TRANS. FUNDAMENTALS, VOL.E88–A, NO.8 AUGUST 2005

Shogo Muramatsu received B.E., M.E.,
and D.E. degrees in electrical engineering from
Tokyo Metropolitan University in 1993, 1995,
and 1998, respectively. From 1997 to 1999, he
worked at Tokyo Metropolitan University. In
1999, he joined Niigata University, where he is
currently an associate professor at Department
of Electrical and Electronic Engineering. Dur-
ing a year from 2003 to 2004, he was a visiting
scientist at University of Florence, Italy. His re-
search interests are in digital signal processing,

multirate systems, image processing and VLSI architecture. Dr. Muramatsu
is a member of IEEE (Institute of Electrical and Electronics Engineers,
Inc.), IPSJ (Information Processing Society of Japan), ITE and IIEEJ (In-
stitute of Image Electronics Engineers of Japan).

Yoshito Abe He received the B.E., M.E., and
Ph.D. degrees all in electronic engineering from
Niigata University, Niigata in 1985, 1988, and
1998, respectively. In 1985, he worked at the
R&D Center, Nemic-Lambda K.K., Nagaoka-
shi. In 1988, he joined Dai Nippon Printing Co.,
Ltd., Tokyo, where he was a senior researcher at
the Manufacturing Integration Technology Lab-
oratory. In 2003, he leaved DNP and joined the
Industrial Research Institute of Niigata Prefec-
ture, Niigata. Dr. Abe’s research interests are in

digital signal processing and image processing. He is a member of the ITEJ,
Imaging Society of Japan, and Research Institute of Signal Processing.

Naoki Mizutani was born in Nagano, Japan,
in 1976. He received B.E., M.E., and Ph.D. de-
grees from Niigata University in 1999, 2001 and
2004, respectively. He works at Kodak Digital
Product Center, Japan Ltd. His research inter-
ests include digital signal processing and image
processing. Dr. Mizutani is a member of IEEE.


