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Unsupervised Land Cover Classification Using H/a /T P Space
Applied to POLSAR Image Analysis
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SUMMARY  This paper takes full advantage of polarimetric scattering
parameters and total power to classify polarimetric SAR image data. The
parameters employed here are total power, polarimetric entropy, and aver-
aged alpha angle (alphabar). Since these parameters are independent each
other and represent all the scattering characteristics, they seem to be one
of the best combinations to classify Polarimetric Synthetic Aperture Radar
(POLSAR) images. Using unsupervised classification scheme with itera-
tive Maximum Likelihood classifier, it is possible to decompose multi-look
averaged coherency matrix with complex Wishart distribution effectively.
The classification results are shown using Pi-SAR image data set compar-
ing with other representative methods.

key words:  total power, anisotropy, polarimetric entropy, alphabar,
Wishart distribution, iterative ML method

1. Introduction

The purpose of POLSAR image analysis is to classify land
cover as accurate as possible using polarimetric scattering
and intensity information. Since high resolution POLSAR
data sets acquired with fully polarimetric airborne systems
such as AIRSAR [1], Pi-SAR [2], and ESAR [3], are open
to public, it is necessary to provide appropriate POLSAR
image analysis tools.

There are many investigations on target decomposition
based on covariance and coherency matrix, and on their ap-
plications to POLSAR image classification [4]-[9]. These
decomposition methods rely on polarimetric scattering pa-
rameters and eigenvalues in the presence of speckle noise.

Among many decomposition schemes, the H/a/
anisotropy (A) method has been successfully proposed by
Cloude, Pottier, and Lee [4]-[8] based on eigenvalues and
eigenvectors of coherency matrix. The coherency ma-
trix formulation has the advantages over covariance ma-
trix method of relating to physical scattering mechanisms
such as surface, multiple, dipole, and vegetation scattering,
etc. Polarimetric entropy H shows randomness of a scat-
tering medium, and alphabar @ represents average scatter-
ing mechanism. These two parameters are derived by de-
composition of 3 X 3 coherency matrix [4]-[8]. Anisotropy
(A= j; ;jj ) is introduced to classify targets effectively by the
two minor eigenvalues [5], [6]. This method performs quite
well in the case 4, > A, > A3, where 4; is an eigenvalue
of coherency matrix. The eigenvalues are mathematically
derived and physically correspond to scattering process [4]—
[8]. However, it may cause classification errors in the case
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A1 > A ~ A3 (A =~ 0). This happens to regions where mul-
tiple scattering process occurs simultaneously. These areas
physically correspond to vegetation areas, farm lands, and
even some oriented urban areas with respect to SAR flight
path [4],[5]. It is quite difficult to classify these areas or
mixture of these areas accurately because these areas usually
exhibit small Radar Cross Section (RCS), low anisotropy,
and sometimes with high entropy.

In this paper, the authors propose alternatively the en-
tropy (H)/alphabar (&@)/total power (T P) method for such re-
gions with low anisotropy and small RCS. In this method, A
is replaced by total power TP. T P represents RCS of target
(intensity information). This intensity information is impor-
tant because it will serve to distinguish targets, for exam-
ple, vegetation area and complex urban area where similar
complex scattering process occurs simultaneously. Since it
is one of the essential radar parameters, we use it for land
cover classification. In addition, 7'P can simply be obtained
by the sum of eigenvalues of coherency matrix, and is equiv-
alent to the sum of square of scattering matrix elements.

The classification technique in this paper consists of
unsupervised classification scheme using the H/&/T P space
and iterative Maximum Likelihood (ML) classifier based
on the complex Wishart distribution [8], [9] for coherency
matrix. The H/a&/T P space classifies POLSAR image into
several clusters and provides feature coherency matrices for
those clusters, which become training sets for initialization.
Then, the image is iteratively classified by the ML classifica-
tion method until a termination criterion is met. As prepro-
cessing for land cover classification, polarimetric calibration
[10], [11] is applied to POLSAR data. The data employed
here is the L-band Pi-SAR data of the western part in Nii-
gata City.

Section 2 introduces a brief principle of H, @, and TP,
and a representation of the H/a/T P space. Section 3 de-
scribes the unsupervised classification scheme. Sections 4
and 5 show the classification results comparing with other
representative methods.

