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A New Image Coding Technique with Low Entropy Usmg

a Flexible Zerotree

Sanghyun JOO', Hisakazu KIKUCHI', Shigenobu SASAKI!,

SUMMARY A zerotree image-coding scheme is introduced
that effectively exploits the inter-scale self-similarities found in
the octave decomposition by a wavelet transform. A zerotree is
useful for efficiently coding wavelet coefficients; its efficiency was
proved by Shapiro’s EZW. In the EZW coder, wavelet coefficients
are symbolized, then entropy-coded for further compression. In
this paper, we analyze the symbols produced by the EZW coder
and discuss the entropy for a symbol. We modify the proce-
dure used for symbol-stream generation to produce lower en-
tropy. First, we modify the fixed relation between a parent and
children used in the EZW coder to raise the probability that a
significant parent has significant children. The modified relation
is flexibly modified again based on the observation that a signif-
icant coefficient is more likely to have significant coefficients in
its neighborhood. The three relations are compared in terms of
the number of symbols they produce.

key words: image compression, wavelet transform, zerotree cod-
ing, entropy coding

1. Introduction

To efficiently transmit digital images through commu-
nication channels with limited capacities, the data is
compressed. The image data has to be compressed in
both lossy and lossless ways. In most cases, the original
image is transformed so as to remove some of the corre-
lation among pixels; then only the few coefficients with
concentrated energies need to be processed [ 1]-[4].
The image transformation is based on the Fourier
transform (FT), which uses periodic harmonics as ba-
sis functions. However, most natural signals and non-
stationary signals need to be analyzed simultaneously in
both time and frequency, and the FT does not give an
analysis in the time domain. Although the short term
Fourier transform (STFT) overcomes this limitation by
using a window function, the same-sized window must
be used for all locations in the time-frequency plane.
A wavelet transform can be considered to be a gen-
eralized STFT; it analyzes the signals while dilating and
translating a prototype wavelet. That is, the wavelet ad-
justs the window size to fit the signal variances [5]-[10].
The goal of the transformation is to concentrate the en-
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ergies to a few coefficients, and a wavelet packet is the
way to represent an arbitrary signal with the best basis
function. However, finding the best basis is still quite
complex and takes much time, although efforts have
been made to simplify the task[117],[12]. In contrast,
an octave-band wavelet gives a comparatively good en-
ergy compaction when we consider its simplicity and
reduced processing time. Moreover, when the signal
is highly correlated, the decomposition by the wavelet
packet is very similar to that by the octave-band wavelet.

Among the wavelet-based codings[13]-[23], the
dependencies among the scales are well exploited in em-
bedded zerotree coding of wavelet coefficients (EZW)
[13], set partitioning in hierarchical trees (SPIHT)[14],
and space-frequency quantization (SFQ)[15]. That is,
one coefficient in a given scale is related to four co-
efficients at the same spatial location at the next finer
scale in terms of a parent-child relation. This relation
is applied to all coeflicients except the ones in DC scale.

The EZW coder by Shapiro was the first to apply
an embedded zerotree using a wavelet. The algorithm
of this coder is based on three concepts: 1) prediction
of the absence of significant coefficients across scales
by exploiting the self-similarity inherent in images, 2)
successive approximation for decoded coefficients, and
3) adaptive arithmetic coding of the produced symbols.
Next came the SPIHT coder that has improved perfor-
mance and faster processing. One of the advantages
of the algorithm used in the EZW and SPIHT coders
is that the encoder and decoder can be stopped at any
point, and the decoder can reconstruct an approximated
image from the information received so far. This ca-
pability is useful when using constrained communica-
tion channels. The more recent, SFQ coder outperforms
the EZW and SPIHT coders. There are two versions:
one uses the octave-band wavelet and the other uses the
wavelet packet. They improve coding performance by
pruning branches from the trees using a rate-distortion
and scalar-quantizing the coefficients at the remaining
nodes.

The three coding schemes described above have two
common procedures: symbol-generation (model trans-
formation) and entropy-coding of the symbol stream.
The symbol stream is first produced for the purpose of
representation; then the symbols are entropy-coded. In
this paper, we introduce a new zerotree scheme that lead
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Fig. 1 Encoding and decoding with EZW algorithm.

to lower entropy and thus more compression [24]. Be-
cause the entropy is determined by the probabilities of
the produced symbols, we have modified the symbol-
generation process by using flexible treeing. The tree
is flexibly designed so as to lead low entropy. In the
EZW scheme, a node on a tree branches out into four
nodes; this relation is referred to as a fixed relation in
the sense that the relation does not change. In contrast,
our proposed relation can be considered a “flexible ze-
rotree” in the sense that a node on a tree branches into
basic four nodes, then flexibly extends its branches to
neighboring nodes. This flexible-tree approach enables
branches to be extended efficiently.

