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Constraints of Second-Order Vanishing Moments on Lattice
Structures for Non-separable Orthogonal Symmetric Wavelets
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SUMMARY In this paper, a design method of two-dimensional (2-D)
orthogonal symmetric wavelets is proposed by using a lattice structure for
multi-dimensional (M-D) linear-phase paraunitary filter banks (LPPUFB),
which the authors have proposed as a previous work and then modified by
Lu Gan et al. The derivation process for the constraints on the second-order
vanishing moments is shown and some design examples obtained through
optimization with the constraints are exemplified. In order to verify the
significance of the constraints, some experimental results are shown for
Lena and Barbara image.
key words: wavelets, orthogonal transforms, non-separable filter banks,
vanishing moments, video coding

1. Introduction

Still picture codec standards, such as JPEG and JPEG2000,
and motion picture codec standards, such as MPEG-1/2 and
H.264/AVC, employ transform coding techniques as basic
components for reducing spatial redundancy [1]–[3]. The
coding performance of whole system is severely influenced
by the choice of the transform.

JPEG and MPEG-1/2 consist of a 8×8 two-dimensional
(2-D) discrete cosine transform (DCT). DCT is known as
a quasi-optimal transform for the first-order autoregressive
process with a correlation close to 1. As well, the transform
kernel is defined by the cosine function and efficient com-
putation is available through some fast algorithms. From
these reasons, DCT has favourably been used in both of
still and motion picture codecs. The independent block pro-
cessing, however, makes block boundaries visible and the
large basis images of high frequency components causes
mosquito noise for very low bit-rates. JPEG2000 tries to
solve these problems by introducing discrete wavelet trans-
forms (DWTs). The DWTs contribute not only to gain cod-
ing performances and realize the spatial scalability, but also
to reduce the blocking artifacts and the mosquito noise, be-
cause of their overlapping basis images and their different
sizes suitable for different frequency components.

It is well known that there is no 1-D 2-channel filter
bank which simultaneously satisfies all of the overlapping,
linear-phase and paranunitary (i.e. orthogonal) property [4].
It is also true for separable 2-D 2 × 2-channel filter banks,
which are employed in JPEG2000. Non-separable 2 × 2-
channel filter banks, however, can simultaneously satisfy all
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of the previous properties. As well, image and video pro-
cessing requires us to pay attention to frequency support of
original signals because it may be non-separable [5]. From
these backgrounds, M-D non-separable systems which si-
multaneously satisfy the orthogonal, overlapping and linear-
phase property have been considered by several researches
so far.

The authors also proposed non-separable transforms
by using 2 × 2-channel linear-phase paraunitary filter banks
(LPPUFBs) in the lattice structure as a previous work [6].
Furthermore, Lu Gan et al. showed the way of reducing
the number of parameters to be optimized while preserv-
ing the class [7]. Since the orthogonal, overlapping, and
linear-phase property are guaranteed, the lattice structure
is convenient in terms of design and implementation. Ad-
ditionally, we can construct 2 × 2-decomposition symmet-
ric orthogonal DWTs by hierarchically applying the lattice
structure. However, it has not been clarified how to design
DWTs with vanishing moments through the lattice structure.
Although Stanhill et al. exemplified a design procedure of
such DWTs [8], [9], no constraint on design parameters in
closed form has not been shown. For the 1-D case, the ar-
ticle [10] showed a design procedure of M-band orthogonal
symmetric wavelets with lattice structures of second-order
vanishing moments. In this work, it is shown that the con-
straints can be obtained in closed form of design parameters
for the 2×2-channel 2-D lattice structure by using the similar
approach to the 1-D lattice. Indeed, we design filter banks
with our new method, and through an experiment on image
coding, we verify the significance.

Organization of this paper is as follows: Section 2 re-
views the design method of LPPUFBs based on lattice struc-
ture. Section 3 derives the constraints on the second-order
vanishing moments for the lattice structure. Section 4 shows
the results of the optimal design, followed by conclusions in
Sect. 5.

2. Review of M-D Orthogonal Symmetric DWTs

In this section, we review M-D LPPUFBs based on a lat-
tice structure, which the authors have proposed as a previ-
ous work and then Lu Gan et al. improved. Then, orthogonal
symmetric non-separable DWTs are summarized.

It is well known that there is no 1-D 2-channel filter
bank which simultaneously satisfies the overlapping, linear-
phase and paranunitary (i.e. orthogonal) property [4]. This
limitation is taken over by 2-D 2 × 2-channel filter banks.
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Non-separable systems, however, allow us to design 2 × 2-
channel LPPUFBs with over lapping bases, which can si-
multaneously decompose a picture into vertical and horizon-
tal directions [6], [7], [9].

