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SUMMARY This paper proposes two numerical methods to
solve the optimal problem of contrast enhancement in the cross-pol
and co-pol channels. For the cross-pol channel case, the contrast
(power ratio) is expressed in a homogeneous form, which leads the
polarimetric contrast optimization to a distinctive eigenvalue problem.
For the co-pol channel case, this paper proposes a cross iterative
method for optimization, based on the formula used in the matched-pol
channel. Both these numerical methods can be proved as convergent
algorithms, and they are effective for obtaining the optimum
polarization state. Besides, one of the proposed methods is applied to
solve the optimal problem of contrast enhancement for the time-
independent targets case. To verify the proposed methods, this paper
provides two numerical examples. The results of calculation are
completely identical with other authors’, showing the validity of the
proposed methods.
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1. Introduction

The problem on the polarimetric contrast optimization or
enhancement has been attracting attention in the
polarimetric radar remote sensing [1]-[12], because the
contrast enhancement enables us to classify targets or
distinguish the desired target from background or undesired
target. The basic concept of polarimetric contrast
enhancement or optimization is illustrated in Fig. 1, where
the desired target is enhanced against the clutter by changing
the polarization states of the transmitter and receiver. This
technique can be used to any polarimetric Synthetic
Aperture Radar (SAR) imagery in which each pixel
corresponds to a scattering matrix or an equivalent Mueller
matrix or Stokes matrix, depending on the data storage
format. Boerner’s group (Kostinski, et al. [1], [2], Boerner,
et al. [3], [4], and Tanaka, et al. [5]) has founded the
polarimetric-filtering principle for both coherent and
incoherent cases, based on the polarization ratio and the
Stokes vector formulations. The CAL-TECH/JPL (NASA)
group (Van Zyl, et al. [6]-[8]) applied the principle to the
SAR data acquired at NASA JPL. Touzi, et al. [9] proposed
a filtering technique to optimize the partially polarized wave
scattering from an object and applied their method to SAR
images. Yamaguchi, et al. [10] applied the principle to SAR
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image sets in three radar channels (the co-pol channel, the
cross-pol channel and the matched channel) and gave some
significant conclusions by comparing the resultant imagery.

For the coherent case, it is easy to obtain the optimum
polarization states for contrast enhancement in three radar
channels. In the cases of the co-pol channel and the cross-pol
channel, for example, the optimum contrast polarization
states are the Co-pol Nulls and Cross-pol (X-pol) Nulis of
undesired target, respectively. Based on the polarization
ratio, the Co-pol Nulls and X-pol Nulls can be obtained
easily [11]. For the incoherent case, on the other hand, the
optimum contrast polarization states are different from the
Co-pol Nulls or X-pol Nulls. Obviously, it is a tedious task
to obtain the optimum polarization state in the co-pol or
cross-pol channel by the Lagrangian multiplier method [4]
because both the numerator and denominator of the power
ratio are quadratic functions of the transmitting Stokes
vector, So, some authors [10] calculated the values of the
power ratio (as a function of the transmitting polarization
state, tilt angle and ellipticity angle) at many points, then
compared these values for obtaining the optimum
polarization state. This method is very easy for
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Fig. 1 Polarimetric contrast enhancement by using the optimal
polarization states.
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programming, but needs many multiplications and divisions.

In this paper, we present two methods to solve the
problem on the polarimetric contrast enhancement in the co-
pol and cross-pol channels for the incoherent case,
respectively. For the cross-pol channel case, the problem of
the polarimetric contrast enhancement is transformed into an
eigenvalue problem, which can be solved easily. For the co-
pol channel case, this paper proposes a cross iterative
method for obtaining the optimum polarization state, based
on the result of [12]. This numerical method can be proved
as a convergent algorithm, and can be used for obtaining the
optimum contrast polarization state rapidly. To verify the
presented methods, this paper provides a numerical example
for contrast optimization in the cross-pol and co-pol
channels. The results are completely identical with [10].
Finally, we apply one of the proposed methods to the time-
dependent targets case by using an example and also obtain
the same result as [5], showing the validity of the proposed
methods.

