2288

Institute of Electronics, Infornmation, and Conmunication Engi neers

IEICE TRANS. COMMUN., VOL.E90-B, NO.9 SEPTEMBER 2007

[PAPER Special Section on 2006 International Symposium on Antennas and Propagation |

A Simple Mutual Coupling Compensation Technique in Array of
Single-Mode Elements by a Weighted Mutual Coupling Matrix

Based on the Impedance Matrix
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SUMMARY  High-resolution Direction-of-Arrival (DOA) estimation
techniques for antenna arrays have been widely desired in many applica-
tions such as smart antennas, RF position location, and RFID system. To
realize high-resolution capability of the techniques, precise array calibra-
tion is necessary. For an array of single-mode elements, a calibration ma-
trix derived by the open-circuit method is the simplest one. Unfortunately,
calibration performance of the method is not enough for the high-reslution
DOA estimation techniques. In this paper, we consider problems of the
calibration matrix derived by the method, and show that errors in the ma-
trix can be effectively removed by an optimal diagonal weight coefficient.
In the proposed compensation technique, the number of newly introduced
parameters, or unknowns, is only one for an array of the identical elements.
Performance of the simple compensation technique is verified numerically
and experimentally.

key words: array calibration, mutual coupling compensation, DOA esti-
mation, superresolution technique

1. Introduction

Recently, DOA (Direction Of Arrival) estimation based on
antenna arrays has been expanding its application areas. For
applications where number of array elements is limited, su-
perresolution techniques, such as the MUSIC algorithm [1],
are often required. However, array calibration is necessary
to realize the high-resolution capability of the technique.
The main causes for the performance deterioration are ana-
logue component imbalance in the receiver(s), phase center
(position) displacement of the array elements, and mutual
coupling effects among the elements. The first two effects
can be decreased by improving precision of the component
and array, however, the latter effect, the mutual coupling,
is unavoidable because it is a electromagnetic phenomenon
caused by the array elements. In this paper, we focus on the
mutual coupling compensation.

There are many array calibration techniques for the
mutual coupling. The mutual coupling matrix estimation by
using external reference plane waves will be a well-known
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calibration technique [2]. An extended technique for direc-
tional elements and/or their displacement of phase center
can be found in [3]. This kind of methods can also decrease
the coupling effect due to objects near the array, however, it
would be often a hard task in some practical applications to
carry out the calibration procedures.

For an array of single-mode elements without adja-
cent coupled objects, the open-circuit voltage method [4]
is the well-known technique. This method has been pro-
posed to compensate the effect of the mutual coupling by
using the impedance matrix of the array elements including
the load impedance. However, it has been pointed out that
the method is only available for arrays with single-mode el-
ements because the scattering effect of the elements in the
open-circuit state is ignored [5]-[9]. Even a half-wavelength
dipole is not the ideal single-mode element. To overcome
this problem, Hui has proposed to use the estimated current
distribution to include the open-circuit scattering effect into
account {7]. Most of recent calibration techniques [5], [8]~
[10] utilize the numerical results calculated by the method
of moments (MoM). Also, concept of the mode expansion
is used for the calibration of a microstrip array [11]. As
discussed in these literatures, current distribution of the el-
ements or numerical assistance by the MoM is required to
realize the precise calibration.

However, the open-circuit method is still attractive
for the arrays with quasi single-mode elements because
the coupling error compensation can be done by using the
impedance matrix which can be easily measured without
any external reference waves. In this paper, we propose a
simple coupling error compensation technique to improve
the calibration performance of the open-circuit method. In
the followings, we refer the open-circuit method as the con-
ventional technique. Proposed modification is simple. It
is just a diagonal weighting to the conventional coupling
matrix derived in [4]. No information on the array/element
shape is used in the proposed technique, then the technique
will be said a ‘compensation’ technique. The technique will
be only effective for the arrays of the quasi single-mode el-
ements with moderate element separation.

Theoretical background of the proposed scheme is pro-
vided in Sect.3. As described in this section, the proposed
compensation matrix can be derived with rough approxi-
mations of coupling effect among the elements, however,
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Fig.1 DOA estimation with an N-element dipole array.

it works pretty well for some dipole arrays. Numerical and
experimental results are presented in Sect. 4 to show the per-
formance and limitation of the method.

