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SUMMARY For the completely polarized wave case, this paper
presents the explicit formulae of the characteristic polarization states
in the co-polarized radar channel, from which one can obtain the CO-
POL Mazx, the CO-POL Saddle and the CO-POL Nulls in the Stokes
vector form. Then the problem on the polarimetric contrast
optimization is discussed, and the explicit formula of the optimal
polarization state for contrast enhancement is presented in the Stokes
vector form for the first time. To verify these formulae, we give some
numerical examples. The results are completely identical with other
authors’, which shows the validity of the presented method.
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1. Introduction

As regards the characteristic polarization states of a radar
target for the completely polarized wave case, Boerner et al.
[1],[2] have already derived the characteristic polarization
states based on the polarization transformation ratio, for
which a radar receives optimum power. These states are one
co-polarization maximum (CO-POL Max), one co-
polarization saddle (CO-POL Saddle), two co-polarization
nulls (CO-POL Nulls), two cross-polarization maximums
(X-POL Maxs), two cross-polarization nulls (X-POL Nulls),
and two cross-polarization saddles (X-POL Saddles). In
radar polarimetry, the Poincaré sphere and the Stokes vector
are used frequently because the former is a useful graphical
aid for the visualization of polarization effects. So, it is
important to express the characteristic polarization states in
the Stokes vector’s form. In the cross-polarized radar
channel case, Yamaguchi et al.[3] provided a convenient
method to obtain the X-POL Nulls, X-POL Maxs and X-
POL Saddles (in the Stokes vector’s form) based on
eigenvalue problem. For obtaining the CO-POL Max, CO-
POL Saddle and CO-POL Nulls, on the other hand, some
authors used the Lagrangian multiplier method and then
solved nonlinear equations [2], [4]. Obviously, this kind of
method is tedious for obtaining the characteristic
polarization states in the co-polarized radar channel.

In Sect. 2, a new method is provided to obtain the CO-
POL Max, CO-POL Saddle and CO-POL Nulls. From this
method, the explicit formulae of the CO-POL Max, CO-
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POL Saddle and CO-POL Nulls are presented in the Stokes
vector’s form for the first time. Then, one numerical
example is given, showing the results are identical with [2],
[4].

In Sect. 3, the problem on the polarimetric contrast
optimization will be discussed. This problem is to find radar
antenna polarizations that maximize the power ratio of the
desired target and clutter (or undesired target), which is
highly desirous in microwave remote sensing. For solving
this problem, Kostinski and Boerner [5] have provided a
mathematical model and a method to obtain the optimal
polarization state in the matched radar channel. Recently,
Mott, Tanaka and Boerner [6] extend this problem into the
case of two time-varying targets ( the target and clutter ). Up
to now, there exists no explicit formula of the optimal
polarization state for contrast enhancement. In this paper, we
will transform Kostinski’s model into another form
expressed by the Stokes vector. Then, the explicit formula of
the optimal polarization state (in Stokes vector’s form) will
be presented. Besides, this method can also be used for
solving for the case of two time-varying targets [6]. To
verify the formula, we will give two numerical examples in
this section, showing the results are identical with [S] and

[6].

2. The Formulae for the Characteristic Polarization
States in the Co-Polarized Channel

2.1 The Formulae of CO-POL Max and CO-POL Saddle
Let
| 51 %
S = [ 53 5 } (1
denote the symmetric / asymmetric scattering matrix of a
radar target and a denote the polarization state of the

transmitter (Il a [l = 1 ). Then the received power in the co-
polarized radar channel is given by

PC,,=}Sa-a|2 2)

and the received power in the matched radar channel is given
by
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P,=|sa ‘=5*Sa-a’ 3)

where the superscript + denotes conjugate transpose and *
denotes conjugation. Let
t

g = ( 1, g1, & 83) 4)

denote the Stokes vector of a, where ¢ denotes transpose.
Then the received power in the matched radar channel can
be rewritten as

Pm:%(151’2+\53|2+’S3’2+|5‘4|2)+V]é’l V81383

o)

where
vi=5 (s sl o] [u]?).
V, =Re ()5 +5380 ),

Vy=Im(sy sy +5355 ),

v=ay v+ v+ (6)