This paper is organized as follows: the EZW
scheme is reviewed briefly in Sect. 2. In Sect. 3, we intro-
duce two new parent-child relations with low entropy.
They are applied to two images and the numbers of pro-
duced symbols are compared with those from the fixed
relation in Sect.4. The results are discussed based on
a curve drawn from an equation for the entropy-coded
size. Also, performances are given for PSNR versus bit
rate. We conclude with a summary in Sect. 5.

2. Embedded Zerotree Wavelet Coding

Shapiro [ 13] developed an efficient algorithm that trans-
mits wavelet coefficients. In this algorithm, zerotrees
are combined with bit-plane coding so that they can ef-
ficiently represent many insignificant coefficients. The
wavelet coefficients have some dependencies across sub-
bands, and these dependencies are well exploited in a
quadtree structure. The compression has three steps
(Fig. 1): (1) wavelet decomposition, (2) symbol-stream
generation, (3) entropy coding. To help describe this
tree-based coding, we define the following terms.

e Parent: a coefficient in a band that has four coeffi-
cients at the same spatial location in the next finer
scale with a similar orientation.

e Child: one of the four coefficients in the definition
of parent.

e Ancestors: for a given child, the set of coefficients
at all coarser scales with similar orientations cor-
responding to the same spatial locations.

e Descendants: for a given parent, the set of coeffi-
cients at all finer scales with similar orientations
corresponding to the same spatial locations

LLy | HLy,
T
HL,
LH, | HH, R T
o %o
LHy, \‘ HHy, fIL1
D]
(o] O
o) o)
o) (o]
LH, HH,

Fig. 2 Parent-child dependencies of subbands.

e Root: a coefficient that exists in all subbands, ex-
cept LHy, HL,, HH,, and LLy in Fig. 2, is called
a “root” with respect to its descendants.

In tree-based coding, all coefficients are scanned
in such a way that no child is scanned before its par-
ent. Therefore, bands LLy, HLy, LHy, and HHy in
Fig.2 are scanned first. Scanning then moves on to N-1
scale scanning (HLy_1, LHN_1, HHy_1) and contin-
ues until reaching the starting scale (HL,, LH,, HHy)
as shown in Fig. 3. This scanning pattern arranges the
coefficients in the order of their importance, allowing
for embedding.

Two types of processing are performed: a dominant
pass and a subordinate pass. A dominant pass finds
the coefficients to a given threshold, and a subordinate
pass refines these significant coefficients. The first step is
to find the maximum coefficient among all coefficients,
then set the initial threshold to be a maximum power of
two smaller than this maximum coefficient. The thresh-
old for each subsequent dominant pass is set to half
that of the previous threshold. Four symbols are used
for signaling a dominant pass to the decoder. A ZTR
symbol is used for a zerotree root that is insignificant
and has no significant descendants. An isolated zero
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Fig. 3  Scanning order of subbands for encoding a significance
map.
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(IZ) symbol is used when a coefficient is insignificant
but has significant descendants. Two symbols are used
for a significant coefficient, POS or NEG corresponding
to its sign. The ZTR and IZ symbols are used to in-
dicate the locations of the significant coefficients, POS
and NEG, as efficiently as possible. '

After each dominant pass, a subordinate pass is
performed to refine the coefficients found to be signifi-
cant in the previous dominant passes. This pass makes
lower or higher decisions of uncertainty for the given
threshold to minimize the quantization errors. That is,
a coefficient in the upper half of the uncertainty inter-
val is coded with the symbol HIGH, while a coefficient
in the lower half is coded with the symbol LOW. By
reading the subordinate symbols corresponding to the
significant coefficients and knowing the threshold, the
decoder can determine the interval and approximately
‘reconstruct the significant coefficients. Therefore, from
the decoder’s viewpoint, the rough estimates of the sig-
nificant coefficients become more refined and accurate
as more subordinate passes are made.

Four symbols are needed for the dominant passes,
except for the highest bands with no 1Z symbols, and
two symbols are needed for subordinate passes. All out-
put symbols are transmitted as a stream and entropy-
coded using an adaptive arithmetic coder [25]. The
header includes the initial threshold, the original image
size, the decomposed scales, and the used filters; it is
inserted prior to output stream.