2. H/a/TP Space

Polarimetric radar measures scattering matrix with quad-
polarization. The scattering matrix in the hv polarization
basis can be expressed as

Sw S ]

[S ()] = [ g (1)
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For the reciprocal backscattering case, S;, = S,,.. The co-
herency vector k; based on the scattering matrix elements
for ith pixel is defined by Eq. (2). The vector represents po-
larimetric scattering information [4]-[8]:

1 Shh+Svu
ki=_ Shn—Sw

V2| os,,

A one-look coherency matrix, T}, of the ith pixel, is formed
by the coherency vector k;,

@)

T; = kik], 3)

where the superscript 1 denotes complex conjugate trans-
pose. The multi-look averaged coherency matrix, (7T), is
obtained by averaging n neighboring pixels,

1 n
Ty =~ Z] T, 4)

This averaged matrix is a 3 x 3 Hermitian matrix and can be
decomposed into

3
<T) = Z /l,-eie:.r, (5)
i=1

where A; denotes an eigenvalue of the coherency matrix.
These three eigenvalues are mathematically derived and
their physical correspondence is scattering process [4]-[8].
e; is an eigenvector represented as

e; = e/%[cos a;, sin o; cos Bie’% sin a; sin Bie" |
(i=123), (6)
where the superscript ¢ denotes matrix transpose. «; repre-
sents a type of scattering mechanism. §; denotes twice of

polarization orientation angle [4], [S], [7]. The other param-
eters are summarized as follows [4], [5], [7]:

¢;: the phase of decomposed hh + v term,

6;: the phase difference between decomposed Ak + vv and
hh — vv term,

v;: the phase difference between decomposed hh + vv and
hv term.

Polarimetric entropy H, alphabar @, and total power TP
can be obtained by eigenvalues and eigenvectors of the co-
herency matrix,

3
A
H =~ Pilog,P;, Pi=—

i=1 Z /lj

a = 23: P,‘Q’,‘, (8)

@i=123), (7

TP = 4 = ISl + 2w + 15wl ©)
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Polarimetric entropy H shows randomness of a scatter-
ing medium, and alphabar @ represents average scattering
mechanism. Total power TP corresponds to RCS of target,
which is equivalent to the sum of square of scattering matrix
elements as represented by Eq. (9).

Anisotropy A, providing complement to H and facili-
tating scattering interpretation, can be derived by two minor
eigenvalues A, and A3 [5], [6] as follows:

A=A
g7

= . 1
Ay + A3 (10)

This parameter A becomes 0 for deterministic scatterer with
H = 0 and for pure noise scatterer with H = 1. A high A
indicates the presence of two scattering mechanisms, while
a low A means the presence of a single dominant scattering
mechanism or random scattering process. The low A regime
is the most difficult area for classification. Figure 1 illus-
trates the H-& plane [5], [7], [8]. Figure 2 shows the H/&/A
[5],16], and the H/&/T P space for which we propose in this
paper.

The H-a plane can represent all random scattering
mechanisms. The physical scattering characteristics of the
nine zones, Z1-Z9, shown in Fig. 1, are summarized as fol-
lows [5],[71, [8]:

Z1: High entropy multiple scattering,

Z2: High entropy vegetation scattering,

Z3: High entropy surface scatter,

Z4: Medium entropy multiple scattering,

Z5: Medium entropy vegetation scattering,

Z6: Medium entropy surface scatter,

Z7: Low entropy multiple scattering events,
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Fig.2 H/a/A or TP space.
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Z8: Low entropy dipole scattering,

Z9: Low entropy surface scatter.
Z3 is not a feasible region in the H-a plane. However, H
is not a unique parameter for randomness of scatterer, be-
cause some combinations of the minor eigenvalues A, and
A3 yield the same H. Therefore, it happens that several dif-
ferent cluster centers locate in the same H-& zone, which is
not helpful for accurate classification.

The H/@/A space compensates for the drawback of H-
@ plane. The ability to distinguish classes is improved using
this 3-dimensional space [5], [6]. The use of the space (addi-
tion of A) yields good land cover classification results in the
case A1 > Ay > A3. However, it is expected that this method
does not perform well in the regions such as forests, sparse
urban area, and crop fields, etc., where 4; > A, ~ 13 [4],
[51, because several scattering mechanisms occur simultane-
ously, i.e., random volume scattering from canopy, surface
scattering from several points, first order multiple scattering
due to dielectric corner reflector, single scattering from iso-
lated target. In these regions, A becomes less than 0.5, and
H is relatively high. A causes classification errors due to
similar scattering process.

