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SUMMARY A new superresolution technique is proposed for
high-resolution estimation of the scattering analysis. For com-
plicated multipath propagation environment, it is not enough to
estimate only the delay-times of the signals. Some other informa-
tion should be required to identify the signal path. The proposed
method can estimate the frequency characteristic of each signal in
addition to its delay-time. One method called modified (Root)
MUSIC algorithm is known as a technique that can treat both of
the parameters (frequency characteristic and delay-time). How-
ever, the method is based on some approximations in the signal
decorrelation, that sometimes make problems. Therefore, further
modification should be needed to apply the method to the com-
plicated scattering analysis. In this paper, we propose to apply
a time-domain null filtering scheme to reduce some of the domi-
nant signal components. It can be shown by a simple experiment
that the new technique can enhance the estimation accuracy of
the frequency characteristic in the Root-MUSIC algorithm.

key words: modified Root-MUSIC algorithm, time-domain fil-
tering, beamspace Root-MUSIC algorithm, electromagnetic scat-
tering, frequency decay parameter

1. Introduction

A superresolution technique (a MUSIC algorithm[1])
is one of the most promising solutions for the high-
resolution method in the scattering and multipath prop-
agation analysis, The method formulated in the fre-
quency domain [2] has a high resolution capability for
resolving delay time of each incident signal[3]. With
the recent development of indoor millimeter wave radio
systems, a higher resolution capability may be required.

As far as the identification of propagation path is
concerned, it is difficult to discriminate each path when
the number of signals is large, even if all the signal
is resolved. In such a case, some other information is
needed. Direction-of-arrivals or frequency characteris-
tics are examples of the further information. In this
paper, we focus on the latter information (frequency
characteristics) because no modifications to the mea-
surement system are required. The frequency charac-
teristics of incident signals can be treated by the modi-
fied (Root) MUSIC algorithm[4]. The method is based
on the assumption that the spatial smoothing scheme is
approximately applicable. The assumption is not some-
times valid for large subarrays and/or many incidents
in the narrow bandwidth estimation. Then, some diffi-
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culties arise for selecting the parameters (‘AM’, *d’, etc.)
in the analysis. Furthermore, the bandwidth require-
ment for the frequency characteristic estimation in this
method is often wider than that for only delay-time es-
timation. Using the delay-time information, the fre-
quency characteristics of the signals will be obtained
with much narrower bandwidth.

Therefore, we introduce a time-domain null filter-
ing scheme for suppressing some signals whose delay
times are almost correctly estimated. DeGroat, et al.,
utilize the signal information (direction of arrival in
their paper) of constraint in the MUSIC estimation [5].
In this paper, we introduce the concept as a filtering
scheme, and extend the method to a beamspace-type
Root-MUSIC algorithm[6]. In the beamspace Root-
MUSIC algorithm, a spatial filtering preprocessing is
introduced in the antenna array data to form an ade-
quate beam pattern. On the other hand, the filtering
scheme in the proposed method is applied to the fre-
quency domain data to make nulls in the time domain.
Since both of the methods are based on the filtering
concept, our method can be regarded as a ‘beamspace-
type’ Root-MUSIC algorithm, based on the null steer-
ing concept. When the nulls are correctly steered in
some signals, the signals are suppressed and the cross-
terms, concerning the signals in the correlation matrix,
are also diminished. Therefore the signals that are not
suppressed can be enhanced in comparison with the fil-
tered signals. In addition, the suppression makes the
dimension of the noise subspace large (signal subspace
small). It often makes the estimation stable on the pa-
rameter settings in the analysis.

In the following, we formulate the problem and
propose the new method in Sect.2. In Sect. 3, we show
the effect of the method using numerical and experimen-
tal results. Section 4 contains conclusions.

