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SUMMARY In multi-hop wireless networks, since source and destina-
tion nodes usually have some candidate paths between them, communica-
tion quality depends on the selection of a path from these candidates. For
network design, characterizing the best path is important. To do this, in [1],
[2], we used expected transmission count (ETX) as a metric of communi-
cation quality and showed that the best path for ETX is modeled by a path
that consists of links whose lengths are close to each other in static one-
dimensional multi-hop networks with a condition that the ETX function
of a link is a convex monotonically increasing function. By using the re-
sults of this characterization, a minimum route ETX can be approximately
computed in a one-dimensional random network. However, other metrics
fail to satisfy the above condition, like medium time metric (MTM). In this
paper, we use MTM as a metric of communication quality and show that
we cannot directly apply the results of [1], [2] to the characterization of the
best path for MTM and the computation of minimum route MTM. In this
paper, we characterize the path that minimizes route MTM in a different
manner from [1], [2] and propose a new approximate method suitable for
the computation of minimum route MTM.
key words: multi-hop wireless networks, medium time metric, theoretical
analysis

1. Introduction

In multi-hop wireless networks [3], [4], source node S can
send a packet to destination node D through a multi-hop path
consisting of other nodes. Since there may be several can-
didates for multi-hop paths that connect S and D, choosing
a path with high quality from these candidates is important.
Communication quality can be evaluated by various metrics,
including per-hop round trip time (RTT) [5], expected trans-
mission count (ETX) [6], medium time metric (MTM) [7],
and expected transmission time metric (ETT) [8]. For exam-
ple, the ETX of a link (link ETX) is defined as the expected
number of transmissions required to successfully deliver a
packet through the link, and the ETX of a path (route ETX)
is defined as the sum of the ETXs of all links in the path.
f1(z), f2(z), and f3(z) in Fig. 1 are examples of link ETX
functions. Here, f1(z) is derived by assuming mica2 mote as
a wireless node. As explained in [1], [2], the link ETX func-
tion can be modeled as a convex monotonically increasing
function of the length of a link. MTM, which is used for a
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Fig. 1 Examples of ETX functions.

Table 1 Relation between transmission rate, maximum length of a link,
and link MTM [7].

Transmission Maximum length Link MTM
rate [Mbps] of a link [m] [μsec]

11.0 26.3 2542
5.5 35.1 3673
2.0 44.2 7634
1.0 52.5 13858

different purpose from ETX, is a metric for multi-rate en-
vironments while ETX is for single-rate environments. The
MTM of a link (link MTM) is defined as the medium time
consumed in the link to send a packet through the link, and
the MTM of a path (route MTM) is defined as the sum of
the MTMs of all links in the path. For example, for IEEE
802.11b, we can use four transmission rates: 1 M, 2 M, 5.5
M, and 11 Mbps. In [7], the authors evaluated the maxi-
mum length of a link and link MTM for each rate. Table 1
shows these relations. From this table, we can represent link
MTM as a nondecreasing step-like function of the length of
a link, assuming that we always use the highest rate among
the available rates. f4(z), f5(z), and f6(z) in Fig. 2 are exam-
ples of the MTM functions. f4(z) is derived from the relation
in Table 1. f5(z) and f6(z) are defined as nondecreasing step-
like functions that have characteristics different from f4(z) as
will be explained in Sect. 4.2. In this paper, we call a path
that minimizes its ETX or its MTM the best path. We call
the ETX of the best path minimum route ETX and the MTM
of the best path minimum route MTM.

For the design of networks, characterizing the best path
is important; however, if nodes are randomly distributed, it
is difficult to theoretically identify the best path and pre-
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cisely analyze minimum routes ETX and MTM. In [2], we
considered a static one-dimensional network where nodes
are located at constant intervals and mathematically showed
that the best path for ETX consists of links whose lengths
are close to each other in the network. Also in [1], we
considered a static one-dimensional network where nodes
are randomly distributed and showed that route ETX is ap-
proximately minimized by making the length of all links in
the path close to a certain constant. Based on this result,
we theoretically analyzed the mean value of minimum route
ETX in a one-dimensional random network in [1]. Further-
more, in [2], we characterized the best path for ETX in two-
dimensional lattice and random networks. In this charac-
terization, we utilized the above property indicating that the
best path for ETX consists of links whose lengths are close
to each other in one-dimensional networks. However, these
analyses in [1], [2] assume that a link ETX function is a con-
vex monotonically increasing function, so the same results
cannot always be applied to the analysis of minimum route
MTM, since a link MTM function is not always a convex
monotonically increasing function, as shown in the above
example. In fact, the best path for MTM can consist of
links whose lengths are not close to each other, as shown
in Sect. 3.