The H/a&/T P space will compensate for both the draw-
backs of H-& plane and H/&/A space for these regions. The
total power has three merits:

I) The parameter is insensitive to noise, compared to A,

IT) The value provides us with information on the magni-
tude of scatterer, i.e., RCS. It is independent of polariza-
tion basis, and therefore is polarization invariant quan-
tity.

I11) The parameter is independent of H, &, and A. It provides
complement to H and facilitates interpretation of terrain
types.

The combination of H/&/TP will be effective in dis-
crimination of vegetation and residential area where similar
complex scattering process occurs simultaneously. The dis-
crimination of these two areas is one of the most important
and difficult subjects in land cover classification.

3. Unsupervised Classification Scheme

The unsupervised land cover classification scheme in this
paper is based on polarimetric scattering and intensity pa-
rameters (H, @, and 7 P) and iterative Maximum Likelihood
(ML) classifier. Fortunately, H, &, and TP can be eas-
ily obtained by multi-look averaged coherency matrix (4).
First, the classification forms initial cluster centers V; of co-
herency matrices, which are represented as follows:

n;

1
Vi=— 3T, 11)
i ]:1

where n; is the number of pixels belonging to class i. They
become training sets for iterative ML classifier. Also, each
cluster center provides its polarimetric scattering and inten-
sity information (the values of H, &, and T P).
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The ML classification is based on the complex Wishart
distribution [8], [9] for averaged coherency matrix. A dis-
tance measure between (T) and the cluster center V,,, of
class m is represented by the following equation.

d(T), V) = nlln|V,,| + Tr(V,,(TH] = In[P(m)], (12)

where P(m) is a priori probability of class m, and # is the
number of looks. Tr denotes the trace of a matrix. Without
knowledge of the probability, P(im) is assumed to be equal
for all m, and therefore an equivalent distance measure be-
comes

d((T), Vi) = In |Vl + Te(V,, (T). (13)

This distance measure can be applied to multi-look pro-
cessed POLSAR data since it is independent of the number
of looks [8],[9]. A pixel in POLSAR image is assigned to
a class with the minimum distance. The pixel is assigned to
class m, if

d((T), V,n) <d(T),V;) forall j+ m. (14)

In the iterative ML classification, the classified image is
used to update all the existent cluster centers. The updated
centers become new training sets for classification in the
next iteration, on the basis of (11), (13), and (14). This
process is repeated until a termination criterion is met. The
termination criterions are predetermined by number of itera-
tions, number of pixels switching classes, and the maximum
separation between classes. In this paper, the number of iter-
ations is 15. In this case, the ratio of pixels switching classes
is smaller than 5%.

4. Unsupervised Classification Results

The authors analyzed the L-band Pi-SAR image data set
provided by CRL/NASDA, which is an image of the west-
ern part in Niigata City, Japan. The scene contains Nii-
gata university, residential area, the Sea of Japan, river (the
Shinkawa River), crop fields, paddy fields, and pine woods.
Figures 3 and 4 show the site map, and photo around uni-
versity (which can be ground truth data), respectively. The
details of data set are listed in Table 1. As preprocessing

Fig.3  The map of the western part in Niigata City.
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Fig.4  Photo around Niigata university.
Table1l The L-band Pi-SAR data characteristics for the western part in
Niigata City.
Frequency 1.27 GHz
Data-take 13 June, 2002

HH, HV, VH, VV
29.5-43.4 deg.
4 by 4 km
1600 by 1600 pixels

Polarization
Incidence Angle
Image Size
Dimension

(©)A (d) TP
Fig.5  Entropy, alphabar, anisotropy, and total power images of the west-
ern part in Niigata City: (a) entropy, (b) alphabar, (c) anisotropy, and (d)
total power.

for classification, polarimetric calibration [10],[11] is car-
ried out using a 7 by 7 pixel window on the Pi-SAR data.
Figure 5 illustrates the entropy, alphabar, anisotropy,
and total power images for the site. Box A shown in
Fig. 5(d) corresponds to the region illustrated in Fig. 4. Tt
can be seen in Fig. 5 that the difference of polarimetric scat-
tering characteristics do not appear so clearly, especially
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black area: A > 0.5.
(a) A

black area: TP > ave.
(b)TP

Fig.6  Anisotropy (less than 0.5), and total power (smaller than average)
images of the western part in Niigata City: (a) anisotropy, and (b) total
power.

around the university. The dynamic ranges of H and & are
narrow. The value of @ is approximately 45° and is uni-
formly distributed throughout the image except for the Sea
of Japan, part of residential area and paddy fields. In this
POLSAR data, several target areas, such as pine woods,
crop fields, residential area around university exhibit similar
polarimetric scattering characteristics with high H, moder-
ate @ (40°—50°), and A less than 0.5. Therefore, it is difficult
to distinguish targets using polarimetric scattering parame-
ters H, & and A only for this scene.