2. Problem Formulation

For simplicity, we consider the DOA estimation problem of
an N-element linear array as shown in Fig. 1 (a 4-element
dipole array (N = 4) in this figure). We also assume that
all the elements are the same and terminated by Z;. When a
plane wave impinges on the array at angle of 6, the received
data vector of the array can be written by

i =Ca(6)s + n, (1)

where i and n are an N-dimensional vectors whose element
corresponds to the terminal current and an additive noise of
each array element, respectively. An N-dimensional vector
a(0) and a s are a mode vector and a complex voltage of the
incident wave, respectively. An N X N matrix C denotes the
mutual coupling matrix of the array. '

In this formulation, the array calibration problem be-
comes estimation problem of the coupling matrix C. It can
be precisely estimated when enough calibration dataset of
the plane waves having known DOAs [2] is available. In the
DOA estimation of plane wave incidence, the coupling ma-
trix € should be estimated by the plane wave illumination
to the array, hence we denotes the matrix as Cpjage in the
followings.

In this paper, we assume that each element is a half-
wavelength dipole which acts as a quasi single-mode ele-
ment, and also no coupling objects exists near the elements.
In the next section, we describe the conventional mutual
coupling matrix of the array and show the proposed com-
pensation scheme.

3. The Mutual Coupling Matrix of the Array

3.1 The Impedance Matrix and Conventional Calibration
Matrix

As discussed in [4], the induced voltages by the incident
waves and terminal currents can be modeled by using the
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open-circuit voltages and terminal currents of the equivalent
circuit of the array. When we denotes the voltage and the
current vector as v and Z, respectively, we obtain

v=(Z+Z.Di, 2

where Z is an N X N impedance matrix of the array, and I
is the identity matrix. The current vector i corresponds to
the terminal current vector in (1). Clearly, the open-circuit
voltage vector v, which corresponds to the ideal/uncoupled
voltage vector, can be easily derived when the impedance
matrix Z is known,

The mutual impedance matrix can be easily measured
without employing the external reference plane-waves. Let
us excite only the k-th element by V. The relation between
the voltage vector v; and the corresponding current vector iy
can be written by,

U = Vﬂui = (Z+ZLI)ik, k= 17"' ’Na (33)
u=10,---,0,1,0---,01", (3b)
———

k-1

where T denotes transpose. u; is an N dimensional vec-
tor whose the k-th element is 1 and the remaining elements
are zeros. When each element is excited individually by

v,0,- -+ , U, We obtain
Z + Zi = Vod g (4a)
Jaela = i1, 02, - ,iy]. (4b)

The mutual impedance matrix can be measured by above
equations. Note that the subscript “delta” is used here to
denote that the matrix is measured by the delta-gap feed ex-
citation of each element. The impedance matrix can also
be measured by S -parameter measurement with a network
analyzer.

From (2) and (1), we can define the mutual coupling
matrix by

Ciera = (Z + 2, 1) )

We also use the subscript “delta” to denote the matrix is
estimated by the delta-gap feed excitation.

This calibration method is simple and clear, however,
the estimated calibration matrix Cgeys 1S often biased, even
for the array of the half-wavelength dipoles. In this deriva-
tion, the open-circuit voltage of the elements is assumed to
be independent from the other elements. Strictly speaking,
this assumption only holds for ideal single-mode elements.
In general, scattered waves by the adjacent general (quasi-)
single-mode elements often affect to the open-circuit volt-
ages of the others [5], [6], which cause estimation bias.

3.2 The Proposed Compensation Matrix
Main objective in this paper is development of a simple and

an effective compensation technique. We can obtain the ap-
proximate calibration/coupling matrix, Cgeys, relative easily.
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Then we focus on the consideration of accuracy improve-
ment of the matrix Cgyey,. As discussed in the previous sub-
section, main difference in the estimation between th Cgepia
and Cpae is the excitation of the elements. In the estima-
tion of the matrix Cpjane, €ach element is excited uniformly
by the plane wave. On the other hand, only the feed point
of each element is excited by the delta-gap feed excitation
in Cyeira. Then, current distribution on the elements in each
excitation is slightly changed even when the array of the
half-wavelength dipoles is employed [7].