2. Formulation of the New Method
2.1 Data Model

Let us assume that the amplitude and the phase of a re-
ceived signal can be obtained as a function of frequency
by an equipment such as a vector network analyzer. In
the high frequency electromagnetic scattering, the total
field r, at the frequency f; can be modeled as a linear

NI | -El ectronic Library Service



Institute of Electronics

596

combination of d dominant signals;
d
Z Vemth 4o, (1)

where s; WZ(] ) denotes j-th signal component at the fre-
quency f,, and t, denotes the delay time of the com-
ponent of each signal. The frequency characteristics
of the signals depend on the local shape of scatterer.
In Eq. (1), the frequency characteristics are modeled by
Wl(j). The additive white Gaussian noise samples n,
are assumed to be statistically independent from sample
to sample and have zero mean with variance o2,

Here, we write the L uniformly sampled (increment
of Af) frequency-domain data (r,; i = 1 ~ L) using the
vector notation as follows:

r=As+n, (2)
where

r = [rl,rg, ]T, (3a)

A = [a(t <y a(ta)], (3b)

8 = [s1, 82, ] . (3¢)

n = [Tll ng, nL]T (3d)

where T denotes the transpose. The L-dimensional vec-
tor a(t;) (j = 1 ~ d) is the mode vector of j-th signal
including its frequency characteristic. The i-th element

of a(t,) is WP et

2.2 Modified Root-MUSIC with Time-Domain Filter-
ing

In the modified Root-MUSIC algorithm 4], all of the
signals can be resolved in much narrower bandwidth
than that required for the frequency characteristic es-
timation. In such a case, the delay-time information
can be used for the frequency characteristic estimation.
The proposed method utilizes the information to make
a time-domain null filtering matrix for rejecting some
of the dominant components. Let us assume that the
estimated number of signals d and the estimated delay
time of each signal (ij; j=1~ J) have been acquired
before the following procedures.

2.2.1 Spatial Smoothing Preprocessing

The procedure in this stage is the same as the modified
Root-MUSIC algorithm described in [4]. To simplify
the discussions in Sect. 3, we adopt a function W,(a);

Wila) = (-}—)a (4)

as a pre-weight function. The weighted data vector 7(®)
is then written as
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T

(@) _ |_M 2 . _Ik , 5
r [Wx(a)’Wz(a)’ Wiia) ©)

Partitioning () into M (M > d) overlapped subarrays
r'%). we can define the spatially smoothed correlation

matrix [7] as follows:

ssp Y Z T (6)

where H denotes complex conjugate transpose. Note
that RSy, is an N x N matrix (N = L — M + 1),

2.2.2 Time-Domain Filtering

The filtering scheme is applied to the matrix R(SQS)P. As
described previously, we can use the estimated values
of {; (j = 1 ~ d) in this stage. Here, we formulate
the algorithm for extracting the k-th signal whose de-
lay time is tx. The other estimated delay-times are used
to construct the time-domain null filtering matrix. The
filtering matrix which makes nulls at the delay time of
t, (= 1,2,---,k—1,k+1,---,d) can be given by [5]

G=I-cccic)'c?, (7)

where I is the identity matrix. The matrix C is defined
by

C - [619027"'7ck‘—lsck+la""cli]ﬂ (8a)

¢ = [e"J27rf1t1 , e-ﬂﬂfztz} e e*.ﬂﬂf}vh]T' (8b)

We can use G as a filtering matrix, however it can be
modified further. The N x N matrix G has the rank of
N —(d—1). Thus, the singular value decomposition of
G can be also written as

G = BB, 9)

The elements of the diagonal matrix ¥ denote the non-
zero eigenvalues of G, and the columns of B contain
the corresponding eigenvectors of it. It can be clear that
we can use B as a filtering matrix. )

The filtered data-correlation matrix Rggsp 1S ob-
tained by

Rssp = B RsspB. (10)

Note that the correlation matrix now becomes (N —(d—

D) x (N = (d=1),
2.2.3 Generalized Eigenanalysis

In the modified Root-MUSIC algorithm, we should ob-
tain the generalized eigenvectors of Rggp in the metric
of Ry where