As a previous work, we have proposed a design pro-
cedure of M-D LPPUFBs based on a lattice structure [6].
Furthermore, Lu Gan et al. showed the way of reducing the
number of parameters to be optimized while preserving the
class [7]. Figure 1 shows a parallel structure of 2×2-channel
filter banks, where ↓M and ↑M are respectively the down-
sampler and upsampler with factor M =

(
2 0
0 2

)
. Hk�(z) and

Fk�(z) are respectively 2-D non-separable analysis and syn-
thesis filters. A lattice structure of the analysis part of 2× 2-
channel LPPUFBs is given in Fig. 2, where X(z) is input
signal, Yk(z) is the k-th subband signal, zd is the delay ele-
ment of d-th dimension, U{∅}0 and W{d}

n are arbitrary 2 × 2-
decomposition orthogonal matrices, and K is a scaling fac-
tor given by K = 2−(N0+N1). From the paraunitary property,
the impulse responses of synthesis filters Fk�(z) are given as
the 180◦-rotated version of the counterpart analysis filters
Hk�(z).

A polyphase matrix of a 2×2-channel LPPUFB is given
by

E(z0, z1) =

⎛⎜⎜⎜⎜⎜⎜⎝
N1∏

n1=1

R{1}n1
Q(z1)

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

N0∏
n0=1

R{0}n0
Q(z0)

⎞⎟⎟⎟⎟⎟⎟⎠ R{∅}0 E0,(1)

where
∏N

n=1 An = ANAN−1 · · ·A2A1, and

R{d}n =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
W{d}

n O2

O2 I2

)
, d ∈ {0, 1}

(
W{∅}

n O
O U{∅}n

)
, d = ∅

, (2)

Fig. 1 Parallel structure of 2 × 2-channel LPPUFB.

Fig. 2 Lattice structure of 2 × 2-channel LPPUFB (analysis bank), where M =
(

2 0
0 2

)
, K is a scalling

factor, U{∅}0 and W{d}
n are orthogonal matrices.

Q(z) =
1
2

(
I2 I2

I2 −I2

) (
I2 O2

O2 z−1I2

) (
I2 I2

I2 −I2

)
, (3)

E0 =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4)

IN and ON denote the N × N identity and null matrices, re-
spectively.

Controlling W{d}
n and U{∅}0 , enables us to design filter

banks which can have various characteristics, while guaran-
teeing the orthogonal and symmetric property [6], [7]. The
resulting filters in the system will have 2(N0 +1)×2(N1 +1)
taps.

Our transform can construct the same multiresolution
analysis as one given by separable systems with 1-D 2-
channel filter banks. While the conventional 5/3 and 9/7
DWTs are biorthogonal transforms, our DWTs satisfy the
orthogonality, as well as the symmetric and overlapping
property.

3. Derivation of Constraints on the 2nd-Order Vanish-
ing Moments

In this section, we derive the constraints on the second-order
vanishing moments for the lattice structure.

3.1 Vanishing Moments of the 2-D DWTs

The article [8] describes the condition of vanishing moments
of 2-D non-separable DWTs.

The condition of the first-order vanishing moments is
given by

H00(z0, z1)|( z0
z1

)
∈
{(

1−1

)
,
(−1

1

)
,
(−1−1

)} = 0 (5)

and, that of the second-order vanishing moments is given by

∂

∂zd
H00(z0, z1)

∣∣∣∣∣( z0
z1

)
∈
{(

1−1

)
,
(−1

1

)
,
(−1−1

)} = 0,

d ∈ {0, 1}. (6)

The article [9] shows a design example of 2-D orthog-
onal symmetric DWTs with maximum vanishing moments.
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The design parameters, however, are not constrained di-
rectly and, thus it was difficult to design the filters system-
atically. The article [10] shows a design method of a lat-
tice structure for 1-D M-channel LPPUFBs with the second-
order vanishing moments. In this work, by using the similar
approach, we consider constraints of the second-order van-
ishing moments imposed for constructing 2-D LPPUFBs.