3. Proposed Zerotree Coding

As explained in the previous section, a dominant pass in
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the EZW coder identifies the significant coefficients with
respect to a given threshold and their signs. In the pass,
four symbols—ZTR, POS, NEG, and 1Z—are used to
indicate the locations and signs. Assume that a sym-
bol stream was produced from the coder. The stream
contains symbols produced from both dominant and
subordinate passes. The quality of the reconstructed
image depends on the number of POS and NEG sym-
bols in the dominant passes and the number of HIGH
and LOW symbols in the subordinate passes. Although
1Z and ZTR symbols are in the symbol stream, they do
not affect image quality. They only indicate where the
significant coefficients exist. Therefore, to get a better
performance, we need to use the numbers of IZ and ZTR
symbols as few as possible. Also, the occurrence proba-
bilities of the symbols should be exploited, because the
produced symbols are entropy-coded.

Given a set of two symbols Sy, S and an accu-
rate assessment of the probability distribution P of the
symbols, Shannon [26] proved that the smallest possible
number of bits needed to encode a symbol is the entropy
of P, denoted by

E(P) = —(P,logy P1 + Palog, Ps) (N

where P; is the probability that symbol S; occurs.
To encode the symbols that occur by using as few bits
as possible, the probability of the less-probable symbols
needs to be lowered. That is, the entropy needs to be
lowered. Is it possible to control the probability of oc-
currence? The answer is “yes” for special cases like the
EZW coder. This is because one parent in a scale is
related to four children at the same spatial locations in
the next scale. We refer to this relation as a fixed rela-
tion. To lower the probability of the less-probable sym-
bols, the IZ symbols in the EZW coder, we introduce a
new relation: each parent has nine children, as shown
in Fig.4(a). This modified relation enables a parent
to have more children than a fixed relation does. This
leads to more children belonging to significant parents,
so that fewer IZ symbols are produced. Note that more
ZTR symbols are required due to the enlarged relation.
As you can see in the figure, the children of neighboring
parents are not independent of each other. Even though
they are overlapped and shared among parents, the chil-
dren do not need to be scanned twice. As a result, the
number of ZTR symbols should not increase very much.

Nevertheless, the modified relation does increase
the number of ZTR symbols because each parent has
more children, so that some IZ symbols are replaced by
ZTR symbols. This increase is exploited by an observa-
tion that a significant coefficient is more likely to have
significant coefficients in its neighborhood than an in-
significant coefficient. From the observation, the modi-
fied relation can be made flexible, as shown in Fig. 4 (b),
so that each parent has four or more children. The re-
lation is referred to as a flexible relation and the coder
using this relation is named as FZW that stands for
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(b) Flexible relation: each parent has four basic children plus ex-
tended children, the number of which depends on the significance
of the basic children.

Fig. 4 Modified and flexible parent-children relations.

“flexible relation based embedded zerotree coding of
wavelet coefficients.” Each parent always has four basic
children (1, 2, 3, and 4), and the number of extended
children depends on the significance of children 2, 3,
and 4. For example, when child 2 is significant, the
parent has basic children 1, 2, 3, and 4 and extended
children 5 and 6 (see Fig. 4 (b)). In this case, the parent
has only six children—1, 2, 3, 4, 5, and 6. The number
of IZ symbols in the flexible relation is more than in
the modified relation because the relation is retrenched.
However, the increments of IZ symbols can be compen-
sated enough by decrements of ZTR symbols.

Searching methods for significant coefficients in the
EZW and FZW coders are illustrated in Fig. 5. There
are ten significant coefficients—two, A and B, are in the
parent scale and eight, A3, A4, B1, B3, C1, C2, DI, and
D3, are in the child scale. The goal is to identify all
significant coefficients while ensuring that children are
not scanned before their parents. To simplify the sym-
bol representations, POS and NEG are marked with an
‘S’ meaning a significant coefficient. Also, IZ and ZTR
are marked with an ‘T’ and ‘Z,” respectively.

With the fixed relation in the EZW coder,
Fig.5 (a), parents A, B, C and D, each have two signif-
icant children. Therefore, C and D should be marked
with an ‘T’ to scan their significant children—Cl1, C2
and DI, D3. In this case, two ‘I’s and eight ‘Z’s are
needed to identify the ten ‘S’s in the stream.

With the flexible relation in the FZW coder,
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Q Significant coefficient
() Insignificant coefficient
@—»[] Coefficients in the box are scanned under parent X,

®~—»Q  Child Y is extended from child X and scanned.
@¥»Q  CchildYis extended from child X but not scanned.

Fig. 5 Searching for significant coefficients in (a) EZW and (b)
FZW coders.