For the symmetric scattering matrix ( s, =s; ) case, as
we have known, the CO-POL Max is the same as the
Matched-POL Max. Using the Cauchy-Schwarz inequality
to (5), we know that P,, will be maximal if and only if

g=%, =123, %)

So, the CO-POL Max is

vi von )
g=( Ly 5 n?) ®)

where v; and v are given by (6).
Similarly, since the CO-POL Saddle is the same as the
Matched-POL Min, P,, will be minimal if and only if

Vv

& ==, i=1,2,3. 9
So, the CO-POL Saddie is

Vv V- V. '
g:(l>__‘£_’—727__{)l . (10)

For the asymmetric scattering matrix (s, # s, ) case, the
power expression in the co-polarized radar channel remains
the same if the scattering matrix S is replaced by the
following symmetric scattering matrix §'

1571
Sy + 83
. 51 2
- Sy + 53
| (11)

In this way, we can also obtain the CO-POL Max and the
CO-POL Saddle by the above method.

2.2 The Formula of CO-POL. Nulls

It is straightforward to prove that P, =[ Sa-a ‘2 becomes
zero if and only if

v a | _.lo 1
Sa=A 7(,1} —}L‘,‘l O}a’

or

| (12)

0 -1 g =
0 }Sd—ka.

Obviously, this eigenvalue problem can be solved easily.
The two eigenvectors are associated with the CO-POL
Nulls. From (12 ), we have

7L|‘2:%( SQ—S:;i\/(Sj_—Sg )2—4(51 54— 52 Sg)) (13)

and
- 1 —54
\/[ 54 lz*‘l Aatsy \2 Moty
("Y4’2+’7“1‘2+n?3‘2¢0), (14a)
or

ANl

= 1 7b12‘52}
\/‘ 5 Iz'{“ )\,1‘2—52 ‘2

2

(I 54 |2+’ 7\.[‘34‘33

=0)  (14b)

Using the following expression for the Stokes vector
elements in terms of Pauli matrices [11] /,J,K and L (see
Appendix)

gi=ila-a", g,=—iKa-a", g;=iJa-a", (I5)
we have the following results:

(i) If [ 54| +|As+s5 | %0, the CO-POL Nulls are

2 2
IS4‘ —‘ k1.2+53‘

5, (16a)

gl_‘ 5y ‘2+\ A+ 5 ‘
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~2Re (5, (M, +5)))
g2= 2 2
‘s4} +| km+s3‘ ’
~21m(s;(7»12+s3))
8=

B ‘s4 ‘2+‘ Ay + 5 ’2
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(16b)

(16¢)

(ii) I | 54 |*+] A2 +53 | =0, the CO-POL Nulls are

’2

s,

7\'1.2 -5

|2,

2Re (5, (hip-5,))

- ’51 124" >‘*1,2_52 |2

3

—ZIm(sI(kl‘z—sz))
&= 2 2
lsl +{7\'1.2_52

(17a)

{17b)

(17¢)

Note that in the symmetric scattering matrix case

(s =153 ), (13) can be simply rewritten as

o)
M= E4/s5-s154 -

In the asymmetric scattering matrix case, the best way is

(18)
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Fig.1 (a) The CO-POL power signature.

to replace the asymmetric scattering matrix by the

Symimetric scattering matrix

s Sy + 53
s=| ) 2
§)+ 853 ,
—s S,
b} 4

then to use the above formulae for obtaining the CO-POL

Nulls.

Example 1
If a scattering matrix is given as

|

20 05
05 -i |

which is taken from [1], {2] for the sake of comparison, we

Nulls as

=(1, -+ +47 _1
g_(la 39i35 3).

(b) The CO-POL Max and CO-POL Saddle on the Poincaré sphere.

t

These results are identical with [2], [4]. The power signature

as a function of the transmitting polarization state, tilt angle

7 and ellipticity angle €, is illustrated in Fig. 1(a). One can
find four stationary points in Fig.1(a) which correspond to
the characteristic polarization states (the CO-POL Max, CO-
POL Saddle and CO-POL Nulls) in the co-polarized radar
channel. Fig. 1(b) shows these points on the Poincaré sphere.