3.2 Constraints for 2-D Non-separable Lattice Structure

In the lattice structure shown in Fig. 2, the constraints on the
first-order vanishing moments in Eq. (5) is rewritten in terms
of the design parameters by

W{∅}T
0 =

⎛⎜⎜⎜⎜⎜⎜⎝
N1∏

n1=1

W{1}
n1

⎞⎟⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎜⎝

N0∏
n0=1

W{1}
n0

⎞⎟⎟⎟⎟⎟⎟⎠ (7)

[6]. As well, the constraints on the second-order vanishing
moments are derived by

CT
0

(
1
0

)
+

1
2

(
0
1

)
=

(
0
0

)
, (8)

CT
1

(
1
0

)
+

1
2

(
1
0

)
=

(
0
0

)
, (9)

where

C0 =

⎛⎜⎜⎜⎜⎜⎜⎝
N1∏

n1=1

W{1}
n1

⎞⎟⎟⎟⎟⎟⎟⎠ ·
N0∑

k0=1

⎛⎜⎜⎜⎜⎜⎜⎝
N0∏

n0=k0

W{0}
n0

⎞⎟⎟⎟⎟⎟⎟⎠ · U{∅}0 , (10)

C1 =

N1∑
k1=1

⎛⎜⎜⎜⎜⎜⎜⎝
N1∏

n1=k1

W{1}
n1

⎞⎟⎟⎟⎟⎟⎟⎠ · U{∅}0 . (11)

The above constraints are newly derived in this paper. In the
following section, let us detail the derivation.

3.3 Derivation of Constraints on the 2nd-Order Vanishing
Moments

In order to show the derivation process of the constraints in
Eqs. (8)–(11), let us begin with represent the lowpass filter
H00(z0, z1) in terms of the poly-phase matrix E(z0, z1). Then,
we obtain

H00(z0, z1) =
(
1 0 0 0

)
E(z2

0, z
2
1)d(z0, z1)

=
(
1 0 0 0

) ⎛⎜⎜⎜⎜⎜⎜⎝
N1∏

n1=1

R{1}n1
Q(z2

1)

⎞⎟⎟⎟⎟⎟⎟⎠

×
⎛⎜⎜⎜⎜⎜⎜⎝

N0∏
n0=1

R{0}n0
Q(z2

0)

⎞⎟⎟⎟⎟⎟⎟⎠ R{∅}0 E0d(z0, z1), (12)

where

d(z0, z1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
z−1

0

z−1
1

z−1
0 z−1

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As well, the partial derivatives with respect to each variable
are given by

∂

∂z0
H00(z0, z1)

=
(
1 0 0 0

) ⎛⎜⎜⎜⎜⎜⎜⎝
N1∏

n1=1

R{1}n1
Q(z2

1)

⎞⎟⎟⎟⎟⎟⎟⎠

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

N0∑
k0=1

⎛⎜⎜⎜⎜⎜⎜⎝
N0∏

n0=1

R{0}n0

∂δ[n0−k0]

∂zδ[n0−k0]
0

Q(z2
0)

⎞⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭

× R{∅}0 E0d(z0, z1)

+
(
1 0 0 0

) ⎛⎜⎜⎜⎜⎜⎜⎝
N1∏

n1=1

R{1}n1
Q(z2

1)

⎞⎟⎟⎟⎟⎟⎟⎠

×
⎛⎜⎜⎜⎜⎜⎜⎝

N0∏
n0=1

R{0}n0
Q(z2

0)

⎞⎟⎟⎟⎟⎟⎟⎠ R{∅}0 E0
∂

∂z0
d(z0, z1), (13)

∂

∂z1
H00(z0, z1)

=
(
1 0 0 0

)

×
⎧⎪⎪⎨⎪⎪⎩

N1∑
k1=1

⎛⎜⎜⎜⎜⎜⎜⎝
N1∏

n1=1

R{1}n1

∂δ[n1−k1]

∂zδ[n1−k1]
1

Q(z2
1)

⎞⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

×
⎛⎜⎜⎜⎜⎜⎜⎝

N0∏
n0=1

R{0}n0
Q(z2

0)

⎞⎟⎟⎟⎟⎟⎟⎠ R{∅}0 E0d(z0, z1)

+
(
1 0 0 0

) ⎛⎜⎜⎜⎜⎜⎜⎝
N1∏

n1=1

R{1}n1
Q(z2

1)

⎞⎟⎟⎟⎟⎟⎟⎠

×
⎛⎜⎜⎜⎜⎜⎜⎝

N0∏
n0=1

R{0}n0
Q(z2

0)

⎞⎟⎟⎟⎟⎟⎟⎠ R{∅}0 E0
∂

∂z1
d(z0, z1) (14)

respectively, where δ[n] is the sequence which equals one
when n = 0, and zero otherwise.