Concept of the proposed modification is simple. The
proposed compensation matrix is defined by the modifica-
tion of the diagonal elements of the conventional coupling
matrix Cgeys, Which can be written by

C'() = Coera - 1, (6)

or

C(p) = (oI) © Caelras )

where £ and p are compensation coefficients to decrease the
difference between Cpjane and Cgeys due to the element ex-
citation. Operator © denotes the Hadamard matrix product
(element-wise multiplication). The matrix é"(g) is defined
by diagonal loading, while the matrix C(p) is defined by di-
agonal weighting. Theoretical background of these matrices
is shown in the next subsection.

In (7) (or (6)), we introduce the new unknown p (or
{). Then, estimation of the parameter is the next prob-
lem. The superresolution techniques reveal their best per-
formance when the data are well calibrated. This means
that we can estimate the unknown parameter as well as the
DOAs of the incident waves in the DOA estimation proce-
dure, without any special measurement in advance. For ex-
ample, when we apply the MUSIC algorithm [1] with the
coupling matrix C(p), the MUSIC spectrum for the DOAs
and compensation coeflicient can be modified by

a(®)C )" C(p)a(®)
a(@¥ C(pY ENERC(p)a(9)

Pyusic(6,p) = (®

where a matrix Ey is the noise-subspace matrix defined by
the eigenvectors corresponding minimum eigenvalues of the
measured data covariance matrix [1].

The MUSIC spectrum is very sensitive to errors. The
peak value of the spectrum tends to infinity in an ideal data
of high SNR and large number of snapshots with precise cal-
ibration. Therefore, we can estimate the proper value of p,
and more precise DOAs as well, to maximize the peak(s) of
the spectrum by searching in 8 and p. The estimation perfor-
mance of the compensation coefficient p would be depends
on the SNR and number of snapshots of the data. Since es-
timation of the compensation parameter will be failed with
low SNR and/or few snapshots data set, we need a calibra-
tion with a plane wave incidence in advance for such appli-
cations. However, we only need the data of single source
with unknown DOA because the DOA can be estimated by
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(8). Therefore the calibration measurement becomes simple
in comparison with that for conventional calibration with the
reference plane waves[2] having known DOAs.

3.3 Theoretical Background of the Proposed Compensa-
tion

As discussed in the previous subsection, the current distri-
bution on each element causes the difference between the
coupling matrix defined by Cpjae and Cgera. In this sec-
tion, we employ the MoM to treat the effect of the current
distribution. For simplicity, we assume that the N-element
dipole array whose element is divided into M segments as
an example. By applying the MoM, we obtain the following
equations[12].

vrlnom Zrlnlom . lenlgm irlnom
vglom _ sznlom . Zrznlsm l-rznom
= R
e | Lz o 2y || e
vmom = Zmomimom, (9a)
Ymomvmom - imom’ (9b)
where v™™ and i™*" are an NM-dimensional induced volt-

age vector and a current vector caused by v™™, respec-
tively. The vectors v and &*" (i = 1,2,---,N) are an
M dimensional voltage and current vectors for each ele-
ments, respectively. The matrix Z™" is the MN X MN
impedance matrix which can be divided by M x M subma-
trices, Z ?}0“, corresponding to each element. Note that the

terminal impedance, Z;, is added to the corresponding ele-
ment of the Z;. Y™ is the admittance matrix defined by
the inverse of Z™",

Let us define the voltage and current distribution vec-
tor of the k-th array-element, g, and h;, whose elements
are normalized by their terminal voltage and current, respec-
tively, as

mon __
v, = hkvk,

k=12,---,N, (10a)
" =gy, k=1,2,---,N. (10b)
Substituting the equations into (9b), we have

g1i1 hiv
9o hyvy

. = ymom ) . (11
gnin hyvy

The element corresponding to the terminal in g, is equal to

1 due to the normalization. Therefore, the received N x 1
terminal current vector { can be given by ‘

T . T
1= [11,127”"”\/]
mom .. mom
Yl term YiNermtV U1
mom . mom
yZl,termhl yZN,tcrth U2
mom o mom
le,tf:rmh1 yNN,terth Un
= (v, (12)
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where yi,° 0 denotes an N dimensional row vector of ¥}')"

whose row corresponds to the terminal segment.
As shown in (12), the coupling matrix C can be ex-
pressed by

mom . mom
Y11 et YN termPN
mom .. mom
y21,termh1 y2N,terth
C= ] . . . (13)
mom . mom
le,tennh1 yNN,terth