With these things as background, in this paper, we char-
acterize the best path for MTM in a static one-dimensional
network where nodes are randomly distributed as the first
step of characterization of the best path for MTM. For the
characterization, we consider two policies for path-selection
to approximate the best path. For Policy 1, we determine
a reference length and construct a path using links whose
lengths are close to the reference length. This policy was
used to approximate the best path for ETX in [1]. Policy 2
constructs a path by selecting links whose MTM per length
is minimized. We compare the characterization of the best
path for MTM using Policy 2 with Policy 1. Through the
above comparisons by theoretical considerations and simu-
lation results, we show that Policy 2 can approximate the
best path better than Policy 1 while MTM is used. We also
show how to theoretically compute the mean value of route
MTM for Policy 2. Finally, we show that this mean value
well approximates the mean value of minimum route MTM
in a one-dimensional random network.

Fig. 2 Examples of MTM functions.

The rest of this paper is organized as follows. In Sect. 2,
we explain the definitions and assumptions used in this pa-
per. In Sect. 3, we explain the differences between the con-
structions of the best paths for ETX and MTM in a one-
dimensional network where nodes are located at constant
intervals. In Sect. 4, we consider two path-selection poli-
cies and model the best path for MTM with them in a one-
dimensional random network. In Sect. 5, we theoretically
analyze the mean value of minimum route MTM using Pol-
icy 2. Sect. 6 concludes this paper.

2. Definitions and Assumptions

In this paper, we characterize the best path for MTM in static
one-dimensional multi-hop networks. Let S and D be source
and destination nodes, respectively. Let L be the distance
between S and D. Suppose that N nodes are distributed be-
tween S and D. Denote the N + 2 nodes including S and
D by v0, v1, ..., vN+1, where v0 = S and vN+1 = D. For
i = 0, 1, ...,N + 1, let Xi be the coordinate of vi. Suppose
that X0 = 0 ≤ X1 ≤ ... ≤ XN+1 = L. In this paper, we con-
sider two kinds of networks: a one-dimensional regular and
a one-dimensional random. In the regular network, nodes
are located at constant intervals with distance a, where a is
a positive real number and L

a is an integer. On the other
hand, in the random network, nodes are distributed based on
a Poisson process with intensity λ. Figures 3 and 4 show
examples of these networks. Let d be the maximum trans-
mitting range. Two nodes can communicate with each other
if and only if the distance between them is not greater than
d. Let u(z) be ETX or MTM of a link with length z. As-
sume that u(z) is a convex monotonically increasing func-
tion where ETX is used as a metric, and also assume that
u(z) is a nondecreasing step-like function, where MTM is
used as a metric. Let R be the set of all paths between S and
D. Let U(r) be route ETX or route MTM of path r ∈ R. Let
rO be the best path. Minimum routes ETX and MTM are
represented as U(rO). Define Optimum Routing as a rout-
ing method that minimizes routes ETX or MTM. Also, we
define d0 as the value of z to minimize u(z)

z because d0 is an
important parameter to characterize rO.

Fig. 3 One-dimensional regular network.

Fig. 4 One-dimensional random network.
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Fig. 5 Examples of best paths for ETX, where a = 5.25 m, d = 10a =
52.5 m, and L = 19a = 99.75 m.

3. The Best Path in a One-Dimensional Regular Net-
work

In this section, we briefly explain the characterization of the
best path for ETX in the regular network in [2] and show that
this characterization cannot be always applied for MTMs.