2. Case of the Matched-Pol Channel

In this section, we first give the formula of the optimum
polarization state for contrast enhancement in the matched-
pol channel because the result will be used in Sect. 4.
Let us consider the following model [1]
_[elaGle
maximize | ————|,
¢"'[G,]é

M

where [G,] and [ G,] denote the Graves matrices [14] of
the desired target and undesired target, respectively. The
vector € denotes the transmitting polarization state, and
superscript # denotes conjugate transpose.

Without loss of generality, we assume that the
amplitude of € equals 1 (| é|=1) in this paper.

Let & denote the Stokes vector of € , and let

gy O
[G]={(§ oi},ﬂwnweMweUﬂ

¢&"[Gle =%(cr1+cr4)+%(0'1—0'4>gl

(O'2+G3)g2+z (0,-03)¢g;3, 2)

where gi +83+gi=1.
following form

So, we can rewrite (1) as the

A +Ag +A2g2+A3g?]

maximize ( B,+B.g, +Blgl +ng3

(3)
where A; and B; can be obtained from (2). For the
problem (3), we know from [12] that the optimum
polarization state is

A,-C,B,

&:,‘7ﬂ_ﬂ_—_ (i=1,2,3 ), 4)
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where

&N

Z

C ___Zl'l

m

=

+ V2~
Ao

6 =Ag-AT-Al-AT,
2, =B -B;-B;-B;
2 = AyBy —A|B, ~A,B, —~A;B;.

Note that the above formula (4) will play an important role in
Sect. 4.

3. Case of the Cross-Pol Channel

Let [M] =( ”1ij)4x4 denote a Mueller matrix of a radar

target, and let ¢ denote the polarization state of the
transmitting antenna. Then the received power in the cross-
pol channel is

Lk 1z
Px'—2g [Kr]g

Mgy Mgy My Mgy 1

100 8 g
B 0-10 My My, g, )y I
—7[1,g1,83v83] 0 0 -1 0 m;[)’n;: m;l’nﬁ 82
0 0 0 1 [|mamy My mas 83
1 my My My |18 1
=—§'[81~gz’g3] My Moy My || 85|+ Mo, (Sa)
My My —Mys || 83

where superscript + denotes transpose. Note that under the
. 2 .
assumption 8 i+gitei= 1, my can be written as

Moo 0 0 g,
mO():[gl’gZ’gS] 0 my 0 |lg,
0 0 My, || 83

Therefore, the received power in the cross-pol channel can
also be expressed as

1 My —Hlyy —Myy g 81
Rr=j[g1’82*33] Thy Mgy =My gy 82
BRAE TMy Mgyt || 83
L .
=5 X [M]x, (5b)
where
- t
X=(8,828),
_ My =My —My, — My
[(M]=| —my myp—my —my
—mp — My Mgy + My

It should be noted that (Sb) is a homogeneous form which is
convenient for optimization.

Now let us consider the problem of the contrast
enhancement optimization in the cross-pol channel. Denote
[M,] and [M,] as the Mueller matrices of the desired
target and the clutter (undesired target), respectively. Then
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the power ratio between the desired target and the clutter is

~1 Ka -
R ALYy ©)
g'[K:] g
By use of expression (5b), we can rewrite (6) as
M
C.= -r—[—"_]- : . (N
'[M, ] X

Our purpose is to find the ¥ such that C, is maximum.
According to algebra theory [13], we can know that the
following unit eigenvectors associated with the maximum
eigenvalue are the desired solutions.

(M, ]%=2[M,]%. (8)

Obviously, there are two optimum solutions, which have the
following form

Zo=(Eg, g, 18)" )

Since we only need to find one eigenvector corresponding to
the maximum eigenvalue of (8), it is unnecessary to obtain
all eigenvectors of (8). For obtaining this desired
eigenvector, it is better to use the following method
(Method X), which has been proved as an effective method
by the theory of numerical algebra [13].

Step 1 Calculate [ W ]= [#;'][M,].
Step 2 Select X, as a starting vector.
Step 3 After X, has been obtained, we let

P AGE
+1 "[W]X,\Hz

Step 4 If | %, — % |, S €, we can regard %, as the
desired eigenvector.