Estimation of Cpjape is done with k; = [1,1,---, 117 = 1,
while the estimation of Cgey, is done with k; = sy, where
the ‘term’ denotes the segment-number. The voltage distri-
bution difference on the elements causes the difference be-
tween Cpane and Ceyra. The ideal coupling matrix Cpjage can
be approximated by using the adequate complex constants,
Wq, W, as

Cplane =wgCyela

mom . mom .
yll,termhdllT y IN,termhd‘[r
mom o mom .
Y21 erm it YN rerm it
+wy . ' ) ,(14a)
mom . mont .
YN germ Pift YN term Tttt
w
p
hdiff—_—l — —Uerm. (14—b)

Wq

This procedure is similar to Ref.[7]. In Ref.[7], the au-
thor has introduced the current distribution function of the
elements to estimate the precise calibration matrix. On the
other hand, we just focus on the difference between Cpjane
and Cey, and approximate it with few unknowns to derive a
simple compensation matrix.

Obviously dominant terms in (13) are the diagonal
terms, hence by adjusting the weights, w; and w,, we can
approximate the second matrix in the right side of (14a) as
a diagonal matrix. Furthermore, difference among the ele-
ments of the diagonal matrix will be small for arrays of the
same elements with the moderate element separation. When
these assumptions/approximations hold, we can obtain

Cplane ~ wa(Coelra + {1). (15)

Clearly, we can omit the complex coeflicient w,; because it
does not affect the calibration/compensation performance.
This is the theoretical background of the approximations in
(6). Physical interpretation of the approximation in (15)
can be also derived by decomposing the coupling phe-
nomenon as multiple reflections. See [13] for details. Ap-
parently, these assumptions cannot hold for arrays with
closely spaced elements, which will be demonstrated in the
next section.

Main objective in this paper is derivation of a sim-
ple compensation technique based on the impedance ma-
trix. In the expression of (6), we should carry out the
two-dimensional search in amplitude and phase, or real and
imaginary, of {. This can be further simplified when the
coupling effect is not severe. Since we employ the (quasi-)
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single-mode elements, difference of the initial current distri-
bution on the elements will be small. Then, we have |/] < 1,
where £ is the ¢ normalized by the corresponding diagonal
element in Cgey,. In addition, for the arrays with the mod-
erate element separation, the difference among the diagonal
elements of Cgeyry Will be small. In such a case, the following
expression will be also applicable,

Cplane o« (pI ) o Cdelta- (16)

This corresponds to the expression of the proposed com-
pensation matrix in (7). For the arrays of (quasi-)single-
mode elements such as half-wavelength dipoles, we found
in the numerical simulations that the further approximations
as |p| = 1 is effective. This means that we can still obtain
a better compensation performance with Cy., by phase ad-
justment of the diagonal elements in Cgey,. In this case, the
MUSIC spectrum in (8) becomes

a©®"C(¢,)"C(¢,)a®)
a0 C(p, ) HENERC(9)a(0)’
C(@,) = (1) © Cyeta, (17b)

Pyusic(8, ¢,) = (17a)

where ¢,, is the phase of p.

As shown in (17a), the DOA estimation by the MU-
SIC with coupling error compensation can be realized by
the simple 2D search on ¢ and ¢, when the assump-
tions/approximations are hold. For the 2D algorithms hav-
ing heavy computational loads, it may be difficult to realize
real-time processing. However, the compensation param-
eter, p or ¢, is stable in time if the array is unchanged.
Hence, the 2D estimation is required only in the initial esti-
mation. Once the parameter p is estimated, we can use the
estimated p throughout the DOA estimations.

As discussed in this section, the proposed compensa-
tion matrix is obtained by the rough approximations, then
we might say it would be the empirical formula. In the next
section, we will verify availability and limitation of the pro-
posed compensation technique by using the array of half-
wavelength dipoles which often utilized in practical appli-
cations.

4. Numerical and Experimental Results

4.1 Numerical Results

Numerical verification of the proposed technique is carried
out by using an array of 4-element dipoles as shown in

Fig. 1. The array parameters are also listed in Table.1. The
(coupled) received data are calculated numerically by the

Table 1  Array parameters.