Figure 6 shows the regions with A less than 0.5, and
TP smaller than the entire average. The purpose is to see
the land targets with anisotropy less than 0.5 and small RCS
area. These regions are difficult to be classified. The regions
with A larger than 0.5 and TP greater than the average are
colored black in this figure. The difference of TP (RCS) ap-
pears clearly in Fig. 6(b) compared to that of A in Fig. 6(a).
In addition, it is seen in Fig. 6(b) that A is noisy. Therefore,
it is expected that TP may serve efficiently to classification
for these regions.

The land cover classification results for the site based
on H-a plane, H/@/A and H/&/T P spaces, and their com-
parison are shown in the next section.
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5. Comparisonof H/@/A and H/a/TP

In the case of classification based on the H-& plane, the max-
imum number of classes is 8 according to feasible zones in
Fig. 1. For the H/&/A space, the number is 16, because 8
feasible zones in the H-& plane are divided into two classes:
one with A larger than 0.5, and another with A less than 0.5.
As for the H/a@/T P space, 16 classes are set up in a similar
way to the H/a@/A space (see Fig.2). The division is made
by T P value being larger or less than criterion value. As the
criterion value, the average 7 P for all the pixels in the im-
age is simply used. The class i (1 < i < 8) for the H-& plane
is divided into class 2i — 1 and class 2i, for the H/a/A and
H/&/TP spaces.

Figure 7 illustrates classified images, based on the H-
a plane, H/@/A and H/a@ /TP spaces. Final cluster centers
of each class, and initial color codes for each H-@ zone are
shown in Fig. 8. Each color used for classified images in
Fig. 7 is labeled with corresponding number shown in initial
color code distribution, and final cluster centers in Fig. 8. In
addition, the values of H, @ and A or TP for each cluster
center in Figs. 8(b), (e), and (h) are listed in Table 2.

With respect to classification based on the H-& plane,
it can be seen in Fig. 7(a) that a lot of land targets cannot
be distinguished due to similarity of scattering mechanisms.
For example, pine woods and residential areas around uni-
versity are assigned to the same class. Similarly, the Sea of
Japan and paddy fields cannot be discriminated. The several
final cluster centers locate in the same H-& zone, Z5 and Z9
(see Fig. 8(b)). These results mean that the H-& plane is not
sufficient to distinguish targets and to identify the types of
terrain.

As seen in Fig. 7(b), there still exist classification er-
rors in several target areas, although the sea and paddy fields
can be discriminated well by supplemental information of
A. The discrimination among crop fields, pine woods and
residential areas around university is not well done due to
similarity of polarimetric scattering characteristics. In addi-
tion, the several final cluster centers still concentrate in Z5
because of similar scattering process as shown in Fig. 8(¢).

In contrast, H/&/T P space yields rather good classifi-
cation results. The enlargement of the classification results
for region A shown in Figs.7(b) and (c), and some pho-
tos are illustrated in Fig. 9 for the comparison. The authors
picked up three areas A-C as shown in this figure:

Area A: Mixture of crop fields and some buildings,

Area B: Mixture of pine woods area and some houses,

Area C: Crop field.

H/&/TP method can discriminate buildings and houses
from crop fields and pine woods area in the small rectan-
gular boxes A-B. In addition, classification errors do not oc-
cur in box C. The pine woods area, crop fields, and build-
ings and houses are colored dark green, light green, and red
in these boxes in Fig. 9(a), respectively. However, H/a/A
method cannot fully discriminate buildings and houses from
crop fields and pine woods area in boxes A-B (see Fig. 9(b)).
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1km

1km

(a) H-a plane.

(b) H/&/A space.

1km

(c) H/@/TP space.

Fig.7 Classification results of the western part in Niigata City.