In [2], we proved that if u(z) is a convex monotonically
increasing function, then there are at most two kinds of link
lengths in the best path, and the difference between them is
a in a one-dimensional regular network. This means that
the best path for ETX consists of links whose lengths are
close to each other. Figures 5(a), (b), and (c) show the best
path for link ETX functions f1(z), f2(z), and f3(z) in Fig. 1,
respectively, where a = 5.25 m, d = 10a = 52.5 m, and
L = 19a = 99.75 m. In these figures, we confirmed that the
best paths satisfy the above condition; the difference of the
link length between any pair of links included in the best
path is always less than or equal to a. We also proved in
[2] that if the number of hops is given, then only one path
satisfies the above condition except for the difference of the
order of links. Specifically, if the number of hops is k, then
the path consists of k− L

a+k
⌊

L
ka

⌋
links with lengths

⌊
L
ka

⌋
a and

L
a−k
⌊

L
ka

⌋
links with lengths

⌊
L
ka

⌋
a+a. Clearly, the number of

hops of the best path is not greater than L
a ; therefore, we can

limit the best path candidates to at most L
a paths only under

the condition that u(z) is a convex monotonically increasing
function. From this property, we can easily characterize the
best path for ETX in a one-dimensional regular network.
Furthermore, in [1], we showed that an approximate method
called Adjustable Routing, which constructs a path in which
the length of each link is as close to a reference length as
possible, well describes Optimum Routing even in a one-
dimensional random network. This fact is supported by the
above property in a regular network.

On the other hand, we have the following property:

Property 1. If u(z) is a nondecreasing step-like function,
then for any path r, there exists u(z) such that r = rO.

The proof is provided in Appendix A. This property means
that the difference of the link length between any pair of
links in the best path is not always less than or equal to a if

Fig. 6 Examples of best paths for MTM, where a = 5.25 m, d = 10a =
52.5 m, and L = 19a = 99.75 m.

a nondecreasing step-like function is used like u(z). Fig-
ures 6(a), (b), and (c) show the best path for link MTM
functions f4(z), f5(z), and f6(z) in Fig. 2, respectively, where
a = 5.25 m, d = 10a = 52.5 m, and L = 19a = 99.75 m.
These paths are algorithmically calculated by the Dijkstra
algorithm [9], which solves shortest path problems. Al-
though the difference between the link lengths is not longer
than a for f4(z), it is sometimes greater than a for f5(z) and
f6(z). For these reasons, Adjustable Routing is not an appro-
priate method to approximate Optimum Routing if MTM is
used, so we need another way to characterize the best path
for MTM. Hence, in the following section, we define a new
policy called Policy 2 to approximate Optimum Routing
while the policy used in Adjustable Routing is called Pol-
icy 1, and compare the approximate performances of these
policies.

4. Characterization of the Best Path for MTM in a
One-Dimensional Random Network

4.1 Policies 1 and 2

Policy 1 is the same as the Adjustable Routing mentioned
above. It makes the lengths of all links in the path close to
ds, which is a reference link length. Policy 1 selects a path
as follows:

Policy 1: Let rP1 be the path selected by Policy 1. Deter-
mine constant ds from interval [0, d]. For i = 0, 1, ...,N,
let ti be the number of nodes in interval (Xi, Xi + ds].
Suppose that vi is S or a relay node selected by this
policy. If ti ≥ 1, vi+ti is selected as the next relay node
of vi, and vi+1 is selected as the next relay node of vi if
ti = 0.

Policy 2 makes link MTM per link length as small as possi-
ble for every link in the path as follows:

Policy 2: Let rP2 be the path selected by Policy 2. For
i = 0, 1, ...,N, let t′i be the number of nodes in interval
(Xi, Xi+d]. Suppose that vi is S or a relay node selected
by this policy. For integer m′ = argmin

i+1≤m≤i+t′i

u(Xm−Xi)
Xm−Xi

, vm′ is

selected as the next relay node of vi.
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4.2 Properties of Policies 1 and 2

In this subsection, we explain that Policy 2 is expected to
approximate Optimum Routing better than Policy 1 if u(z)
is a nondecreasing step-like function because MTM is used.
For real number c ≥ 1, we define the set of positive real
numbers I(c) ⊆ [0, d] as follows:

I(c) =

{
z ∈ [0, d]

∣∣∣∣∣u(z) ≤ c
u(d0)

d0
z

}
. (1)

I(c) monotonically increases with c. If c1 ≤ c2, then
I(c1) ⊆ I(c2). Also, I(c) is represented as the union of
some intervals. Let η(c) be the number of intervals in I(c).
Figures 7, 8, 9, and 10 show the relations between I(c)
and c for f1(z), f4(z), f5(z), and f6(z), respectively, where
d = 52.5 m. In these figures, the horizontal axis is c, and
the vertical axis means z ∈ [0, d]. The gray region is the
set of (c, z) such that z ∈ I(c), and the white region is the
set of (c, z) such that z � I(c). For example, if c = 2 in
Fig. 8, then I(c) consists of the union of the two intervals
of z, namely, [z1, z2] and [z3, z4], and does not include three
intervals [0, z1), (z2, z3), and (z4, 52.5], where z1 = 13.15 m,
z2 = 35.1 m, z3 =

26.3×7634
2542×2 m ≈ 39.5 m, and z4 = 44.2 m.

We can see that η(c) = 1 for any c in Fig. 7, and 1 ≤ η(c) ≤ 4
for any c in Figs. 8, 9, and 10.

We have the following properties for I(c) and η(c):

Property 2. Consider k-hop path r. Suppose that the
lengths of the links in r are Y1, Y2, ..., Yk. If Yi ∈ I(c) for
i = 1, 2, ..., k, then U(r) ≤ cU(rO).

Property 3. If u(z) is a convex monotonically increasing
function, then η(c) = 1 for any c ≥ 1.

Property 4. Suppose that we set ds to max
z∈I(c)

z in Policy 1.

Suppose candidates for the next link whose lengths are in-
cluded in I(c). Then for η(c) = 1, Policy 1 always selects
the next link from these candidates, even if there are some
candidates for the next link whose lengths are not included
in I(c) while Policy 1 may select a link whose length is not
included in I(c) for η(c) ≥ 2.

Property 5. Suppose candidates for the next link whose
lengths are included in I(c). Then Policy 2 always selects
the next link from these candidates, even if there are some
candidates for the next link whose lengths are not included
in I(c).

The proofs of Properties 2 and 3 are provided in Appen-
dices B and C, respectively, and Properties 4 and 5 can be
easily derived from the definitions of Policies 1 and 2, re-
spectively.

From Property 2, we can make U(r) of path r at most
cU(rO) while constructing a path using links whose lengths
are included in I(c). Of course, c is desired to be as small
as possible so that U(r) is close to U(rO). As mentioned,
however, |I(c)| becomes smaller as c becomes smaller. For a

Fig. 7 I(c) for u(z) = f1(z), where d = 52.5 m.

Fig. 8 I(c) for u(z) = f4(z), where d = 52.5 m.

Fig. 9 I(c) for u(z) = f5(z), where d = 52.5 m.

Fig. 10 I(c) for u(z) = f6(z), where d = 52.5 m.

small c, therefore, while using approximate policies to select
the next link, we cannot always select a link whose length is
included in I(c) as the next link. Furthermore, we can con-
sider various approximate policies to choose the next link
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like Policies 1 and 2, and all of these policies do not always
consider I(c); therefore, if we use a policy without consider-
ing I(c), we may choose a link whose length is not included
in I(c).

Suppose candidates for the next link whose lengths are
included in I(c). In this case, Policy 2 can automatically
choose a link whose length is included in I(c), as seen from
Property 5. On the other hand, Policy 1 does not always
choose a link whose length is included in I(c), although it
automatically chooses a link whose length is included in
I(c) if we set ds to max

z∈I(c)
z only if η(c) = 1, as seen from

Property 4.
From these facts, Policy 2 is expected to always well

approximate Optimum Routing for both of ETX and MTM.
Furthermore, Policy 1 is also expected to well approximate
Optimum Routing for both of ETX and MTM if there exists
a small constant c0 such that |I(c0)| is large and η(c0) = 1.
Actually, Policy 1 well approximates Optimum Routing if
ETX is used as shown in [1] because there exists such a
small constant c0 because η(c) is always equal to 1 if ETX
is used, as seen from Property 3. As opposed to ETX, we
sometimes encounter a situation where we do not have such
a small constant c0 if MTM is used, and it is expected that
Policy 1 does not well approximate Optimum Routing in
this case. Of course, however, if there exists a small constant
c0 such that |I(c0)| is large and η(c0) = 1, then Policy 1
with ds = max