3. The Formula of the Optimal Polarization State for

obtain the CO-POL Max and the CO-POL Saddle according

to (8) and (10) as
\/7’ O’ __‘2"/2)[

)

o) t
g:(la _122, Oa __"/22)

respectively. From (16) and (18), we can obtain the CO-POL

3.1

Contrast Enhancement

The Problem on the Polarimetric Contrast
Enhancement Optimization

In polarimetric remote sensing, it is very important to find
radar antenna polarizations that maximize the contrast
between the desired target and clutter (undesired target ).
This is so-called the problem on the polarimetric contrast
enhancement optimization. Here, let us consider the

following model [5] to find a (llall = 1 ) such that
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atS’ S a
- a’ Sz+ Sz a (19) ==..
will be maximal, where §; and §, are the scattering ====
matrices of the target and clutter, respectively. Usually, S, ....
is not supposed to be a singular matrix. On the other hand, it 00-5 7N \\\\\\&\\\\\\:“‘,s:&:.%.H.
. . . | 7 R AR
should be pointed out that S; and S, can be asymmetric. ;5 W&Nﬁ@m‘ﬁ#a
[ A NN
3 Q ooy 'l"l""ﬂ."ﬂ\\‘\\\\\\\\\\\\ N
3 35 AN
Let g denote the Stokes vector of a. By use of the $ o0y R :': NI N .
expression (5), we can rewrite (19) as the following form O.25
0.2
0.4 PN
Ag+A1g +Ar8+ 4583 S
D= el PSR (20) 0.‘]
By+By g +Byg+Big3 o
2 388 > o
where A; and B, can be obtained from (5) and (6). lone,, " o
B ¥
Let D,, be the maximum of the above expression, then (a)
we have for any g that
JAotArg tArg + A58 51
" By+Bigi+Brgr+Bygy o R
\‘{‘ "‘Q\""‘:
o Og N “:‘“\ \“
RO AR
A() =Dy, B() +(A 1 Dnz Bl)gl + (A?. =D, BQ)gZ ga TR \\\\\\\\E{&\\Q\\\\\\k&{\\\t&s\?\:\s::‘\‘ "““““\\
7 R KRR
\ R OO
+ (A 3 D m B ?) 83 <0 (22) g 06 w&@w&\“\t\?\‘:\:\"‘:‘“‘”"‘"“:‘3}‘3“3\
3 3/87 . S 0r | R KOO N\
. . . QNS A R RO
The problem here is to find g such that the left-hand side of 04 “‘\g\‘“‘\‘\\\.\\\‘x‘,‘\:{\\\\\\“ \\?3?3:‘3::{.:‘.‘:};?‘:&‘1*‘“
. . K ' R R "" &
(22) will be maximal.Obviously,Aq - D,, By + (A = D, B|)g| 03 ”’W@W&“V o <
. AW \\}\\\\\\\\{“
+ (A5 - D,, By)gy + (Ay = D,, B3)g; becomes zero if and only 03 R -
i - ) o 0,4 TR ° &
o
! R W g @\829
So QQQ
A;-D, B, Sy, S
8= (i=1,2,3), (23 Ton S e
/ 5 3
\/ i (A;-D,B)
=1 (b)
which yields
I P N
2 _
AO*DIHBO*- ’\\/ l;] (A,‘—Dm Bl> —0 . (24) ’ .=i==
From this equation, we have /’=.=.a.
: e
1 N~ L
/7 3 KON
I+ VI -0 1 NN 277 |
D, =t ViR=us (25) 518 7 i §
2 & 14 L7700 \\\\ Nt i g
S 70 \\\ K .
N AT \\ S
where z;=A3-A7-A3-A% 5, =Bj-B!-Bj-B] and S 1] ,%““3}“ ..
- - il - ~ IS
Z|2=AoBO~A1317Asz~A3Bq. ga\ M’M/ ' ' o
3 8 o
0
. . . . . 4 N
Substituting (25) into (23), one can obtain the optimal 0.23 ¥
polarization state g easily. LN
i, s> N
Example 2 Ca Ty %
Let (©)
0.192+0.445; -0.083-0.405 . : - fo e
= . . Fig.2 (a) The signature of the scattered power density of the target.
S1=| _0.083-0405: —0.064—0.148 g2 (a) Thesig d power density of the target
I (b) The signature of the scattered power density of the clutter.
and (c) The power contrast between the target and clutter.
s,=| —0047- 0%2‘971: - 0-1%6 +0062365'i be the scattering matrices of the target and clutter,
~0.166+0.265/  0.393 +0.633i respectively. Using the method in this section, we can obtain
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Fig. 3 The power contrast between the time-varying target and
clutter.