Frequency (Wavelength: 1) 2.4 GHz (1=12.5 cm)
Element length 5.8 cm (0.464 A)
Element radius 0.5 mm

Terminal Impedance (Z;) 50Q

Number of the elements (V) 4
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method of moments.

The first step in the proposed compensation is the es-
timation of the conventional calibration matrix Cgey, in (5).
The terminal currents iy derived by the MoM are used for the
calculation in (4a). Next step is the estimation of the optimal
compensation coefficient of p in (7). This can be done by us-
ing the observed signals in the DOA estimation. When we
employed the MUSIC algorithm, DOA of the incident waves
and corresponding ps can be estimated by (8). For multiple
wave data, the estimated p of each wave may not coincides
with each other because of the approximations in the pro-
posed compensation. In such a case, the average value of
them would be adopted. Once the optimal p is estimated,
we can determine the optimal C(p) in (7). The following
estimation can be done by using the constant compensation
matrix C(p).

The first example is the uniform linear array (ULA)
with element separation of 0.481 (Ax;; = 0.484 in Fig. 1).
The Cyeya is also derived numerically by the method of mo-
ments by the procedure described in Sect.3.1. To show
the error compensation performance itself, this numerical
evaluation is done with no noise (infinite SNR), which is
equivalent to the infinite number of snapshots in finite SNR.
Figure 2 shows the Pyusic(f, ¢,) spectrum in (17a). Here
we use the data of one incident wave from 6, = 50° in
this estimation. The estimated peak in Fig.2 is located at
@, ¢,) = (50°,-9.3°). As shown in this figure, the maxi-
mum of the spectrum appears at the true DOA of the incident
wave. This means that the peak characteristic of the MUSIC
spcetrum can be recovered by the suitable diagonal weight
in Cgeyn. Idealy, the peak value becomes infinite for the no
noise data when the data are precisely calibrated. However,
the peak value is limited in this example. This is due to
the approximation accuracy of the proposed compensation
scheme. The DOA estimation results for the one-wave inci-
dence at several DOAs and their DOA estimation errors are
shown in Figs.3(a) and (b), where ‘Raw Data, ‘Conven-
tional,” and "Proposed’ show the estimated results without
compensation, those with Cye, compensation by (5), and
those with é‘(gbp) compensation by (17b), respectively. Note
that the eigenvectors corresponding to the zero eigenvalues
in the covariance matrix of the data are the columns of Ey
in (17a) because of no noise. In the calibration with é‘((gbp)),
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Fig.2 The DOA and compensation coefficient estimation by
Puusic(0, @p). N = 4,Ax1p = Axgz = Axzq = 0.482, fy = 50°,
SNR = co(no noise).
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the estimated value of p = e™/% in Fig.2 is used through-
out the DOA éstimations. As shown in these figures, the
peak property of the MUSIC algorithm is improved and the
DOA estimation error can be decreased effectively by the
proposed compensation technique. Note that the DOA es-
timation error becomes almost zero by the proposed simple
compensation.

In the approximation in (15), we assume that the off
diagonal elements in the second matrix in the right side of
(14b) are small and whose diagonal elements have almost
the same value. Clearly, these assumptions are violated for
the arrays of closely spaced elements. Figures 4 and 5 show
the results of the 4-element ULA with element separation of
0.24. Although the DOA estimation errors can be decreased
compared with those by the conventional calibration, there
still remain biases. In addition, the peaks of the MUSIC

50 T T T
--------- Raw Data
——-- Conventional
40 —— Proposed

J\

Pwusic [dB]

LAXX

<10 0 10 20 30 40 50 60 70 80
DOA [deg.]

(a) MUSIC Spectrum

-
(=]

| =+ Raw Data
I —©- Conventional
[ | & Proposed

DOA Estimation Error [deg.]
o & Ao s o @

Y
o

-0 0 10 20 30 40 50 60 70 80
DOA [deg.]

