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Look-Up-Table-Based Exponential Computation and Application to

an EM Algorithm for GMM

Hidenori WATANABE†a), student Member and Shogo MURAMATSU††b) , Senior Member

SUMMARY This work proposes an exponential computation with low-

computational complexity and applies this technique to the expectation-

maximization (EM) algorithm for Gaussian mixture model (GMM). For

certain machine-learning techniques, such as the EM algorithm for the

GMM, fast and low-cost implementations are preferred over high preci-

sion ones. Since the exponential function is frequently used in machine-

learning algorithms, this work proposes reducing computational complex-

ity by transforming the function into powers of two and introducing a look-

up table. Moreover, to improve efficiency the look-up table is scaled. To

verify the validity of the proposed technique, this work obtains simulation

results for the EM algorithm used for parameter estimation and evaluates

the performances of the results in terms of the mean absolute error and

computational time. This work compares our proposed method against the

Taylor expansion and the exp() function in a standard C library, and shows

that the computational time of the EM algorithm is reduced while main-

ta1ning comparable precision in the estimation results.
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1. Introduction

This paper proposes a method for reducing the computa-

tional cost of exponential function in EM algorithm for

Gaussian mixture model (GMM).

GMM is a probabilistic distributions expressed by the

weighted sum of Gaussian distribution. The GMM has a

wide application since it is able to represent a complicate

probabilistic distribution. Fujimoto et al. modeled speech

sounds with GMM for noise reduction in car environment

[1]. Rotem et al. used in their proposed approach for image

segmentation [2].

GMM-based applications require GMM parameters,
such as the mixture ratio, mean, and variance. If the num-

ber of mixture is known, the EM algorithm is used to esti-

mate the GMM parameters. The EM algorithm proposed

by Dempster et al. [3] and then researchers improved the

precision of parameter estimation and computational cost.

Since the computational cost of the EM algorithm is non-

negligible, it is seldom used in embedded systems. For

example, Lie et al. noted血at the EM algorithm could not

be processed in real-time, and instead proposed a non EM-

based method for fast parameter estimation [4]. However,
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theirproposedmethodcanonlybeusedinapplications

whereinaccurateparameterestimationisacceptable.Fu-

jimotoetal.proposedanEM-basedmethodthatestimates

onlythemeanvectorandtheo血erparametersareconsid-

eredasconstants[1].Asseenabove,血eEMalgorithm

isnotwell-suitedforembeddedsystems,andareasonable

compromisemustbeappliedtoreduceitscomputational

cost.

Thispaperfocusesonthecomputationalcostoftheex-

ponentialfunctionoftheGMM.Sincetheexponentialfunc-

tionistypicallyapproximatedthroughrecursivecomputa-

tions,suchastheTaylorexpansion,itisnotwell-suitedfor

embeddedsystems.Ifalow-computationalalgorithmcould

beusedtoapproximatetheexponentialfunction,itwould

notbenecessarytoapplyanyconstrainttoreducethecom-

putationalcostforestimatingtheparameters.

Inpreviouswork,weproposedafastGMM-basedclas-

si丘cationmethodthatreducesthecomputationalcostofthe

exponentialfunction[5],[6].Inourpreviousmethod,we

reducedthecomputationalcostofaGMM-basedclassifier

byapproximatingtheexponentialfunctionusingalook-up

tableanditsbitshift.Inthiswork,wewillapplythisidea

totheEMalgorithmusedtoestimatetheGMMparameters.

Speci丘cally,inthisworkweusethemethodproposed

inourpriorworktoapproximatetheexponentialfunction.

Toverifytheeffectivenessoftheproposedmethod,weper-

formsimulationstoevaluatetheprecisionoftheestimated

parametersandthecomputationaltime.

2.ReviewofEMAlgorithmforGMM

Inthissection,wereviewtheEMalgorithmfortheGMM

anddiscussthecomputationalcomplexity.

2.1E-Step

TheEMalgorithmconsistsoftwoprincipalprocesses.First,

theexpectation-step(E-step)calculatesprobabilities,which

arecalledresponsibilities.Then,themaximization-step(M-

step)updatestheparametersofGMMbyusingthesere-

sponsibilities.Thesetwostepsarerepeateduntiltheparam-

etersconverge.Inthefollowmgs,letusshowtheequation

oftheE-stepwherethenotationsarebasedon[7].