(Ford=(q1,9543)" in this paper, we define
Ll =Clatl+lazl+lat 7 )

4. Case of the Co-Pol Channel

4.1 Theorems

Before showing a method to obtain the optimum contrast
polarization state in the co-pol channel, let us present three
theorems which ensure the convergence of the proposed
method. The proofs of these theorems are given in Appendix
L.

Theorem 1: Let

1 O 0 0|00 Mo Mg Moy

[K,]= 0 1 0 O ||Momympyhy
¢ 0 0 1 0 [|mymy My My

0 0 0 -1]|msmy ms ms,
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Moy Mg Mg Mg
Mg My My My
My, My My My
Mgz 1My My —May

denote a Kennaugh matrix of a radar target in co-pol
channel. Then for any 8 € [0, 1] , we have that

My + My Om, Omy;
[A]= Om,,  my+my Omy;
Omy, Omy,  —msz+my,

is a nonnegative definite matrix (positive semi-definite
matrix) and

nmyy — Mg Omy, Omys
[B]= Om,, Mgy — My Omy,
Omy; Omy;  —my—my,

is a nonpositive definite matrix (negative semi-definite
matrix).

Theorem 2: [A] isa 3 X3 nonnegative definite matrix
and [B] isa 3 X3 nonpositive definite matrix. & and b
are 3-dimensional vectors. ¢, and ¢, are constants. If X, is

the optimum solution of the problem

o (#[A)E+2a F+c,
maximize | — R ’ (10)
X [B]X+2b X+c,
then the optimum solution of the problem
L [ X[A]Yy+a x+ad Y+,
maximize | — U an
X[B]y+b' X+b' y+c,

is (X,,,7,) , where ¥, = X,, .
Theorem 3: [A] and [B] are nonnegative definite and
nonpositive definite matrices, respectively. If a starting
point X, is close to the optimum solution X, of (10), then
%, convergesto X,, by the following iteration:

Select Xy as a starting vector. After X, has been

known, consider the following problem
@y[A]x

+
maximize| — —
@EY[B]X+b'X

(12)
Its solution X,.,; can be obtained by (4).

4.2 Method

Now let us consider the problem of the optimum polarization

state for contrast enhancement in the co-pol channel. The

received power in the co-pol channel can be expressed as

P.= 8K ]z, (13)
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Moy Mgy Moy Mgy
My My My, My
My, My My My
Moz Mz My — My

[K,]=

So the ratio of the received powers in the co-pol channel
between the desired target and the clutter is
B AVSIT:
¢ ot b1 - -
gkl
Our purpose is to find the ¥ such that C, is maximum. This
problem can be solved by the following steps (Method C).

(14)

Step 1 Find two optimum solutions of
# [ DK

maximize | ———=—
#[ DK

by solving the problem

[ DKD) | i=2[ DK | %, (15)
where
my, + My, 0 0
[DK)]= 0 Moy + My 0
0 0 — M3z + Mgy,

Because both matrices in (13) are diagonal, the
eigenvectors can be obtained very easily.

Step 2 Select one optimum solution of
# | DK | i
maximize| ——————
i [ 3

as a starting point, denoted as X, .

Step 3 Let h =, after obtaining the solution % of the
problem
(3 ([D(Ke)] + & ro(ke)) %
maximize + 2k hm, X

(i)'([l_)(Kc”)] +kh [O(Kgf)]) 3 | (16a)
+ 2k bl $+2 mb

consider the problem
&) ([D(Ke)]+ k+1) hO(K2)]) %

+2 (k+1) by 3
&) ([D(k2)]+ ke +1) h[O(KE)]) %

maximize|

+2(k+1) hm) X+2mb
(16b)

177

Its solution X;,, can be obtained by Step 4. In the
above equations,

mb, ~m, 0 0
[D(Kf-)J = 0 m3, - mg, 0 )
| 0 0 —mb; -mb,

[ 0 my,m;
[O(K(')]: my 0 my,
| 7113 g3 0

and
m=(mgy, My, My )