Let ζd ∈ {−1, 1}. Substituting zd = ζd, we can simplify
Eqs. (13) and (14) to

∂

∂z0
H00(z0, z1)

∣∣∣∣∣( z0
z1

)
=

(
ζ0
ζ1

)

= −ζ0
(
1 0

) (
N0I −C0

)
E0d(ζ0, ζ1) − 1

2
ζ2

0 (1 + ζ1),

(15)

∂

∂z1
H00(z0, z1)

∣∣∣∣∣( z0
z1

)
=

(
ζ0
ζ1

)

= −ζ1
(
1 0

) (
N1I −C1

)
E0d(ζ0, ζ1) − 1

2
ζ2

1 (1 + ζ0),

(16)

respectively, where we used some properties shown in Ap-
pendix A and the constraint of the first-order vanishing mo-
ments in Eq. (7) for simplifying the second term in the right-
hand side.

Finally, using the following relations:
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E0d(1,−1) = 2
(
0 0 1 0

)T
,

E0d(−1, 1) = 2
(
0 0 0 1

)T
,

E0d(−1,−1) = 2
(
0 1 0 0

)T
,

the condition in Eq. (6) is reduced to

(
1 0

)
C0

(
1
0

)
= 0, (17)

(
1 0

)
C0

(
0
1

)
+

1
2
= 0, (18)

(
1 0

)
C1

(
1
0

)
+

1
2
= 0, (19)

(
1 0

)
C1

(
0
1

)
= 0. (20)

Expressing the above relations together, the constraints in
Eqs. (8) and (9) are given.

3.4 Number of Control Parameters

The number of parameters are discussed in the followings.
The polyphase matrix of order (N0,N1) is composed of N0+

N1 + 2 orthonormal matrices of size 2 × 2. Thus, the total
number of control parameters are N0 +N1 + 2 in the form of
rotation angles. Let us see how the second-order vanishing
moment constraints reduce the number of design parameters
and the number becomes N0 + N1 − 3. Our discussion here
temporally restricts for all orthonormal matrices to be in the
following rotation form:

T[θ] =

(
cos θ − sin θ
sin θ cos θ

)
. (21)

3.4.1 Triangle Analysis [10]

Let a = ( 1, 0 )T and o = ( 0, 0 )T . Then, Eqs. (8) and (9) can
be rewritten as follows:

ad +

Nd−1∑
kd=1

Nd−kd∏
nd=1

W{d}
nd

ad

+
1
2

U{∅}0 V{d}W{d}
2 W{d}

1 ad = o, d ∈ (0, 1), (22)

where

a0 =

⎛⎜⎜⎜⎜⎜⎜⎝
N0∏

n0=1

W{0}
n0

⎞⎟⎟⎟⎟⎟⎟⎠
T ⎛⎜⎜⎜⎜⎜⎜⎝

N1∏
n1=1

W{1}
n1

⎞⎟⎟⎟⎟⎟⎟⎠
T

a, (23)

a1 =

⎛⎜⎜⎜⎜⎜⎜⎝
N1∏

n1=1

W{1}
n1

⎞⎟⎟⎟⎟⎟⎟⎠
T

a, (24)

V{0} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T
[
π

2

] N1∏
n1=1

W{1}
n1
, N0 ≤ 2

T
[
π

2

] N1∏
n1=1

W{1}
n1

N0∏
n0=3

W{0}
n0
, N0 > 2

, (25)

V{1} =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
I, N1 ≤ 2,
N1∏

n1=3

W{1}
n1
, N1 > 2 . (26)

Note that ‖a0‖ = ‖a1‖ = ‖a‖ = 1 since W{d}
nd

are all
orthonormal. Equation (22) enables us to make a similar
discussion to the article [10] with regard to the second-order
vanishing moment conditions.

It is verified that Eq. (22) never hold for N0,N1 < 2
from the vector lengths [10]. Thus, the filter sizes should be
more than 2(N0 + 1) × 2(N1 + 1) = 6 × 6.

3.4.2 Example of Minimal Support Case

For minimal support case, i.e. N0 = N1 = 2, we have
three vectors x{d}1 = ad, x{d}2 = W{d}

1 x{d}1 and x{d}3 =

U{∅}0 V{d}W{d}
2 x{d}2 /2 in Eq. (22) for each d ∈ {0, 1}, where

‖x{d}1 ‖ = ‖x{d}2 ‖ = 1 and ‖x{d}3 ‖ = 1/2. These vectors should

constitute a bilateral triangle. The rotation angles from x{d}1

to x{d}2 and from x{d}2 to x{d}3 are respectively given as follows:

θ{d}1→2 = (−1)σd

⎧⎪⎪⎨⎪⎪⎩π − 2 sin−1

⎛⎜⎜⎜⎜⎜⎝ ‖x
{d}
3 ‖

2‖x{d}1 ‖

⎞⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

= (−1)σd

{
π − 2 sin−1

(
1
4

)}
,

θ{d}2→3 = (−1)σd

⎧⎪⎪⎨⎪⎪⎩π − cos−1

⎛⎜⎜⎜⎜⎜⎝ ‖x
{d}
3 ‖

2‖x{d}1 ‖

⎞⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

= (−1)σd

{
π − cos−1

(
1
4

)}
,

where σd ∈ (0, 1) is the sign, which controls the rotational
direction.