IntheE-step,wecomputetheresponsibilitiesγk,n,

wherekisthedistributionnumberandnisthedatain-

dex.Supposethatweobserveinputvectors{xn}_n,where
n=oxn∈RDxandNisthenumberofdatapoints.Therespon-
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sibility γk,n of the k-th distribution for the n-th input vector

Ⅹn is given by

田lnHl

lr
L

/

where K is the number of Gaussian distributions, α is the

mixture ratio of the &-th distribution, and fi^ and ∑　are the

mean vector and covariance matrix of the 」-th distribution,

respectively, wherefi^ ∈ RDx and ∑k ∈ RDx ;. N(xn¥fik, ∑k)

is the k-th multivanate Gaussian distribution given as

Mxjft,∑:) = Ck - exp(-yk,n),

where

ck=

and

1

(2tt)D/2|∑ J1/2 '

yk,n一芸(Ⅹn -μk)T∑k-1(Ⅹn′ -μk).

(2)

(3)

(4)

Note that Ck and yk,n are non-negative scalar values.

For the M-step, refer to the article [7].

2.2　Computation of EM Algorithm for GMM

In the followings, we present our approach for reducing the

cost associated with computing the E-step. Let us decom-

pose the computational procedures in Eq. (1) as follows:

1- yk,n -1/2(Ⅹn-μk)T∑k-1(Ⅹn -μk),

2. Uk,n = exp(-Yk,n),

3. Ck
1

(2n)D^ ¥∑k¥ 1 /2

4. thn = αkCkUk,n>
K-1

5. sn-∑tk,〟,
k=0

6. sn=l/sn,

7・ γk,n　　蝣Sn.

Operations 1, 2, and 3 presented above are prone to bot-

tlenecks due to matrix products, exponential functions, and

determinant operations. Even when the number of data n is

large, the computational cost of C^ is not significant because

Cfc is independent of n. Thus, we need to reduce the com-

putational cost of Operations 1 and 2, The most signi丘cant

operation in the E-step is listed in Eq. (2).

The aim of this work is to reduce the operations in

Eq. (2). The exponential function in operation 2 of the E-

step can be approximated by taking into account Eq. (1). In

the next section, we propose a technique for approximating

the exponential function.

3. EM Algorithm with Look-Up-Table-Based Expo-
nential Function

In this section, we propose an approximation method for

the exponential function used by the EM algorithm that es-

timates the GMM parameters. The approximation method

reduces computational cost by taking Eq. (1) into account.

The idea of transforming non-linear function into look-

up table (LUT) was used in various studies. For example,

Fiori used the idea for neural network [8]-[10].

This work approximates the exponential function by

using a bit-shift and a LUT. First, the exponential function

is represented by powers of two. Then, the powers of two

are approximated using a bit-shift and a LUT. Furthermore,

to simplify the implementation, the LUT is scaled by a con-

stant coefficient.

3. 1 Look-up-Table-Based Exponential Function

The exponential function can be expressed as a power of two

aS

exp(-z) - T　　　　　　　　　　　　　　　(5)

where z is a variable and e is Napier's number. The right-

hand side of Eq. (5) can be separated into two components

2~z-log2 e - 2~(Lz-log2 e」+β) - 2-Lz-log2 e」 . 2-β,　　　(6)

where 1_jcJ represents the integer part ofズandβ = z - log2 e -

LZ・Iog2 e」, i.e., the fractional part ofz・Iog2 e.

From Eqs. (5) and (6) we conclude that in the binary

digit system, exponential function can be realized by a bit-

shift of 2 p. However, computing 2-β still remains an issue.

In particular, the power of two can be computed using the

Taylor series expansion. Since the later approach is much

simpler than the former, we propose introducing a LUT that

contains approximated values of 2 p.

To construct a LUT with a finite number of contents,

we use a bit stringβ that is the L-bit approximation ofβ. By

using the bit string β, the function 2-β can be approximated

by:

2-β㌶ 21肇= 2-∑i,2一　　　　　　　　　(7)

where,J3^ ∈ {0, 1} is the z-th bit ofβ. Note that the most
′ヽ

ノヽ

significant bit and least signi丘cant bit ofβ are l[1] and β[L]

respectively. By applying Eq. (7), the entries of the LUT

T[l[β] are obtained by

T[β] = 2-∑L2-1.β[1]　　　　　　　　(8)

ノヽ

Since LUT does not depend on any data, it can be computed

off-line. In Table 1, we present the values of the LUT for

L=2.

Using Eqs. (6) and (8), the exponential function is ap-

proximated by
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Table 1 Values of the LUT T¥J3] for L = 2. The symbol ( )2 indicates

that the bit string B is represented in binary form.

β　　　T[β]

(00)2　1.000000-

(01)2　0.840896-

(10)2　0.707107-I

(ll)2　0.594604-

Fig. 1　Exponential function and its approximations. The horizontal axis

indicates the input x and the vertical axis indicates the exponential function

and its approximate?s. The solid, bold, and dotted lines represent exp(-x),

2-p for L = 2 and 2-<8 forL = 4, respectively.

exp(-z) 〓　2-[zlog2」.T[β].　　　　　　　(9)

ノヽ

Equation (9) indicates that the exponential function can be

computed by shifting the bits of an entry of the LUT. Fig-

ure 1 shows plots of the exponential function and its approx-

imations using LUTs forL = 2 and L = 4.