-0 - . -
Step 4 Select X, = X, as a starting vector. After ¥;,1 has
been known, ¥, can be obtained by solving the

problem

(Fta) ([D(K)]+ R+ D n[O(Ke)]) 7

+k+Dhm, X +(k+Dhm, X

(&) ([D(k2)]+ e+ 1y n[O(R2)]) %

+k+ 1) hmjy Xt +(k+1) hm) X +2 mb

maximize,

(17)
Since (17) and (3) have the same form, if:f can be
obtained easily by the formula (4). If
| #5 =%, | <&., we can regard ¥, as the
possible solution of (16b), denoted as Xy ;. Obviously,
X, can be regard as the possible solution of (14),
denoted as X, .

Step 5 Select — X, as a starting point, we can also obtain
another possible solution X_ of (14) by the above steps.
Substituting these two possible solution X, and X_ into
(14), we can decide either X, or X is optimum

solution.
Figure 2 shows the procedure for the Method C.

Some Notes

Note 1: Theorem 1 tells us that in (16b) the matrix
[DK)]+(k+1)h[OK?) ] is nonnegative definite and
the matrix | D(K?) |+ (k+1) h [OK)] is nonpositive
definite. Therefore, the condition of Theorem 2 and
Theorem 3 is satisfied. Then applying Theorem 2 and
Theorem 3 to (16b) and (17), we can know that 562:,1 is

convergent to the solution of (16b). In the iteration of the
Step 4, the formula (4) is used for obtaining the solution of
(17). Executing this process repeatedly, we can obtain the
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solution of (16b) finally.

Note 2: Because there is only small difference between
(16a) and (16b), the optimal solutions of (16a) are close to
the optimal solutions of (16b). According to the Theorem 3,
one can know that the optimal solution of (16b) can be
obtained by letting the optimal solution of (16a) as the
starting point and using the iteration of the Step 4. Therefore
one can obtain the optimum solution of (14) by the above
steps, which means that the Method C is a convergent
algorithm.

Note 3: In Step 3 of the Method C, it is unnecessary to obtain
very accurate solutions X k=1,2,...4-1) S0, it is

better to let & & - & _1 =J € (e.g. J=100 or 1000) for

Flowchart of @

l solve the eigenvalue problem (15) |

v

Figcnveclor X eigenvector - ;nl

denote eigenvector of (15) as
optimal solution for k=0

let optimal solution of (16a) be the
starting vector of problem (16b)

v v

| optimal solution x , ” optimal solution ;_]

compare two values no
of the corresponding k & k+lj—
power ratio

Gimam it 7
Fig.2 The procedure for the Method C.
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Fig.3 The basic idea of the Method C.
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reducing the number of iterations.

Note 4: The optimum solution of (7) can also be solved by
the above iteration. But the Method X is simpler than the
Method C.

Note 5: Obviously, for the asymmetric scattering matrix case
(which is corresponding to the general bistatic case or
monostatic non-reciprocal case), the Method C can also be
used to obtain the optimum polarization state in the co-pol
channel or cross-pol channel.

For helping readers to comprehend this method, we
present the basic idea of the Method C shown in Fig. 3.

5. Examples

Example 1: In this example, we use the following averaged
Mueller matrices [10] for the purpose of comparison:

2.5903 0.3716 0.0391 0.0060 |
(M, ]= 03716 2.0150 0.0426 -0.0274
«a1™1 0.0391 0.0426 —0.9294 —0.1669
-0.0060 0.0274 0.1669 —1.5047
and

| 1.2749 0.3539 —0.0614 —0.0298]

[M,]= 0.3539 1.0870 -0.0007 0.0010
171 -0.0614 - 0.0007 0.3154 0.7949

- 0.0298 —0.0010-0.7949 0.1276

Select %,=(1,0,0)" as a starting vector and let
£=0.00001, after 17 iterations by the Method X, we can

obtain one optimum polarization state for contrast
enhancement in the cross-pol channel

%, (x—pol)=(0.02265, —0.84094, —0.54065 )" .