1

R‘V:ﬁ
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On the other hand, we should acquire the generalized
eigenvectors of Rgsp in the metric of B Ry B in the
proposed method. Here, we define that A, and e; rep-
resent the i-th generalized eigenvectors and correspond-
ing generalized eigenvectors of Rsgp. The eigenval-
ues (A;, t =1~ N - d+ 1) are assumed to be in-
dexed in descending order with respect to magnitude.
Also, we assume that the number of dominant eigen-
values in Rggp becomes d;. If the filtering matrix can
completely remove all of the signal components located
att, (j = L,2.---,k—Lk+ 1,---,d), one dominant
eigenvalue will appear (d 5 =1). The frequency charac-
teristics of the signals are not considered in this filtering
scheme. Moreover, the estimated delay times contain the
estimation error in general. Therefore, several dominant
eigenvalues may appear. However, if the nulls are lo-
cated close to the exact delay times of the signals, their
components are suppressed effectively. That makes the
signal subspace more compact than that in the unfilter-
ing case (df < d). The filtering matrix also affects the
target signal which locates at ¢ in this stage. However,
the effect is compensated by the reverse filtering in the
root finding procedure [6] (see also Eq.(14)).

2.2.4 Root-Finding Procedure

Now, we construct the Root-MUSIC polynomial. As
described in [6], the polynomial of order 2N — 2 can
be expressed as

pnaN T
+pp2N2 (12)

p(z) = po+piz+--

+p*22'\/ 3

Each coefficient of p(z) can be computed as

J
py=Y P(N—j+ii+1),j=01,--- N-1,(13)
1=0

where P(i, j) denotes the (i.j) element of the following
matrix:

N-d+1
Y eel' | BT (14)

l:df+l

P=B

B is the filtering matrix defined in Eq.(9), and the vec-
tors, e; (i = aif ~ N = d+1), are the generalized eigen-
vectors of ngp.

Apparently, the polynomial p(z) has roots of mul-
tiplicity two at t; (j = 1,2,--- k- 1,k + 1,---,&) be-
cause columns of B are orthogonal to the vectors c; in
Eq.(8b). Then, we can rewrite Eq.(12) as
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p(z)= [ (z-2)7P(2) (15)
J=1lj%k

where z, = e=727t, From these formulations, it can
be clear that the polynomial to be evaluated is the p'(z)
of order 2(NV —d+1) — 2. Note that the order of p/(z) is
independent of d}. Another derivation of p(z) is shown
in [8]. We can also provide p(z) using the derivation
(see appendix for the details).

If the pre-weight function W', («a) coincides with the
frequency decay of the target signal at #;, the root pair
corresponding to the signal will be on the unit circle
in the z-plane. Changing the weight function in var-
ious ways (o of Eq.(4) in this paper) and find 11"
which makes the roots on the unit circle, it will be the
frequency characteristic of the signal at .

3. Examples

In this section, first, we point out the problems in
the modified Root-MUSIC algorithm numerically, and
show the application result of time-domain null filter-
ing to the modified Root-MUSIC. In the latter part of
this section, we apply the method to the backscattered
data by a rectangular flat plate[9]. The signal parame-
ters of the numerical model are selected to approximate
the measured data. Figure l(a) shows a geometrical
coordinate of the target under the considerations. As-

-

incident plane wave 0

<77
Ngnaj

#3 signal(s)
Z
Y4
. #2 signal . N

(b

Fig. 1 Plane wave incident on a flat plate. (a) geometry and
coordinate system. (b} dominant three ray paths (top view).

(a)
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pect angle ¢ in Fig. 1 (a) is 30°, and size of the plate is
30cm x 30cm (a = 0.15m, b = 0.15m). Polarization
of the incident field is also shown in the figure. We se-
lect y axis as vertical, then just refer to the polarization
as the horizontal polarization in the following discus-
sion. In this case, there exist three dominant scattered
fields. Their ray paths are shown in Fig.1(b). Note
that the single edge diffracted signals in this target are
observed with no frequency dependence because of the
three dimensional target [ 10].