z∈I(c0)
z is expected to well approximate Optimum

Routing even if MTM is used.
For example, consider I(c)s of f1(z), f4(z), f5(z), and

f6(z), which are represented in Figs. 7, 8, 9, and 10, respec-
tively. Note that f1(z) is a link ETX function and f4(z), f5(z),
and f6(z) are link MTM functions. Suppose that c0 = 1.5.
Then η(c0) = 1 and |I(c0)| ≈ 22.8 m for f1(z), η(c0) = 1 and
|I(c0)| ≈ 17.6 m for f4(z), η(c0) = 4 and |I(c0)| ≈ 32.6 m
for f5(z), and η(c0) = 3 and |I(c0)| ≈ 23.1 m for f6(z). As
mentioned, for f1(z), η(c0) = 1 and |I(c0)| is large because
f1(z) is a link ETX function. For f5(z) and f6(z), η(c0) is
not equal to 1; therefore, it is expected that Policy 1 does
not work well for f5(z) and f6(z). For f4(z), η(c0) = 1, and
|I(c0)| is not so different from that of f1(z); therefore, it is ex-
pected that Policy 1 works well for f4(z) even though f4(z)
is a link MTM function.

4.3 Simulation Results of Policies 1 and 2

In this subsection, we compare Policies 1 and 2 using
U(rP1) and U(rP2) obtained by computer simulation. In the
computer simulations, we distribute nodes in interval [0, L]
based on a Poisson process with intensity λ. We locate S and
D at coordinates 0 and L, respectively. If at least one path
exists between S and D, then we construct rP1, rP2, and rO

and compute U(rP1), U(rP2), and U(rO). Otherwise, we dis-
tribute nodes again. We repeat these procedures 10000 times
and compute the probability that U(rP1) ≤ xU(rO) and that
U(rP2) ≤ xU(rO) for a real number x ≥ 1. Denote these
probabilities by qP1(x) and qP2(x), respectively. We evalu-

Fig. 11 Probability that U(rP1) ≤ xU(rO) and that U(rP2) ≤ xU(rO),
where d = 52.5 m, L = 120 m, and λ = 0.02.

ate Policies 1 and 2 by qP1(x) and qP2(x), respectively. Note
that Policy 1 well approximates Optimum Routing if qP1(x)
is close to 1 for a small x and that Policy 2 well approxi-
mates Optimum Routing if qP2(x) is close to 1 for a small
x.

To compare Policies 1 and 2, we use f4(z), f5(z), and
f6(z) as u(z). As explained in Sect. 4.2, it is expected that
Policy 1 well approximates Optimum Routing for f4(z) al-
though f4(z) is a link MTM function, that Policy 1 does not
work well for f5(z) and f6(z), and that Policy 2 well approx-
imates Optimum Routing for f4(z), f5(z), and f6(z). In the
following, we show some simulation results and confirm this
expectation.

Figures 11 and 12 show the simulation results of qP1(x)
and qP2(x) as a function of x. In these figures, d = 52.5 m
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Fig. 12 Probability that U(rP1) ≤ xU(rO) and that U(rP2) ≤ xU(rO),
where d = 52.5 m, L = 120 m, and λ = 0.2.