3.2　Scale Adjustment for Look-up Table

According to Eq. (8), the range of the entries of the LUT

is (0.5, 1.0]. Two issues must be considered with respect to

this range. One is the complexity of a floating-point repre-

sentation, such as the IEEE 754 floating-point format. In

this format, values within the range (0.5, 1.0) change the

mantissa part, while the value 1.0 changes the exponential

part. Therefore, the value 1.0 requires exception handling.

The second issue is that the values of the LUT require an

additional bit because in fixed-point representation, value

1.0 requires one additional bit than the values in the range

(0.5, 1.0). Therefore, the ranges [0.5, 1.0) and (0.5, 1.0) are

preferable to range (0.5, 1.0].

For transforming the values of LUT into preferable

range, let us consider a Gaussian distribution scaled by a

constant factor. In the E-step, scaling does not affect the

result of γ :n. Equation (1) can be represented by

GiliZq
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where ♂ is a non-zero constant. It is clear that the result of

Tabrも　　Values of the LUT T囲obtained by the weighted-average
methodforL= 2andan = a¥ = 0.5.

7"l/-.'|

(00)2　0.920448-・

(01)2　0.774002-

(10)2　0.650855--

(ll)2　0.547302-・

Eq. (10) is identical to that of Eq. (1). Hence, for Gaussian

distributions, the scaling operation has no affect on the re-

suits of the E-step.

Scaling can be used to modify the look-up-table-based

exponential function. The scaled Gaussian distribution is

approximated by

6N(xn¥/ik, J:k) = 6CIc Qxp{-yhn

㌶ sCk - 2-[lJk-" lo^- eJT[/3Kn]

- Q. 2--¥ilk,nlog2e」ヂ耽れ　　　(ll)
ノヽ　ノヽ　　　　　　　　　　　ノヽ

where T¥j3^n] = 6T{J3ktn]- Hence, the LUT can be scaled by

♂.

3.3　Scaling Using the Weighted Average of LUT Entries

Next, we address the problem of identifying 6 that scales the

LUT within the desired range. In order to obtain an appro-

pnate constant, we consider generating the LUT entnes by

linearly combining neighboring entries. The next entry of
ノヽ

T[β] is represented by Tβ +J3[L]]. Note thatβ[L] is the least
′ヽ

sigmficant bit of the bit string β Using a weighted average
ノヽ　′ヽ

approach, the scaled value TVβ] is calculated by

ノヽ　ノヽ　　　　　　　　　ノヽ

T¥fi] = aoT[0] + cnTβ+lMl

= an - 2-島2-'#'l +a1 -2-ォ∑f-i2-'#'])+2当

- 2~∑f-.2-・Pサ(c +a¥ -2-2~L)

- T¥fi (,qq +a¥蝣2-2~上　　　　　(12)

where clq and a¥ are weights, aァ+ a¥　= 1 and ao,a¥　≧

0. Equation (12) converts the range of the LUT into the

range [2-∑た　(O。 +a¥ -2-2~'),a。 +a¥蝣2-2当, where

∑1=1当ndicates that all digits ofβ are equal to one, i.e.,
ノヽ

β - (ll- ll)2. Note thatbecause [clq+a¥ -2~2~') >is in-

dependent ofβ言t becomes a constant. Thus, the constant

(ao +a¥蝣2~ J canbe used as the scaling factor5. InTa-

ble 2, we present the values of the LUT for L - 2 and

αo=αi =0.5.

4. Performance Evaluation

To validate the effectiveness of the proposed method, we

generate simulation results and evaluate the precision of the

estimated parameters and computational time of the EM al-

gonthm.

Random numbers from two-component mixture of

Gaussian distributions are generated as follows:
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Table 3　Parameters of a mixture Gaussian distribution for generating

normal random numbers, where α is the mixture ratio, 〟 is the mean, and

<x is the variance. The step sizes ofm and Sj are 0.2.

Params.　Dist. 0 Dist.1

α　　　　0.5　　　　　　0.5

From 1.0、to 5.00.0

∑　　　1.0　　From 0.2 to 2.0

Table 4　Initial values used in the EM algorithm.

Params.　Dist.0 Dist.1

α　　　　　0.5　　　0.5

fllmt　　-0・5　〃1+0.5

∑　　　　1.0　　　1.0

The Mersenne twister method is used to generate urn-

form random numbers [1 1].

The Box-Muller method is used to generate Gaussian

random numbers [12].

The number of data points is 100,000.

The parameters of the distributions are summarized in Ta-

ble3.

Next, we use the EM algorithm to estimate the param-

eters. We apply the E-step and M-step 30 times in a loop.