3.1 Numerical Study

We show the numerical results for the data model;
3
r, = Z s "“‘vl(J)eih]Z"lfltJv
J=1

where delay times of the signals are defined as t; =
—0.5ns, t; = 0.5ns, and t; = 1.0ns. The first and sec-
ond signals have no frequency decay (Wi(l) = Wi@) =
1). The frequency characteristic of the third signal is de-
fined as (1/f)%° ( = Wi(s)). The first frequency in the
MUSIC analysis is 5 GHz, and the sampling frequency
period is 50 MHz (f; = 5GHz, Af = 50 MHz). The
radar cross section (RCS) corresponding to the first, sec-
ond and third signals at frequency of f; are —10 dBsm,
—20dBsm, and —25 dBsm, respectively. The parameters
of the three signals are selected almost the same as those
appeared in the experimental data discussed later. How-
ever, note that this model has only three signals and no
noise.

Figure 2 shows an estimation result by the conven-
tional modified Root-MUSIC algorithm. In this esti-
mation, we use the weight function in Eq.(4), then o
in the figure corresponds to that in Eq.(4). Each curve
expresses the root-pair distance of corresponding sig-
nal roots with respect to «. When the weight coincides

0.03
c
2
& 002
]
Q
]
(7]
=
© .,
2 001"
3 .
o
]
o
0.00 ¥ y T
05 00 0.5 1.0 15
o

Fig. 2 Root-pair separation of the Root-MUSIC polynomial
versus frequency decay parameter a. fi = 5 GHz, Af = 50 MHz,
N =20, M = 15, d = 3. True decay parameters are o; = 0.0,
ay = 0.0, azg =0.5.
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with, or approximately equals to, the frequency decay
of the signal, the root-pair distance becomes minimum.
The error in the delay-time estimation is less than 1.5 ps
for each signal. As shown in this figure, the frequency
decay parameters of #1 and #2 signals are correctly es-
timated. However, the estimated value of a3 is 0.3.

When M and d are changed, estimated values of
decay parameter are also changed. We show some re-
sults of #3 signal in Fig. 3. As you see in this figure, the
estimated decay parameter is changed in each analysis.
However, the delay times can be estimated within 4 ps
error for all signals. From the results of d = 5, we can
say that there exist more than three components to be
selected as a signal subspace, though the actual number
of signals is three. In this case, the data correlation ma-
trix is precisely estimated because there exist no noise.
The problem is caused by the spatial smoothing pre-
processing (SSP). As reported in [4], the application
of the SSP to the non-exponentially-decayed frequency-
domain signals is approximately valid, however, the va-
lidity of the approximation depends on the parameters
(i.e., N,M.,d, Af) in the analysis.

Now, we apply the time-domain filtering to the case
of M =15,d = 3 in Fig. 3. The delay parameters in the
filtering matrix are {; = —0.500ns, t, = 0.499 ns, and
f3 = 0.998 ns. They were the estimated values with the
conventional modified Root-MUSIC algorithm. The fil-
tering processing in Eq.(10) transform the N x N data
correlation matrix into the (N —d+1) x (N —d + 1)
filtered matrix. To simplify the discussions, we select d;
which is equal to d. Surely, we can make d; smaller than
d when filtered signals are completely removed. The es-
timation results of the proposed method are shown in
Fig.4. The curves in the figure slightly fluctuate around
the points where the filter-nulls are located. However,
the global minima appear clearly, and corresponding
decay parameters are estimated exactly. Furthermore,

0.03

0.01 1

Root-pair separation

0.00
-0.5

Fig. 3  Root-pair separation of the Root-MUSIC polynomial
versus estimated frequency decay parameters of # 3 signal.
fi = 5GHz, Af = 50MHz, N = 20. True decay parameter
is a3 = 0.5.
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Fig. 4 Estimation results of the modified Root-MUSIC algo-
rithm with time-domain null filtering scheme. f; = 5GHz,
Af = 50MHz, N = 20, M = 15, d = 3. Delay-time param-
eters in the filtering scheme are i; = —0.500ns, {; = 0.499 ns,
t3 = 0.998 ns.

the root-pair distance can now be almost zero at each
global minimum.