Thus, matrices W{0}
1 and W{1}

1 are determined as

W{d}
1 = T

[
θ{d}1→2

]
, d ∈ (0, 1). (27)

From the relation x{d}3 = ‖x{d}3 ‖T[θ{d}2→3]x{d}2 , we see that

W{d}
2 is also imposed the following condition:

W{d}
2 = V{d}T U{∅}0

T
T

[
θ{d}2→3

]
, d ∈ (0, 1). (28)

Since V{1} = I and V{0} = T[π/2]W{1}
2 W{1}

1 , W{1}
2 and W{1}

2
are determined in the following order:

W{1}
2 = U{∅}0

T
T

[
θ{1}2→3

]
, (29)

W{0}
2 =W{1}

1

T
W{1}

2

T
T

[
π

2

]T
U{∅}0

T
T

[
θ{0}2→3

]
. (30)

Note that W{∅}
0 is fixed for the first-order vanishing moment.

Therefore, we are allowed to control only U{∅}0 .

3.4.3 Case for N0,N1 > 2

For N0,N1 > 2, Eq. (22) can be seen as a triangle consisting



792
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.3 MARCH 2009

of the three vectors defined by

x{d}1 = ad, (31)

x{d}2 =W{d}
1 x{d}1 , (32)

and

x{d}3 =

⎛⎜⎜⎜⎜⎜⎜⎝I +
Nd−3∑
kd=1

Nd−kd∏
nd=3

W{d}
nd
+

1
2

U{∅}0 V{d}
⎞⎟⎟⎟⎟⎟⎟⎠ W{d}

2 x{d}2

=W{d}
2

⎛⎜⎜⎜⎜⎜⎜⎝I +
Nd−3∑
kd=1

Nd−kd∏
nd=3

W{d}
nd
+

1
2

U{∅}0 V{d}
⎞⎟⎟⎟⎟⎟⎟⎠ x{d}2 . (33)

The last equation uses the fact that the adopted orthonormal
matrices are all in the form in Eq. (21).

The length of vector x{d}3 varies and is given by

‖x{d}3 ‖ =
∥∥∥∥∥∥∥
⎛⎜⎜⎜⎜⎜⎜⎝I +

Nd−3∑
kd=1

Nd−kd∏
nd=3

W{d}
nd
+

1
2

U{∅}0 V{d}
⎞⎟⎟⎟⎟⎟⎟⎠ a

∥∥∥∥∥∥∥ , (34)

where we used the fact that x{d}2 is a rotation of a. Equiva-
lently, we have

‖x{d}3 ‖ =
√

cd(Θ)2 + sd(Θ)2, (35)

where Θ is a set of the rotation angle parameters and

cd(Θ) = 1 +
Nd−3∑
kd=1

cos

⎛⎜⎜⎜⎜⎜⎜⎝
Nd−kd∑
nd=3

θ{d}nd

⎞⎟⎟⎟⎟⎟⎟⎠ + 1
2

cos
(
θ{∅}U + θ

{d}
V

)
,

(36)

sd(Θ) =
Nd−3∑
kd=1

sin

⎛⎜⎜⎜⎜⎜⎜⎝
Nd−kd∑
nd=3

θ{d}nd

⎞⎟⎟⎟⎟⎟⎟⎠ + 1
2

sin
(
θ{∅}U + θ

{d}
V

)
, (37)

where θ{d}nd
and θ{∅}U are the rotation angles of matrices W{d}

nd

and U{∅}0 , respectively. We also define

θ{1}V =

N1∑
n1=3

θ{1}n1

θ{0}V =
π

2
+

N1∑
n1=1

θ{1}n1
+

N0∑
n0=3

θ{0}n0
.

Note that ‖x{d}3 ‖ is independent of the choice of W{d}
1

and W{d}
2 , which will be fixed later.

It here should be noted that the length of vector x{d}3
must satisfy the following triangle inequality:

0 ≤ ‖x{d}3 ‖ ≤ ‖x{d}1 ‖ + ‖x{d}2 ‖ = 2. (38)

For Nd = 3, this condition is always satisfied with ‖x{d}3 ‖ ≤
3/2, whereas the free parameters should be constrained to
hold this condition for Nd > 3 [10].