Fig.5(b), parent A is significant and thus marked with
an ‘S’; its basic children are Al, A2, A3, and A4, of
which A3 and A4 are significant. Thus, C1 and C2 from
A3 and B3 and D1 from A4 are added as extended chil-
dren. Note that there is no need to re-scan a coefficient
once it has been scanned, such as with C2. In this case,
parent A is related to eight children—A1l, A2, A3, A4,
Cl1, C2, B3, and D1. Their relations are clearly shown
in Fig.6(a). The next parent, B, is also significant. Its
basic children are BI, B2, B3, and B4. Because B3 was
already scanned under parent A, it is not re-scanned.
In this case, the extended children are only D2 from
B3 because D1 was also previously scanned. Although
parent C has significant basic children—C1 and C2, it
can be marked with a ‘Z’ because their significance was
already identified under parent A. We thus save one ‘I’
symbol compared to the fixed relation. Parent D is a
little different from C because there is significant basic
child D3 not yet scanned. Parent D is thus responsible
for getting D3 scanned. Therefore, D is marked with an
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Fig. 6 Parent-child relations and symbol-output processes for
the searching in Fig. 5 (b).

‘I.” Once D3 is scanned, its two extended children, F1
and F2 should also be scanned in accordance with the
extension rule, although they are not significant. The
symbol output processes are mapped with numbers in
Fig. 6 (b).

The symbol streams produced from the EZW and
FZW coders are given in Fig. 5. Stream 2 contains one
less “I" symbol and one more ‘Z’ symbol than stream
1. Consequently, stream 2 has lower entropy. Although
this example shows an increase of only one ‘Z’ symbol,
in practice, an ‘I’ symbol decrease usually leads to more
than one additional ‘Z’ symbol.

4. Experimental Results and Discussions

We simulated their use on two test images—Iena and
Barbara (512x512 in grey scale). We compared the
performance of the FZW coder with that of the EZW
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coder. The images were downloaded from the RPI site:
ftp://ipl.rpi.edu/pub/image/still /usc.

All simulations were done with 6-scale octave
wavelet by using a 9/7-tap filter bank[27] and a re-
flection extension at the image border. The filter
performed better than the QMF 9-tap filter [28] that
Shapiro used. However, using the QMF filter, we could
not match his published performance[13], in either the
flexible or fixed relations. To reproduce an image from
transmitted symbols, the stream includes 8 bytes header
information—4 bytes for the horizontal and vertical di-
mensions of the image, 1byte for the filters, 1byte for
the wavelet scales, and 2 bytes for the maximum coeffi-
cient. With the header information, the initial threshold
is set at a maximum integer power of two that does not
exceed the maximum coefficient.

Along with this threshold, a dominant pass is in-
serted into the stream, followed by a subordinate pass.
Then, the threshold is halved. These two passes are
alternated until the coding is terminated. All symbols
produced from the passes are entropy-coded using the
Jones’ coder[29]. In this entropy coding, the frequen-
cies of the symbol-alphabet are adaptively updated ac-
cording to the occurrence rates of the symbols. The ini-
tial occurrence probabilities for the symbols are evenly
allocated, and they are updated according to the pro-
duced symbols. To improve the entropy coding, the
probabilities are refreshed whenever the maximum fre-
quency reaches 256.

Figure 7 displays the coding performance using the
FZW coder as well as the results in [13]. The first two
circles were obtained at very low bit rates by stopping
the coding at 256 and 512 bytes, respectively. The other
circles were computed at the bit rates of the multiples
of 1024 bytes.

A comparison of the symbols produced among
the fixed, modified, and flexible relations is shown in
Table 1. To get the same image, the codings were termi-
nated at the point where a threshold became 16 for Lena
and Barbara images. That is, all coefficients larger than
or equal to the threshold 32 were identified as signifi-
cant by the dominant passes; where the corresponding
subordinate passes were also transmitted. The numbers
of symbols for the subordinate passes were not given
in the table because they were the same. As shown in
the table, the flexible relation produced symbol streams
with fewer IZ symbols and more ZTR symbols than the
fixed relation, while it produced more IZ symbols and
fewer ZTR symbols than the modified relation. When
the produced symbols were entropy-coded, the flexible
relation showed the best performance among the three
relations. It was proved in terms of compressed sizes
and compression ratios.