and L = 120 m. In Fig. 11, λ = 0.02, and λ = 0.20 in
Fig. 12. u(z) = f4(z) in Figs. 11(a) and 12(a), u(z) = f5(z)
in Figs. 11(b) and 12(b), and u(z) = f6(z) in Figs. 11(c)
and 12(c). As ds of Policy 1, we examine 36 values, 0 m,
1.5 m, 3 m, ..., 52.5 m for f4(z), f5(z), and f6(z), and exam-
ine 35.1 m other than the above 36 values for f4(z) because
max
z∈I(c0)

z = 35.1 m for f4(z). Note that we cannot find max
z∈I(c0)

z

for f5(z) and f6(z) because f5(z) and f6(z) do not have a small
constant c0 such that |I(c0)| is large and η(c0) = 1. From
Figs. 11 and 12, we can confirm that qP2(x) approaches 1 for
a small x in all cases. Specifically, qP2(1.1) ≈ 1 in all cases.
Also, for f5(z) and f6(z), qP1(1.1) is smaller than qP2(1.1)
for any ds especially for λ = 0.2. Therefore, we can con-
firm that Policy 2 always approximates Optimum Routing
well although Policy 1 does not always approximate Opti-

mum Routing. Note that Policy 1 sometimes approximates
Optimum Routing well. For example, for f4(z), we have
qP1(1.1) ≈ 1 if we set ds to be 35.1 m. In such a case, there-
fore, Policy 1 can approximate Optimum Routing well even
for a nondecreasing step-like function. From these results,
we can confirm that Policy 2 approximates Optimum Rout-
ing better than or as well as Policy 1 in a one-dimensional
random network.

5. Analysis of Minimum Route MTM with Policy 2

In this section, we theoretically analyze the mean value of
minimum route MTM, denoted by E(U(rO)). In the analy-
sis, we theoretically and precisely analyze the mean value of
route MTM of Policy 2, denoted by E(U(rP2)). Then we use
the formula of E(U(rP2)) as an approximation to E(U(rO)).

5.1 Analysis of Policy 2

Let HP2 be the number of hops of rP2. Let XP2,i be the co-
ordinate of ith relay node of rP2 for i = 0, 1, ...,HP2, where
XP2,0 = 0 < XP2,1 < ... < XP2,HP2 = L. Let du be the
maximum value of z such that u(z) = u(0). Suppose that
L ≤ du. In this case, Policy 2 directly connects S and D.
Then E(U(rP2)) = u(L) if L ≤ du. Suppose that L > du.
In this case, HP2 ≤ 2

⌈
L
du

⌉
− 1, as proved in Appendix D. If

L > du, therefore

E(U(rP2)) =

2
⌈

L
du

⌉
−1∑

k=	 L
d 


P(HP2 = k|R � ∅)

× E(U(rP2)|R � ∅,HP2 = k). (2)

In the following, we compute P(HP2 = k|R � ∅) and
E(U(rP2)|R � ∅,HP2 = k).

Suppose that HP2 = 1. Define

g(x1, x2)

=

{
x ∈ [x1, L]

∣∣∣∣∣u(x − x1)
x − x1

<
u(x2 − x1)

x2 − x1

}
. (3)

HP2 = 1 if and only if L ≤ d, and there is no node in g(0, L).
Hence

P(HP2 = 1|R � ∅) =
{

e−λ|g(0,L)|, L ≤ d,
0, L > d,

(4)

E(U(rP2)|R � ∅,HP2 = 1) = u(L). (5)

Next, we consider HP2 = k, where k ≥ 2. Define
fP2,k(xP2,1, ..., xP2,k−1) as the joint probability density func-
tion of XP2,1, ..., XP2,k−1, where xP2,1, ..., xP2,k−1 are the pos-
sible values of XP2,1, ..., XP2,k−1, respectively. Then

fP2,k(xP2,1, ..., xP2,k−1)dxP2,1...dxP2,k−1

= P(xP2,1 ≤ XP2,1 < xP2,1 + dxP2,1, ...,

xP2,k−1 ≤ XP2,k−1 < xP2,k−1 + dxP2,k−1)

= P(xP2,1 ≤ XP2,1 < xP2,1 + dxP2,1, ...,

xP2,k−1 ≤ XP2,k−1 < xP2,k−1 + dxP2,k−1



MIYAKITA et al.: CHARACTERIZATION OF MINIMUM ROUTE MTM IN ONE-DIMENSIONAL MULTI-HOP WIRELESS NETWORKS
2233

|R � ∅,HP2 = k)

= P(R � ∅,HP2 = k,

xP2,1 ≤ XP2,1 < xP2,1 + dxP2,1, ...,

xP2,k−1 ≤ XP2,k−1 < xP2,k−1 + dxP2,k−1)