Let U{∅}0 and W{d}
nd

for nd = 3, 4, · · · ,Nd, d ∈ (0, 1) be
free to be chosen. The design process starts to calculate the
length ‖x{1}3 ‖ for direction d = 1 then proceed to direction

d = 0 after the process for d = 1 is done. Provided the
condition in Eq. (38) holds, we can solve the rotation angles
among the vectors as

θ{d}1→2 = (−1)σd
{
π − 2 sin−1

(
‖x{d}3 ‖/2

)}
,

θ{d}2→3 = (−1)σd
{
π − cos−1

(
‖x{d}3 ‖/2

)}
.

From Eqs. (31) and (32), matrix W{d}
1 is fixed as

W{d}
1 = T

[
θ{d}1→2

]
, d ∈ (0, 1). (39)

Thus, the number of free parameters is reduced.
From the relation x{d}3 = ‖x{d}3 ‖T[θ{d}2→3]x{d}2 with

Eq. (32), we have

W{d}
2 =

1

‖x{d}3 ‖

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩I +

Nd−3∑
kd=1

Nd−kd∏
nd=3

W{d}
nd
+

1
2

U{∅}0 V{d}
⎫⎪⎪⎪⎬⎪⎪⎪⎭

T

T
[
θ{d}2→3

]
,

d ∈ (0, 1), (40)

or equivalently

θ{d}2 = − tan−1 sd(Θ)
cd(Θ)

+ θ2→3, d ∈ (0, 1), (41)

where we used the fact that a linear combination of rota-
tion matrices is represented by a scaled rotation matrix. Al-
though ‖x{0}3 ‖ depends on matrices W{1}

1 and W{1}
2 , it is solv-

able after the process for d = 1.
In summary, the first-order vanishing moment con-

straint in Eq. (7) reduces one parameter since matrix W{d}
0

depends on other matrices, where the angle θ{∅}W is imposed
to be θ{∅}W = −

∑
d∈(0,1)

∑Nd

nd=1 θ
{d}
nd

. Additionally, the second-
order vanishing moment constraint reduces four parameters
for matrices W{1}

1 , W{1}
2 , W{0}

1 and W{0}
2 . In total, the num-

ber of parameters to be freely chosen results in N0 + N1 − 3.
For N0,N1 > 3, however, we have to take special care of the
lengths of vectors x{0}3 and x{1}3 . They must be constrained to
be shorter than two. Under this constraint, we are allowed
to control U{∅}0 and W{d}

nd
for nd = 3, 4, · · · ,Nd, d ∈ (0, 1).

3.5 Alternative Parameterization with Flipping

The previous discussion restricts all controllable matrices to
be in the rotation form. Experimentally, other forms of pa-
rameterization is often favorable. We here briefly summa-
rize an alternative parameterization.

It is allowed to rewrite V{0}0 for N0 ≥ 2 in Eq. (25) as

V{0} = J
N1∏

n1=1

W{1}
n1

N0∏
n0=3

W{0}
n0
, (42)

where J is the 2 × 2 counter identity matrix, i.e.
(

0 1
1 0

)
, and

used instead of T[π/2]. Note that matrix J is orthonormal,
but not rotational as in Eq. (21).
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Let us parameterize W{d}
Nd

as JW
{d}
Nd

with a rotation ma-

trix W
{d}
Nd

. Then, we can modify Eqs. (25) and (26) as

V{1} = JW
{1}
N1

N1−1∏
n1=3

W{1}
n1
,

V{0} = J2W
{1}
N1

N1−1∏
n1=1

W{1}
n1

JW
{0}
N0

N0−1∏
n0=3

W{0}
n0

= J

⎛⎜⎜⎜⎜⎜⎜⎝W{1}
N1

N1−1∏
n1=1

W{1}
n1

⎞⎟⎟⎟⎟⎟⎟⎠
T

W
{0}
N0

N0−1∏
n0=3

W{0}
n0
,

where the relation JT[θ]J = T[θ]T is used.

It is easy to see that if U{∅}0 is parameterized as U
{∅}
0 J

with a rotation matrix U
{∅}
0 , matrix J vanishes from Eq. (33).

As a result, the same discussion follows as the previous sub-
section, except that θ{∅}U + θ

{d}
V in Eqs. (36) and (37) is given

by

θ{∅}U + θ
{1}
V = θ

{∅}
U + θ

{1}
N1
+

N1−1∑
n1=3

θ{1}n1
,

θ{∅}U + θ
{0}
V = θ

{∅}
U −

⎛⎜⎜⎜⎜⎜⎜⎝θ{1}N1
+

N1−1∑
n1=1

θ{1}n1

⎞⎟⎟⎟⎟⎟⎟⎠ + θ{0}N0
+

N0−1∑
n0=3

θ{0}n0
,

where θ
{∅}
U , θ

{0}
N0

and θ
{1}
N1

, are the rotation angles of matrices

U
{∅}
0 . W

{0}
N0

. and W
{1}
N1

, respectively. Note that the first-order

vanishing moment imposes the angle θ{∅}W of matrix W{∅}
0 to

be θ{∅}W =

(
θ
{1}
N1
+

∑N1−1
n1=1 θ

{1}
n1

)
−

(
θ
{0}
N0
+

∑N0−1
n0=1 θ

{0}
n0

)
. The number

of parameters still remains N0 + N1 − 3.