According to symmetry of (7), we know the other solution is

=X (X—pol)  The corresponding maximum power ratio

is 8.09068. Table 1 gives the numbers of iterations and the
calculation results with different starting vectors, showing
the validity of the Method X.

Using the Method C and letting £=0.1(g=10),
£,8 . & =0.1 and &,=0.00001 we can obtain after

54 iterations that the optimum polarization state for contrast
enhancement in the co-pol channel is

Table 1 Numbers of iterations and the calculation results with
different starting vectors.

number of

result of calculation power
iterations

starting vector . N .
( optimum polarization states ) ratio

— t —
Xo = (x1, 0, 0) 17| X,=# (0.02265,-0.84094,—0.54065 y | 8.09068

X,=(0.21, 0) 9 Xm=7F (0.02265,—0.84094,—0.54065 )‘ 8.09068

— t -
Xo=(0, 0,1 1) 12| X=F (0.02265,~0.84094,—0.54065 ) | 8.09068

NI | -El ectronic Library Service



Institute of Electronics,

I nf ormati on,

YANG et al: POLARIMETRIC CONTRAST ENHANCEMENT

and Conmuni cati on Engi neers

179

Table 2 Numbers of the main operations by different methods.

numberof | number of number of | number of used
isi S PR Lo used square |sine functions or
method [precision case multiplications| divisions roo?s sine fretions or
th
affu:srr\-* co-pol | 5.184x 107 | 1.62x 10° 0 18 x 10°
1 0.00175
m[eltg?d x-pol | 4212% 107 | 1.62x10° 0 18 x 10°
proposed co-pol 2816 221 108 0
methods 0.00001
x-pol 264 69 17 0

¥ (co—pol)=(-0.17712,0.55983, —0.80946)"

xmax

and that the corresponding power ratio is 7.38601.

The above results of calculation by the presented
methods are completely identical with [10], showing the
validity of the presented methods. The numbers of main
operations by the method [10] and our methods are shown in
Table 2. From the numbers of various operations, one can
know that the proposed methods are very effective.

Example 2: Let [M,]=(n{),, and [M,]=(m}),,, are
time-averaged Mueller matrices for a target and a clutter,
and let ¢ is the completely polarization state of the
transmitting antenna. Then the (Mg and [M,]§ can
usually be regarded as “partially polarized waves.” In
general, a partially polarized wave can be decomposed into
its completely polarized component and unpolarized
component. Tanaka et al. [5] presented the following model:
to find the transmitting polarization state such that the ratio

of completely polarized components of “the reflected
waves” (due to the target and clutter) is maximum

maximize

where [M,]=(m¢),, and [M,]=(m?),, (i=1,2,3,
j=0,1,2,3) are the submatrices of the matrices [M,] and
[M b], respectively. This problem was solved by use of the
differentiation [5].

The above problem can also be solved simply by the
Method C. For example, let

0915 0.028 0.061 —0.040]

(M,]= -0.701 0.737 -0.403-0.583

a 0.135 -0.339 0.808 —0.665
—0214 0.547 -0.220-0.819 |

and

0.824 —-0.015 0.003 —0.062

[M,]= 0.158 —-0.621 0.256 —-0.147

b —0.530 0.303 -0.698 0.386
0.461 -0.289 0.512 -0.702 ]

be the time-averaged “Mueller matrices” of a target and a
clutter [5], respectively. Using the Method C, we can obtain
that the optimum polarization state is

¥, =(-024127, —0.97005, 0.02825)" .

This result is identical with [5], showing the validity of the
Method C.

6. Conclusion

In this paper, we presented two effective methods to obtain
the optimum polarization states for contrast enhancement in
the co-pol channel and cross-pol channel, respectively. In
the case of the cross-pol channel, we turned the problem of
the polarimetric contrast optimization into an eigenvalue
problem, which can be solved very easily. In the case of the
co-pol channel, we presented a numerical method for
solving the problem of the polarimetric contrast
optimization, based on the formula of the optimum contrast
polarization state in the matched-pol channel [12]. This
numerical method was proved as a convergent algorithm and
can be used to obtain the optimum contrast polarization state
rapidly. To verify the proposed methods, we gave two
numerical examples in Sect. 5. The results are completely
identical with [10] and [5], respectively, showing the
validity of the proposed methods. From the numbers of
various operations shown in Table 2, one can know that the
proposed methods are very effective. Besides, we have
calculated some other examples by the presented methods.
There was no example which required more than 200
iterations.