The initial parameters used for the EM algorithm are sum-

marized in Table 4. Note that initial mean values are differ-

ent from the original values.

The exponential function in the EM algorithm was lm-

plemented using the proposed method, the Taylor expan-

sion, and the exp() function in the standard C library. More-

over, during the simulation, we adopted the IEEE 754 dou-

ble precision format.

The evaluation program was implemented using the C

programming language. The speci点cations of the software

development environment and hardware environment used

are

OS: MS Windows 7 (64bit edition)

Development environment: MS Visual Studio 2010
o SDK: MS Windows SDK for Windows 7

Optimization flags: /Ox and /arch:SSE2

. CPU: Intel Core 2 duo E8500 (3.16GHz)

。 Memory: 8GB dual channel DDR2 SDRAM (PC2-

6400)

The simulation results were evaluated on a single core.

4.1　Precision of Parameter Estimation

In this section, we present representative simulation results.

The simulation results were evaluated in terms of the mean

absolute error. The results obtained by the exp() function

are considered as the true values.

The丘rst simulation was performed with 〃i = 5.0 and

∑i = 0.2. The second was performed with/^i = 1.0 and

∑　= 2.0. In Fig. 2, we present simulation results obtained

for u.¥　=　5.0 and ∑　=　0.2. The results obtained from

(a) Proposed method.　　(b) Taylor expansion.

Fig.2　Simulationresults obtainedfor〃i = 5.0 and∑i = 0.2. The vertト

cal axis represents the mean absolute error. The horizontal axis in (a) rep-

resents the bit-length ofβ, while the horizontal axis in (b) is approximation

order. The averages obtained by exp() were no = 0.500,it¥ - 0.500,fio =

6.204× 10-4.〟　= 5.000.∑∩ = 1.000, and∑　= 0.200.

(a) Proposed method.　　(b) Taylor expansion.

Fig.3　Simulation results obtained for/ii = 1.0 and ∑】 = 2.0. The ver-

tical axis represents the mean absolute error. The horizontal axis m (a)

represents the bit-length of/?, while the horizontal axis in (b) is the ap-

proximation order. The averages obtained by exp() were no = 0.549, n¥ =

0.451,fi0 - 2.046X IO~¥pii = 1.106,Xo = 1-045, andSi = 1.934.

the proposed method are more precise than those obtained

from the Taylor expansion. Figure 3 shows the results for

〃　= 5.0 and ∑i = 0.2. For this parameter combination,

the two distributions are close and overlap. In this case, it is

difficult to estimate the parameters. The results obtained by

the proposed method are comparable to those of the Taylor

expansion.

4.2　Computational Speed

Next, let us discuss the computational time of E-step using

the proposed method, Taylor expansion, and the standard

expO function. We recorded the computational times of 30

loops of E-step and M-step by obtaining 100 measurements

using 100 different random number seeds, and computed the

average time.

The computational time of the E-step using the stan-

dard exp() function and the direct implementation of M-

step was 14.26 [ms] and 1.26 [ms], respectively. These re-

suits demonstrate that for signal variables, the computa-

tional time of E-step is dominant in the EM algorithm. Fig-

lire 4 shows the computational time of the E-step using the

proposed method and the Taylor expansion. The proposed

method took less than 6.54 [ms], while the Taylor expansion

took over 7.01 [ms]. Specifically, the Taylor expansion with

higher-order approximation required over 10.73 [ms]. By

comparing the proposed method with 10-bits and the Taylor
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TJie u-nuber of bit len比tll if 3　　　　　　　　Approximation older

(a) Proposed method.　　(b) Taylor expansion.

Fig.4　Computational time results. The vertical axis shows the compu-

tational time. The horizontal axis m (a) is the biトIength ofβ, and the hori-

zontal axis in (b) is the approximation order.

expansion with the 10-th order approximation, we observed

that the proposed method reduces the computational time

by 45.62% while achieving more precise estimation results.

Similarly, by comparing the proposed method with the stan-

dard exp() function, we observe that the proposed method

reduces computational time by more than 45.86%.

5. Conclusion

In this paper, we proposed a low-cost implementation of the

exponential function for the EM algorithm used to estimate

the parameters in a GMM. First, we converted the expo-

nential function m the E-step into a power of two. Then,

we computed the exponential function using a LUT. To re-

duce computational complexity, the LUT was scaled using

a weighted-average technique. Through simulation results,

we demonstrated that the mean absolute error and computa-

tional time were reduced compared to the Taylor expansion.

The proposed method was also shown to maintain high pre-
cision.

In future work, we will evaluate the proposed method

for estimating parameters using other distributions. The idea

of this work can be used for parameter estimation for a mix-

ture of exponential families. For example, Hidden Markov

model (HMM) also involves the computation of an exponen-

tial function. Thus, we will evaluate if the proposed method

can be used to reduce the computational cost of HMMs.
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