/P(R � ∅,HP2 = k). (6)

Define CP2,k as the set of (xP2,1, xP2,2, ..., xP2,k−1) such that
xP2,i+1 − xP2,i ≤ d for i = 0, 1, ..., k − 1, and

u(xP2,i+1 − xP2,i)
xP2,i+1 − xP2,i

< min
i+2≤ j≤k

u(xP2, j − xP2,i)

xP2, j − xP2,i
(7)

for i = 0, 1, ..., k−2, where xP2,0 = 0 and xP2,k = L. Suppose
that (xP2,1, ..., xP2,k−1) ∈ CP2,k. Then fP2,k(xP2,1, ..., xP2,k−1) ≥
0. Also, R � ∅, HP2 = k, XP2,1 = xP2,1,..., XP2,k−1 = xP2,k−1

if and only if there are k − 1 nodes at xP2,1, xP2,2, ..., xP2,k−1,
respectively, and no node in g(xP2,i−1, xP2,i) for i = 1, 2, ..., k.
Define

G(xP2,1, ..., xP2,k−1) =

∣∣∣∣∣∣∣
k⋃

i=1

g(xP2,i−1, xP2,i)

∣∣∣∣∣∣∣ , (8)

where xP2,0 = 0 and xP2,k = L. Hence

P(R � ∅,HP2 = k,

xP2,1 ≤ XP2,1 < xP2,1 + dxP2,1, ...,

xP2,k−1 ≤ XP2,k−1 < xP2,k−1 + dxP2,k−1)

= λk−1dxP2,1...dxP2,k−1e−λG(xP2,1,...,xP2,k−1). (9)

If (xP2,1, ..., xP2,k−1) � CP2,k, then fP2,k(xP2,1, ..., xP2,k−1) = 0.
By integrating Eq. (6), we have

P(HP2 = k|R � ∅) =
∫
...

∫
CP2,k

1
P(R � ∅)

× λk−1e−λG(xP2,1,...,xP2,k−1)dxP2,1...dxP2,k−1, (10)

where P(R � ∅) can be computed as follows [1]:

P(R � ∅) = 1 +
	 L

d 
−1∑
i=1

(−1)i

i!
e−iλd {λ(L − id)}i−1

× {λ(L − id) + i} . (11)

Also

E(U(rP2)|R � ∅,HP2 = k)

=

∫
...

∫
CP2,k

fP2,k(xP2,1, ..., xP2,k−1)

×
⎧⎪⎪⎨⎪⎪⎩

k∑
i=1

u(xP2,i − xP2,i−1)

⎫⎪⎪⎬⎪⎪⎭ dxP2,1...dxP2,k−1, (12)

where xP2,0 = 0 and xP2,k = L. By substituting Eqs. (10) and
(12) into Eq. (2), we can compute E(U(rP2)).

5.2 Numerical Results and Discussion

Figure 13 shows the numerical results of E(U(rP2)) with the
simulation results of E(U(rO)) and E(U(rP2)) as a function

Fig. 13 Mean route MTM, where d = 52.5 m.

of λ. In this figure, the three functions f4(z), f5(z), and f6(z)
are used as u(z), and d is set to 52.5 m. In Figs. 13(a) and
(b), L = 60 m and L = 120 m, respectively.

In this figure, the numerical results of E(U(rP2)) agree
well with the simulation results of E(U(rP2)). We can con-
firm that the analysis in Sect. 5.1 is valid. We can also con-
firm that E(U(rP2)) is close to E(U(rO)) for all cases. These
results show that we can approximately compute E(U(rO))
by the theoretical formula of E(U(rP2)). These results also
support that Policy 2 well models the best path in addition
to the results in Sect. 4.3.