From these results, we can conclude that the es-
timated performance of the modified Root-MUSIC al-
gorithm can be greatly improved when the filter can
suppress some of the dominant signals.

3.2 Experimental Study

Now, let us consider the measured backscattered field by
a metal flat plate of 0.3 x 0.3m (@ =0.15m, b=0.15m
in Fig.1). The field was measured for a horizontal po-
larization using a quasi-monostatic RCS measurement
system with a network analyzer (HP8510B).

Figure 5 (a) shows the calibrated data and the local
scattered field. Each local scattered field was obtained
using the time-domain filtering based on the Fourier
transform [2]. In Fig.5(b), we show the time-domain
responses calculated by the inverse Fourier transform.
The asymptotical theoretic values by GTD[9] are also
plotted in Figs.5(a) and (b) as references (the curves
marked by “GTD”). In each figure, measured values
almost coincide with the GTD results. The delay-
times and frequency decay parameters of the three dom-
inant signals are almost the same as the model dis-
cussed above. As shown in Fig. 5(b), the scattering
centers of the dominant signals cannot be resolved in
the “1.65GHz span”, so we select the bandwidth for
evaluating the performance of the MUSIC algorithms.

The estimation results by the modified Root-
MUSIC without the filtering scheme are listed in Ta-
ble 1. Also, one of the results is plotted in Fig.6. The
decay parameters of #2 and #3 signals cannot be detected
in the swept range [—0.5, 1.5]. The value “—0.5—" in
the table means & may appear below —0.5, and the value
“1.5+" expresses & may exceed 1.5. In such cases, we
adopted { at the edge of the range as an approximated
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-40
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Frequency (GHz)
(@)
0.20
measured (8GHz span)
a """"" measured (1.65GHz span)
uEl 0.15 4 = = GTD (8GHz span)
F .
|
§ ‘H / #2 signa
£ 0104 #1 signal '
[
'U )
2 0.05 1 ' #3 signal
g v o
g / '
0.00 —/. Y T »
-2 -1 0 1 2 3
Time (ns)
(b)

Fig. 5 Scattered fields from the rectangular plate for horizontal
polarization. a = 0.15m, b = 0.15m, ¢ = 30°. (a) total scattered
field and each scattered component. (b) time-domain responses
obtained by the inverse Fourier transform. The solid and dotted
curves: wideband data (2 — 10 GHz), dashed curve: narrowband
data (5 — 6.65 GHz).

Table 1 Estimated values of delay time and decay param-

eters using modified Root-MUSIC algorithm. f; = 5GHz,
Af =50MHz, N = 20,d = 4.
#1 signal #2 signal #3 signal
M [ & (ns) G t3 (ns) drg i3(ns) a3
5 -0.528 0.06 0.500 -0.5— 0.990 1.5+
9 -0.529 -0.02 0.485 -0.5—- 1.054 1.5+
15 -0.525 —-0.14 0.474 —-0.5— 1.121 1.5+

value of the delay-time. You see that the delay times of
the three signals remain stable in the analysis. Then, we
may say that the dominant components can be resolved.
On the other hand, the decay parameters cannot be cor-
rectly estimated. That is obvious because 65 has a large
minus value, which cannot be permitted physically.
The estimation results of the modified Root-
MUSIC algorithm with the proposed filtering scheme
are also shown in Fig.6. The “#1 signal” curve was
obtained with the filter which makes null at ¢, and {5.
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Table 2 Estimated values of delay time and decay parameters using modified Root-
MUSIC algorithm with and without filtering scheme. f; = 5GHz. Af = 50 MHz, N = 20,
M=15.d=4
#1 signal #2 signal #3 signal
t1 (ns) (e t2 (ns) &9 t3 (ns) a3
Modified-Root MUSIC || —0.525 —0.14 | 0.474 -0.5— | 1121 1.5+
Proposed Technique —0.527 —0.02 | 0.168 0.08 1.058  0.42
0.08 be greatly improved by the proposed filtering scheme
""""" Modified Root-MUSIC when the delay-time of dominant signals can be almost
€ proposed method resolved. That is, we can estimate both delay time and
S frequency characteristic in narrower frequency band-
g #3 signal width than that required by the conventional technique.
b
= 4. Conclusions
a
° .
K In this paper, we have proposed the new superresolu-
tion technique based on the time-domain null filtering
o o o 1 scheme, and have shown its availability through the nu-
' ' ‘ 0 ' merical and experimental study. The model treated here
o was simple, however, the conventional technique could
A t evaluate the par: rs correctly. In the actual ap-
Fig. 6 Estimation results of decay parameter for the three dom- not evaluate the parameters correctly he p