4. Design Examples

In this section, we start with introducing the autocorrela-
tion function (acf). Using the acf, we optimize some filter
banks in terms of coding gain and show design examples,
which have the first or second-order vanishing moments. In
order to verify the significance of the vanishing moments,
we compare frequency responses. Moreover, we confirm
the symmetry from basis images. Through experiments, we
compare the coding performance.

4.1 Autocorrelation Function (acf)

Let us define x[n] as a pixel value at a location n, where n is
a 2-D integer vector, n ∈ Z2. Then let us define a continuous
vector p = (p0, p1)T ∈ R2, and assume that pixel x[n] is
sampled as x(p)|p=n from a 2-D continuous function x(p).

A natural image x(p) can often be modeled as a sta-
tional, zero-mean 2-D continuous-space random field x̃(p)
of which acf

Rx̃x̃(τ) = E
[
x̃(p + τ)x̃(p)

]
(43)

doesn’t depend on the location p but only distance τ ∈ R2.

Fig. 3 Frequency responses of the minimal support filters with the 2nd-
order vanishing moments of size 6 × 6 taps, ρ0 = ρ1 = 0.95.

Fig. 4 Basis images of minimal support filters with the 2nd-order
vanishing moments of size 6 × 6 taps, ρ0 = ρ1 = 0.95.

In our design examples of M-D filter banks, the follow-
ing separable model is assumed:

Rx̃x̃(τ) = ρ|τ0 |0 ρ
|τ1 |
1 , (44)

where |ρ0|, |ρ1| < 1 and τ0 and τ1 are elements of distance τ.

4.2 Design Examples and Coding Application

In the following design examples, the filter banks are op-
timized for maximizing coding gain, for the separable acf
model in Eq. (44) with ρ0 = ρ1 = 0.95. We employed dif-
ferent optimization methods for the case of 1st-order and
2nd-order vanishing moments. For the 1st-order constraints
or the 2nd-order case with N0,N1 < 4, we employed the
unconstrained non-linear optimization function ‘fminunc’
in MATLAB R2008a. On the other hand, for the 2nd-
order case with N0,N1 > 3, we employed the constrained
non-linear optimization function ‘fmincon’ in MATLAB
R2008a. For every case, the best result among several trials
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Fig. 5 Frequency responses of the designed filters with the 2nd-order
vanishing moments of size 8 × 8 taps, ρ0 = ρ1 = 0.95.

Fig. 6 Basis images of designed filters with the 2nd-order vanishing mo-
ments of size 8 × 8 taps, ρ0 = ρ1 = 0.95.

Fig. 7 Frequency responses of the designed filters with the 2nd-order
vanishing moments of size 12 × 12 taps, ρ0 = ρ1 = 0.95.

Fig. 8 Frequency responses of the designed filters with the 1st-order
vanishing moments of size 12 × 12 taps, ρ0 = ρ1 = 0.95.

Fig. 9 Basis images of designed filters with the 2nd-order vanishing
moments of size 12 × 12 taps, ρ0 = ρ1 = 0.95.

Fig. 10 Basis images of designed filters with the 1st-order vanishing
moments of size 12 × 12 taps, ρ0 = ρ1 = 0.95.
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of optimization process with randomly initialized parame-
ters is selected to be shown.

Figures 3 and 4 are frequency responses and basis im-
ages of the minimal support design of size 6 × 6. As well,
Figs. 5 and 6 show those of size 8 × 8.

Figure 7 shows the frequency responses of the re-
sulting analysis filters of size 12 × 12 taps designed with
the constraint of the second-order vanishing moments for
ρ0 = ρ1 = 0.95, where the non-linear constraint functions
‖x{0}3 ‖ < 2 and ‖x{1}3 ‖ < 2 are used for the constrained opti-
mization process.

H00(z) and H01(z) became a lowpass and highpass fil-

Table 1 Coding gains of design examples.