6. Conclusion

In this paper, we analyzed communication quality in a one-
dimensional random multi-hop network with MTM as a
metric. To analyze route MTM, we considered two policies,
Policy 1 and Policy 2, which approximately minimize route
MTM. Policy 1 is an ordinary policy proposed in [1], and
Policy 2 is a new one proposed here. We showed that Pol-
icy 2 approximates Optimum Routing better than Policy 1
from theoretical considerations and simulation results. We
also theoretically analyzed the mean value of route MTM for
Policy 2 in a one-dimensional random network and showed
that the formula can be used as an approximation to the
mean value of minimum route MTM from numerical and
simulation results. An important future problem is extension
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of the results in this paper to two-dimensional networks. Fu-
ture problems also include characterization of the best path
and analysis of communication quality considering interfer-
ences and other distributions of nodes.
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Appendix A: Proof of Property 1

To prove Property 1, we use the following lemma:

Lemma 1. U(rO) ≥ u(d0)
d0

L.

Proof. Suppose that rO is a k-hop path, and the lengths of
links in rO are YO,1, YO,2, ..., YO,k. From the definition of d0,
u(YO,i)

YO,i
≥ u(d0)

d0
for i = 1, 2, ..., k. Then

U(rO) =
k∑

i=1

u(YO,i) =
k∑

i=1

u(YO,i)
YO,i

YO,i

≥
k∑

i=1

u(d0)
d0

YO,i =
u(d0)

d0
L. (A· 1)

�

Consider any path r. Suppose that the number of hops of r
is k, and the lengths of links in r are Y1, Y2, ..., Yk. Suppose
that the number of kinds of the link lengths in r is klength.
Denote these klength lengths by Y ′1, Y ′2, ..., Y ′klength

such that

Y ′1 < Y ′2 < ... < Y ′klength
. Suppose that u(z) is defined as the

following nondecreasing step-like function:

u(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Y ′1, 0 ≤ z ≤ Y ′1,
Y ′2, Y ′1 < z ≤ Y ′2,
...

...
Y ′klength

, Y ′klength−1 < z ≤ Y ′klength
.

(A· 2)

Then

U(r) =
k∑

i=1

u(Yi) =
k∑

i=1

Yi = L (A· 3)

because u(Yi) = Yi for i = 1, 2, ..., k. On the other hand,
u(d0)

d0
= 1 from Eq. (A· 2). Hence, U(rO) ≥ L from Lemma 1.

Therefore, we have U(r) ≤ U(rO), which means that r = rO.

Appendix B: Proof of Property 2

Suppose that Yi ∈ I(c) for i = 1, 2, ..., k. From the definition
of I(c), u(Yi) ≤ c u(d0)

d0
Yi for i = 1, 2, ..., k. Then

U(r) =
k∑

i=1

u(Yi) ≤
k∑

i=1

c
u(d0)

d0
Yi = c

u(d0)
d0

L. (A· 4)

From this inequality and Lemma 1, we have U(r) ≤ cU(rO).

Appendix C: Proof of Property 3

Since d0 ∈ I(c), I(c) � ∅ and η(c) ≥ 1. Consider two real
numbers, z1 ∈ I(c) and z2 ∈ I(c), and suppose that z1 ≤ z2.
Then u(z1) ≤ c u(d0)

d0
z1, and u(z2) ≤ c u(d0)

d0
z2. Because u(z) is a

convex function, u(θz1+ (1− θ)z2) ≤ θu(z1)+ (1− θ)u(z2) for
any real number θ ∈ [0, 1]. From these inequalities, u(θz1 +

(1 − θ)z2) ≤ c u(d0)
d0
{θz1 + (1 − θ)z2} for any θ ∈ [0, 1]. Hence,

θz1 + (1− θ)z2 ∈ I(c) for any θ ∈ [0, 1]. This means that I(c)
is an interval.

Appendix D: Proof of relation HP2 ≤ 2
⌈

L
du

⌉
− 1

In Policy 2, XP2,i+2 > XP2,i + du for i = 0, 1, ...,HP2 − 2.
Assume that HP2 ≥ 2

⌈
L
du

⌉
. Then

L =
HP2∑
i=1

(XP2,i − XP2,i−1) ≥
⌈

L
du

⌉∑
i=1

(XP2,2i − XP2,2i−2)

>

⌈
L

du

⌉∑
i=1

du =

⌈
L
du

⌉
du ≥ L, (A· 5)

which is a contradiction. Therefore, HP2 ≤ 2
⌈

L
du

⌉
− 1.
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