The classification errors occur in dark green area within box
C. In addition, it is seen in Fig. 9 that A is noisy. For the
H/a/TP space, paddy fields are also assigned to several
classes because of the presence of canopy, surface rough-
ness, and soil moisture (see Fig.7(c)). Moreover, several
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footpaths between rice paddies are discriminated from the
paddy fields. As illustrated in Fig. 8(h), the final cluster cen-
ters in Z5 are spread compared to Fig. 8(e). The classifica-
tion results show that H/a/T P space is effective for discrim-
inating vegetation and residential area, where the polarimet-
ric scattering property is characterized with A less than 0.5
and relatively high H.

In Figs. 7 and 8, the full dynamic range of TP is used
for classification. It is expected that the ability to distin-
guish targets may be further improved as the number of dy-
namic range division increases. The dynamic range divi-
sion is deeply related to terrain type and distribution in SAR
data, and way of stochastic subdivision with respect to T P.
Therefore, the effects of these factors in land cover classifi-
cation should be considered.

SAR image data have very large dynamic range (for
example, 50 dBm?) specific to acquired scene. Therefore,
the best number of 7' P division depends on the scene. In this
example, the authors tried to divide 7P range into 2, 4, 6,

(g) Initial color code distribution for TP > ave.

(h) Final cluster centers in the H/&/T P space.

Initial color code distribution, and final cluster centers for the western part in Niigata City.

and 8 classes. Figure 10 illustrates the classification results
according to (a) 4-class division; (b) 6-class division; and (c)
8-class division, which correspond to 32, 48, and 64 classes,
respectively. Note that each color used for these figures does
not correspond to class number shown in Figs. 7 and 8.

Figure 10 shows that the 2-class division classification
has performed the best in this specific scene. Assignment
errors to residential class in pine woods area along the coast-
line are reduced in the 4-class division case. More roads and
footpaths are discriminated well from other targets for the
6-, and 8-class division. However, classification errors in-
crease in crop fields and pine woods areas around university
for the 4-, 6-, and 8-class division cases.

Effective methods of class subdivision with respect to
T P should be investigated in the future.

6. Conclusion

Unsupervised land cover classification using polarimetric
entropy H, alphabar @, and total power TP was proposed

NI | -El ectronic Library Service



Institute of Electronics, Information,

KIMURA et al.: UNSUPERVISED LAND COVER CLASSIFICATION

and Conmuni cati on Engi neers

1645
Table 2  The lists of each cluster center.
(a) H-a plane.
Class H 0 [deg. |

1 0.346 24.97

2 0.411 32.45

3 0.406 61.69

4 0.571 39.20

5 0.722 42.41

6 0.582 54.17

7 0.774 46.15

8 0.771 45.51

(b) H/&@/A space.
Class H « [deg.] A Class H © [deg.] A
1 0287 2342 0429 9 0.763 40.67 0.351
2 0287 2259 0760 10 0.551 5349 0.708
3 0465 2954 0441 11 0722 5273 0.590
4 0287 39.72 0.605 12 0490 5268 0.811
5 0635 5875 0576 13 0.777 4341 0353
6 0378 61.33 0.843 14 0757 43.17 0435
7 0719 49.10 0.578 15 0.685 54.62 0.608
8 0461 27.17 0646 16 0819 49.26 0.406
(c) H/a@/TP space.

Class H @ [deg.] TP[dBm?] Class H @ [deg‘] TP [ dBm?]
1 0286 23.39 -21.98 9 0772 41.08 -13.29
2 0321 2741 18.06 10 0.608 50.51 1.00
3 0322 2290 -5.53 11 0.674 5345 -13.47
4 0430 58.23 15.10 12 0495 57.21 5.49
5 0719 50.02 -26.77 13 0.801 4498 -7.93
6 0283 6217 29.40 14 0.803 46.32 -2.37
7 0.652 36.40 -19.19 15 0714 53.02 -4.39
8§ 0421 2447 4.68 16 0.705 55.06 3.87

for POLSAR image analysis. These polarimetric scattering
and intensity parameters are derived directly by eigenval-
ues and eigenvectors of multi-look averaged coherency ma-
trix. This method will serve to classify land targets including
distributed natural and man-made targets with anisotropy A
less than 0.5, and relatively high entropy H, such as crop
field, forest and residential area, etc. The comparison with
other representative classification results using Pi-SAR data
set shows that H/a/T P space is effective for distinguishing
between vegetation and residential area.
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(a) H/@/T P space.

500m

(b) H/@/A space.

Fig.9  The comparison of ground truth and classification results around Niigata university.
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(c) 8-class division.
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(b) 6-class division.

Fig.10  Variation of classification results of the western part in Niigata City in the case of class sub-

division with respect to TP.
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