inant components.

fi = 5GHz, Af = 50MHz, N

20,

M =15, d = 4. Delay-time parameters in the filtering scheme are

f; = —0.525ns, o =

0.474ns. {3 = 1.121 ns.

10
---------- FFT-Gate
0- —— proposed method
#2 signal
. 107 S~
E //' SR S
g 0
Tz 2071
d \
0 , k
© 301/
#1 signal \
-40 1 #3 signal )
50 . . . :
2 4 6 8 10
Frequency (GHz)
Fig. 7 Estimated frequency response for three dominant scat-

tered components.

The other curves were obtained by the similar manner.
As seen in this figure, the curves of #2 and #3 signals
make clear minima in this swept range. The estimated
delay-time and the decay parameters are also listed in
Table 2. Also, the estimated fields of the signals are
shown in Fig. 7. The filter suppresses some of the dom-
inant signals, hence the correlation components between
the signals and the clutter, and the signals and the non-
filtered dominant signal, are diminished. These are the
main reason of the estimation accuracy enhancement.
From these results, we can conclude that the estima-
tion accuracy of the modified Root-MUSIC method can

plications such as the indoor multipath propagation
analysis, the situations become worse than that in the
present model. However, when the data can approxi-
mately be modeled by Eq. (1), the proposed technique
will work properly. The validity of the method for the
actual indoor propagation data will be examined in the
near future.

The procedures from Eq.(12) to Eq.(15) are con-
sidered to be expressed more compactly using the matrix
notation[6]. In addition, we can extend the method to
iterative or adaptive algorithm straightforwardly. Fur-
ther discussions will be treated in the future.
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Appendix: Another Derivation of the Root Polyno-
mial

In this appendix, we show another derivation of the
Root-MUSIC polynomial {8]. In the filtering procedure
in Sect. 2.2B, the signal mode vector of the target, a(ty),
is also transformed by the filtering matrix, then the or-
thogonality among the mode vector and eigenvectors,
that span noise subspace, can be written as

a(tk)HBe, =0
i=df~N-d+1.

(BHa(tk))He, =
(A-1)

Then, if we define polynomial using the eigenvectors
and the filtering matrix, i.e.,

2 N-1
Si(z) = 12,25, 2777
bii bia - bl,N~ci+1
b1 bao bz,N—dH
L bnva bz o by i
€1.
€2,
L En—dy1.i
N [N-d+1

5

=1

§ -1
bl.Jej,l < ,
=1

i=d;j+1~N—-d+1, (A-2)

where b ; is the (I. j) element of B, and e;, denotes the
Jj-th element of e,, then the signal zero corresponding
to the k-th signal is the root of each of the above poly-
nomials. The root appears on the unit circle in the z
plane when the pre-weight function coincide with the
frequency characteristic of the signal [4].

Using Eq. (A- 2), the Root-MUSIC polynomial can
also be defined by

N—d+1
p(z)= Y (Su(2)Sr(1/2")),

i=d;+1

where * denotes complex conjugation.
Note that B has a property:
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B =10,0,---,0]. (A-4)

where ¢, is defined in Eq.(8b). To substitute a(t;)
in Eq.(A- 1) by ¢,, we find that Eq.(A- [) still holds.
Then, the roots corresponding to the filter nulls are also
the zeros of S,(z). They appear on the unit circle. As a
result, the polynomial p(z) brings the null-related-roots
of multiplicity two.
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