The PSNRs of 32.51 and 30.39dB for Lena and
Barbara, respectively, were obtained by applying the
same terminating condition. The differences in the com-
pressed sizes were due solely to the number of IZ and
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Table 1 Symbols produced using different relations for the same image quality.
(a) Lena (512x512, 8-bit grey image, original size = 262144 Bytes)
: Compressed PSNR Compression f of f of f of f of
Relations | ¢ 'in Bytes in dB ratio POS NEG ZTR V4
Fixed 6511 32,51 40.26: 1 3876 3743 43249 1566
Modified 6388 32.51 41.04: 1 3876 3743 65707 912
Flexible 6288 32.51 41.69: 1 3876 3743 48102 1168
(b) Barbara (512x 512, 8-bit grey image, original size = 262144 Bytes)

Relations Compressed PSNR Compression i of i of fi of i of
size in Bytes in dB ratio POS NEG ZTR 1Z

Fixed 15878 30.39 16.51: 1 9741 9586 72003 7603
Modified 15022 30.39 1745 : 1 9741 9586 103203 4804
Flexible 14511 30.39 18.07 : 1 9741 9586 80526 5063
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Fig. 7 Performance curves for test images.

ZTR symbols. To analyze the numbers, we set the num-
bers of IZ and ZTR symbols to variables, n;z and

N, ZIRE

N, iZ-r

Fig. 8 Relationship between the number of ZTR symbols and
the number of IZ symbols. Note that n;z and nzrg are located
at Nyz_ g and Nzrgr_ g in the EZW coder.

nzrr; where the same image is reproduced by the same
Npos and Nypa using each relation. Then, we know
the total number of used symbols and the occurrence
probabilities of the four symbols. Therefore, the mini-
mum entropy-coded size can be computed by multiply-
ing the entropy for a symbol by the total number of
symbols. Let the compressed size by the EZW coder be
C bits. Then, an identity equation with two variables
can be made for the given C bits, as shown in Eq. (2).

NyEc

N
C = — <Npos 10g2 % + NNEG 10g2

1z logy 1% + nzrrlog, ”ZfR> @)
where, t is the total number of symbols. Using Eq. (2),
we can relate nyz to nzrg, as shown in Fig.8. The
same image quality using C bits can be obtained at ev-
ery point on the curve. When the EZW coder is used,
in practice, the number of ZTR symbols is much greater
than the number of IZ symbols; that is, Nyrp_g >>
Nrz_g. Therefore, the point by the EZW coder is on
the far-left side of the graph, for example, point A in
the figure. As we move to the left on the curve, the
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entropy is lowered and the total number of symbols is
increased. The curve can therefore be seen as a col-
lection of points representing the same image using the
same C bits. When the combination of nyz and nzrr
is below the curve, it means that the entropy coding is
achieved with less cost than C bits. In contrast, if the
combination is above the curve, more than C bits are
needed. Therefore, the curve can be used as a criteria
for good compression.

Using the C-bit curve, we found the point where
the numbers of IZ and ZTR symbols, Nyz_js and
Nyrr_u, in the modified relation are located. Recall
that the modified relation was designed to produce fewer
1Z symbols than the fixed relation. Therefore, Nrz ar
may be located on line L. Moreover, the children of
neighboring parents are not independent of each other.
They are overlapped and shared among parents: that
is, a child does not need to be scanned again once it
has been scanned. As the result, Nzrgr_ps was found
to be below the curve. That is, the numbers, N;z_ns
and Nzrr_u, were found to be at point B.

Recall that the flexible relation was designed to
produce fewer ZTR symbols than in the modified re-
lation. The flexible relation was exploited by the ob-
servation that a significant coefficient is more likely to
have significant coefficients in its neighborhood than an
insignificant coefficient. In the flexible relation, some
of children in the modified relation are retrenched.
Therefore, the flexible relation is at point C (N7z_p,
Nzrr_r). From points A, B, and C, we derived in-
equalities, (1) and (2). From these inequalities, our
simulation results showed that inequality (3) is satis-
fied.

(1) Number of IZ symbols:
Nrz—g > Niz_r > Niz—m

(2) Number of ZTR symbols:
Nzrr-m > Nzrr—r > NzrR-E

(3) Compressed size in Bytes:
Fixed > Modified > Flexible

5. Conclusions

We have proposed a new relation in which a parent is
related to its children in a flexible manner. We started
by modifying the fixed relation. This modified relation
produces a symbol stream that has lower entropy be-
cause each parent has nine children. The children of
peighboring parents are not independent of each other;
they are overlapped and shared by parents. This en-
larged relation means that fewer IZ symbols and more
ZTR symbols are produced than in the fixed relation.
The increases of the ZTR symbols were exploited
by the observation that a significant coefficient is apt
to have significant coefficients in its neighborhood than
an insignificant coefficient. Based on this, we derived
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a flexible relation and compared the numbers of sym-
bols produced by the fixed, modified and flexible rela-
tions. Although the symbol streams produced the same
image, their compressed sizes were quite different. For
rate-controlled results, the FZW coder outperformed the
EZW coder[13] by 0.2—-1.0dB in terms of PSNR.
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