D,,=1.9787 and the optimal polarization state g
=(1, 04071, —0.0886, ~0.5474)" The signatures of the
scattered power densities (corresponding to the target and
clutter) are illustrated in Fig. 2(a) and Fig. 2(b), respectively.
Fig. 2(c) shows the power contrast between the target and
clutter, from which one can find the optimal polarization
state for the contrast enhancement. From [5], the same result
can be obtained. This shows the validity of our formula.

3.2 Time-Varying Target Case

Next, let us consider the problem on the polarimetric
contrast optimization in the case of two time-varying targets
which was first studied by Mott, Tanaka and Boerner [6]. In
this case, the targets are characterized by the time-averaged
Kronecker matrices, from which the Graves matrices can be
obtained by the following expression

G= kytky katks|_ | 0 0
kiptky ky+ky| | O Os

. (20)

where G denotes Graves matrix and k,j denotes the
elements of the time-averaged Kronecker matrix. By use of
(19), Mott et al.[6] extended Kostinski’s model into the
following form. The problem s to finda (llall=1) such that

_ at G| a
=Coa 27)

will be maximal, where G, and G, are the Graves matrices
of two time-varying targets (the target and clutter),
respectively. Using the following expression (see Appendix)

atGa= %(0, +64)+%(<51 -0g + %(Gz*“ﬁz)gz

“%(02"53)83 , (28)

one can rewrite (27) to the form of (20). So, this problem can
also be solved by the above method.

Institute of Electronics, Infornmation, and Conmunication Engi neers

IEICE TRANS. COMMUN., VOL. E80-B, NO. 10 OCTOBER 1997

Example 3
Let
G, = 6.2 03-0.09i¢
171 03+0.09: 4
and
G-l 27 026-011]
271 026+0.17i 45

be the time-averaged Graves matrices of target and clutter,
respectively, which are obtained from the time-averaged
Kronecker matrices of [6]. According to (27) and (28), we
can write the ratio of the scattered power densities as

5.1+ 1.1g, +0.3g; +0.099g;

D=36-00¢,+0268,+0.1g;

By use of the above method (Sec. 3.1), we can obtain that
D, =23025 and the optimal polarization state g
=(1, 09948, —0.0936, - 0.0412 )" . This result is identical
with [6]. Figure 3 shows the power contrast between the
target and clutter, from which one can find the optimal
polarization state for the contrast enhancement.

4. Conclusion

In the field of radar polarimetry, the Mueller matrix and the
Stokes vectors (of the transmitter and the receiver) are
employed to express the received power frequently. After
the characteristic polarization states was derived by Boerner
et al. [1], [2], some authors used this kind of power
expression for obtaining the characteristic polarization states
in the Stokes vector’s form [2]-[4]. However, there exist
neither explicit formula for the characteristic polarization
states in co-pol channel, and nor for the optimal polarization
state for contrast enhancement. In this paper, we presented
four explicit formulae in terms of the Stokes vector, which
are very easy to obtain the CO-POL Max, CO-POL Saddle,
CO-POL Nulls and the optimal polarization state for
contrast enhancement. To verify the formulae, we compared
some numerical examples with other authors’ [2], [4]-][6].
The results are completely identical with them, which shows
the validity of our formulae.
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Appendix: The proof of Expression (28)

The Graves power matrix is defined as

+ G O, |
G=575% 0, g (A-D)
This can be expanded as
G :%-(6, +04)+%(0! —(54)iL—%(<53+03)iK
+z%(0:—<53)ijﬂ (A-2)

where /,J.K and L are Pauli matrices [11],

10 o -1
’—{01]* J*{l oJ’

Using (A - 2) and (15), one can obtain (28). This expansion
can also be used to prove (5).
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