There have existed two simple methods to obtain the
optimum contrast polarization state in the matched-pol
channel [1], [12]. In this paper, two effective methods to
obtain the optimum contrast states in the co-pol channel and
cross-pol channel were proposed. So the problem to obtain
the optimum contrast polarization states in three radar
channels has been solved completely.
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[12] which means that [A] is a nonnegative definite matrix. In

the above inequality, it was used that 7;;+mg 20
(i=1,2) and mg—my; 20, which can be proved as
follows:

Letx(D=(1,0,0)", then

[13]

[14]
[15] 2P(x (D) =myy+2 7 x (D) +m,, =0

and

o] 2P(—x (D) =my— 27 -x (D) +m,, 20,

[17] Adding both inequalities together, we have my +m,; 20
Similarly, we can prove that my+my 20 and

My —Myy 20 .

(i) For an arbitrary vector £ (| ¥ |,=1), the received

A dix 1: The Proofs of the Th . -
ppendix ¢ Proofs of the Theorems power in the cross-pol channel satisfies

1.  The Proof of Theorem 1

. | M My g
(i) For an arbitrary vector X (without loss of generality, 2P(R) =mog—X| myy my myy | X
. . ) My My —m
we assume that | X |,=1), the received powers in the co- 3 33
pol channel satisfy L P T Moo m, M3 B
=—X my Moy = Mgy My x20,
my, mp N mys M3 — M3y = My
2P (X)=myy+2m X+%| m, my my |2 20,
My My — Mg Note that m, —myq S0, my, —mya <0 and —my3—-my,

<0 which can be proved by letting X be special vectors and
using the inequality of P,(X) 20 . For example, using the
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notation ¥ 3)= (0,0, 1), we have
2 Px(m)) =my+my 20,

Therefore, — M35 =My < 0.
Using a similar method to the proof (i), we can prove that

[B] is anonpositive definite matrix.

2. The Proof of Theorem 2

. "TAlx+2a" % +c,
Denote the maximum value of X’[B]fc+2[5'5c+cb be

o

- Since[A] isanonnegative

definite matrix, we can assume that [A |=[U'] [A¢] [ U],
where [U] is a real nonsingular matrix,
[A,]=diag (4], 43, 45) , A1, 45 and A5 are nonnegative

number. Let
[U] %= (u,(x), (), us(x))"
then

M[A]x+2d %+¢

=

= AT ud(x) + A5 ud(x) + A5 uk(x)+2d ¥ +c, .
¥[A]y+d' 2+ad j+c,
= A7 (%) u, () + A3 ua(x) uy(y) + A5 uy(x) u5(y)
+d' ¥+ada' y+e,
= % (A3 @)+ A5 us(x) + Ajud(x)+2a' i +c¢,)
5 (A u30) + 25 u30) + AL u30) +2d' F +c,)

(F[A]i+24d %+c,)

D—

+3(5 [Al5 28 5+e,) (A1)

Similarly, by use of the condition that [ B] is a nonpositive
definite matrix, we can prove

~t

F'[Bly+b i+b 5+c,

(3'[B]x+2b"%+c,)
+%(§7’[B]y+25'§+c,7)_ (A-2)

According (A-1) and (A-2), we have

@y [A]lF+a' i+d' y+c,

ax | — —
@ [B]yj+b'i+b"5+c,

181

<max| —

XAX+2d" X +c,

< .
< max | ——— —
X'BX+2b' Xx+c¢,

Therefore, if X,, is the optimum solution of the problem

(10), then the optimum solution of the problem (11) is
(Xm’ ?)n) N Where 7m = Xm .

3. The Outline of the Proof of Theorem 3

Here, we only give the outline of the proof of Theorem 3
because the proof is very complicated.