Vm1 Vm2
Coding Gain σ0 σ1 flip Coding Gain

NS DWT(6 × 6 taps) 10.18 0 1 off 8.44
NS DWT(8 × 8 taps) 10.72 1 1 on 10.06

NS DWT(10 × 10 taps) 11.57 0 1 on 11.45
NS DWT(12 × 12 taps) 11.60 0 0 on 11.52
NS DWT(14 × 14 taps) 11.65 1 0 on 11.60

Fig. 11 Experimental results of image coding (5-level DWT, 0.5[bpp]).

ter, respectively. From the paraunitary property, the im-
pulse responses of the synthesis filters Fk�(z) are given as
the 180◦-rotated version of these analysis filters Hk�(z). Fig-
ure 8 shows an example with only the first-order vanishing
moments of which size is 12 × 12 for ρ0 = ρ1 = 0.95. It
is observed that the lowpass filter H00(z) shown in Fig. 7 is
smoother than that in Fig. 8 at every aliasing frequency point
as expected.

As well, we show basis images of designed filter banks.
Figures 9 and 10 correspond to Figs. 7 and 8, respectively. It
can be confirmed that the filter banks satisfy the symmetry.

The coding gains of filter banks are shown in the Ta-
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Fig. 12 Experimental results of image coding (5-level DWT, 0.5[bpp]).

ble 1. For all design cases, the coding gain of filter banks
with the 2nd-order vanishing moments shows lower value
than that of the 1st-order one. It is natural because the con-
straints reduce the number of free parameters. Although the
filters in Fig. 7 is imposed the second-order vanishing mo-
ments, the coding gain approaches to that of the filters only
with the first-order vanishing moments.

4.3 Application to Image Coding

In order to verify the significance of the second-order van-
ishing moments, we show some results of image coding ex-
periments.

In the experiments, we used five-level DWTs, and ap-
ply them to coding of Lena image (512 × 512, 8-bit, gray-
scale) and Barbara image (320 × 240, 8-bit, gray-scale). In
the transform domain, we applied the entropy coded scalar
quantization (ECSQ) [1]. Figure 11 (a) shows part of the
original Lena image. Reconstructed images are shown in
Figs. 11 (b)(c) and (d), where subband quantization at aver-
age 0.5[bpp] is applied. Figures 11 (b) and (c) are obtained

Table 2 PSNR of reconstructed pictures with subband quantization at
average 0.5[bpp], level 5.

Image Lena Barbara
Vanishing Moment Vm1 Vm2 Vm1 Vm2
NS DWT(6 × 6taps) 30.50 31.25 24.77 24.81
NS DWT(8 × 8taps) 31.53 31.98 25.38 25.76

NS DWT(10 × 10taps) 32.46 32.38 25.75 25.09
NS DWT(12 × 12taps) 32.31 32.52 25.44 25.86
NS DWT(14 × 14taps) 32.65 32.50 25.97 25.16

5/3 DWT 31.89 24.99
9/7 DWT 33.12 26.22

through 5-level DWTs with the filter banks corresponding
to Figs. 7 and 8, respectively. For reference, the result of 9/7
DWT is shown in Fig. 11(d). Comparing Figs. 11(b) and (c),
some structural artifacts are clearly noticed in (c), whereas
they are suppressed in (b). The experimental results of Bar-
bara image are shown in Fig. 12. As well as Lena in Fig. 11,
the structural artifacts in (c) are suppressed in (b). PSNR re-
sults of our designed filter banks with the 5/3 and 9/7 DWT
are summarized in Table 2. Almost all of results of the fil-
ter banks with the 2nd-order vanishing moments work better
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than 1st-order. The second-order vanishing moments make
the smoothness of reconstructed images better. However,
the performance of our designed filter banks is inferior to
that of 9/7 DWT. We consider that our filter banks require
more vanishing moments or directional characteristics.

5. Conclusions

In this paper, a design method of 2-D orthogonal symmet-
ric wavelets was proposed by using a lattice structure for
M-D LPPUFB, which the authors have proposed before and
Lu Gan et al. have modified later. The derivation process
of the constraints on the second-order vanishing moments
was shown and some design examples obtained through op-
timization with the constraints were shown. By using the
designed filter banks, we verified the significance through
experimental results of image coding. In future, we will
consider increasing the order of vanishing moments and in-
vestigate the filter directionality.
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Appendix A: Properties of Matrices in Sect. 3.3

The followings summarize some properties of matrices ap-
peared in Sect. 3.3.

Q(z2)|z=±1 = I4. (A· 1)

∂

∂z
Q(z2) = z−3

(−I2 I2

I2 −I2

)
. (A· 2)

∂

∂z0
d(z0, z1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
−z−2

0
0

−z−2
0 z−1

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (A· 3)

∂

∂z1
d(z0, z1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
−z−2

1

−z−1
0 z−2

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A· 4)
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