First, let us consider the following algorithm for solving the
problem

. (XA]F+ati+d Y +c,
maximize | — ——— 3
¥ [B]y+b' Xi+Db y+c, (A:3)
subject to: X{ +X3 +xi=1,
yityi+yi=1,
I Selecta vector ¥, as a starting point.
Il  After X, is obtained, consider the problem
. (X[A]y+at X, +d' y+c,
maximize -, » E S . (A4)
Xy [B]y+b Xy +b y+cb

Note that (A-4) and (3) have the same form, so the
optimal solution ¥,.; can be obtained easily by the
formula (4).

II  After ¥,., is obtained, consider the problem

-

. [(X[Aly,, +d'X+d'y , +c,
maximize - T P ,
X'[B]y, +b'X+b'y ., +c,

(A5)
its solution X, ,, can be obtained easily by the formula
4).

v Ifl x5 -% [, <€ and | 5,..-7,

S € we can

regard X,,; and J,,, as the optimal solution of the
problem (A-3). ‘

Then, we can prove the following lemma by using
Largrangian multiplier method and two mathematical
theorems: (a) a monotone increasing bounded sequence
must be convergent; (b) a bounded sequence must contain a
convergent subsequence.

"[A]y+a #+ad F+c,

Lemma has a maximum at

X
F[B]ly+b' i+b y+c,
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=t

[A]lj+a' 2+d §+c,

X
(Xmax> Ymax) . Suppose that 7 has

[B]5+b %+b' y+¢,
only finite maximums. If a starting vector X, be very close
10 Xy , then X, converges to X, and ¥, converges to

Vmae by the above algorithm.

Finally, using the above lemma and Theorem 2, we can
know that the proposed algorithm (Method C) is convergent.
Therefore, Theorem 3 holds.

Appendix 2: Graves Matrix, Mueller Matrix and
Kennaugh Matrix

There are several matrices representing polarimetric
information. The basic matrix is the Sinclair scattering
matrix [ S ], which relates the transmitted electric field to the
scattered electric field as

s s
S — 11 12
5] { Sy S |0
where E, and EY denote the polarization states of the

transmitted wave and the reflected wave, respectively. The
power density of the reflected wave can be expressed as

P=|E,I'=E' [S]"[S|E, =E/ [G|E,

where [ G] is called the Graves matrix, defined as

_ I51112+|521‘2 S11 S+ 8y S

[Gl=[S]"[s] =

* % 2 2
S S8y Sy sl + sy
This matrix is used for expressing the power density of the
reflected wave, so it is also called as power matrix or power
density matrix.

Now let &, and &, denote the Stokes vectors of £, and

E | respectively, then we have

where [M] is called the Mueller matrix. The relation
between the scattering matrix and the Mueller matrix is
given by

O=OO
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]Sn|2 S8 Sy S |512‘2

5381 Sn Sy Sy S SuSp

[(W]={ . ,

SiiSy S8y S Sn SndSen

2 % % 2

|S21| S1 82 Sy Sn |$nl
10 8 1
_| 10 1
[21=10 11 0
0-ii 0

It should be pointed out that in polarimetric radar remote
sensing, the Mueller matrix is often given in the average
form. In this case, there is no scattering matrix which can be
used to express the Mueller matrix in the above form. Next,
let us consider the received power in two special polarized
channels for a monostatic radar. In the co-pol channel, the
received power is given by

P.=LviIM]g, 08 =[K14 4,

where o denotes the dot product. For the monostatic radar
case, the scattering matrix is symmetric. Therefore [K.] is
also symmetric. In the cross-pol channel, the received power
is given by

P=1[V][M]gog =[K]2 08,
1 0 0
where [V.]= 8 _Ol ~01 8 In the above equations,
0 0 0 1

[K ) =IVlIM] ) and [K.] (=[V.][M]) are called as

the Kennaugh matrices corresponding to the co-pol channel
and the cross-pol channel, respectively. Note that the origin
of the coordinate system is usually placed in radar for
Kennaugh matrices, whereas in the Mueller matrices case,
the origin is of the coordinate system is in a target.
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