(b) DOA Estimation Error

Fig.3 DOA estimation results and estimation errors by the MUSIC ai-
gorithm. N = 4, Ax12 = Axpz = Axzs = 0482, SNR = co(no noise).
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40
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20

Az

-8 40
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Fig.4 The DOA and compensation coefficient estimation by
Pyusic(8, @p)- N =4, Axyy = Axpz = Axzq = 0.24, 6y = 50°,
SNR = co(no noise).
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Fig.5 DOA estimation results and estimation errors by the MUSIC
algorithm. N = 4, Ax1z = Axyz = Axzg = 0.24, SNR = co(no noise).
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Fig.6  Estimated DOA errors with ULAs having various element
separations. N = 4, 8y = 50°, SNR = co(no noise).

spectrum cannot be recovered enough. As shown in this ex-
ample, the proposed technique is not effective for the arrays
having severe mutual coupling. This is the limitation of the
proposed compensation scheme.

The estimated DOAs by the MUSIC algorithm with
ULAs having various element separations are shown in
Fig. 6. The estimated value of ¢, by single wave incidence
at 6y = 50° is used in each estimation. It is clear that good
error compensation can be realized with the array of 0.484
element separation. When the inter element separation be-
comes 0.2 or less, we cannot compensate the DOA bias
by the proposed scheme. This shows the limitation of this
simple parametric compensation technique.

In the above simulations, the single wave incidence
data at 6 = 50° are used for the optimal compensation coeffi-
cient estimation. DOA dependence of the estimated value ¢,

2293
0 T T T —
-2
Y
3 f =
o
a
S 8
3 A ;
g -10 O :
k| e Element separation
%12 0.48% —¥—
M 0.20, et
14 014 —-
; 0.052, —&-
-16 * -

-0 0 10 20 30 40 50 60 70 80
DOA [deg.]

Fig.7  Estimated ¢, with ULAs of various DOAs and element
separations. N = 4, SNR. = co(no noise).
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Fig.8 DOA and compensation coefficient estimation by the
Puyusic(@,8p) with finite SNR/snapshots. N = 4, 6; = 30°, 8, = 50°,
50 snapshots. (a). SNR=30dB, 0.481 element separation, (b) SNR=10dB,
0.481 element separation, (¢) SNR=10dB, 0.24 element separation, {(d)
SNR=10dB, 0.14 element separation.

must be examined. The estimated ¢, in various DOAs and
element separations are plotted in Fig. 7. Since the compen-
sation coefficient, ¢, is derived by rough approximations,
then estimated ¢, slightly changes in DOA of the incident
wave. Figure 7 shows that almost 3° difference occurs for
0.484 and 0.2 separation. The DOA estimation errors with
these coefficients were also examined numerically. Differ-
ence of the DOA estimation error was less than 0.1°, hence,
we could say that the ¢, estimation is robust in DOA.

In the actual applications, we only have noisy data
of the finite number of snapshots. Furthermore, the ob-
served data will often contain multiple incident waves. Fig-
ures 8(a)~(d) show the examples of the 2 wave incidence
with 50 snapshots. Each peak can be clearly resolved in
Fig. 8(a) since the SNR is high (30 dB) and DOAs of the
two waves are separated enough. However the peaks be-
come dull for the low SNR case shown in Fig. 8(b). These
are the estimated results with the array of 0.484 separation.
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Fig.9 The MUSIC spectrum estimated by the finite SNR/snapshot data.

N =4, 6, =30° 6, = 50°, 50 snapshots. (a) 0.481 element separation, (b)
0.484 element separation.

The estimated DOAs by using average value of detected two
¢ps are also shown in Fig. 9(a). Good error compensation
property is still realized in these dataset. The compensa-
tion performance deteriorates in small element separation
as shown in Fig. 8(c) and (d). The two peaks can be re-
solved in Fig. 8(c), however, the estimated DOAs by the
obtained coeflicient is biased (Fig. 9(b)). Furthermore, we
cannot resolve two waves in Fig. 8(d). This means that we
cannot estimate the proper ¢,. To make the error compen-
sation model] simple, we apply relative rough approxima-
tions/assumptions, therefore the proposed technique is not
applicable to the array with small element separation. How-
ever the technique is still work properly for the noisy finite
snapshot data including multiple sources when we employ
the array of almost half-wavelength element separation.

Additional feature of the proposed compensation tech-
nique to be noted is concerned with the array geometry. No
information on the array geometry is imposed in deriva-
tion of the proposed technique, then the technique is ap-
plicable when the assumptions/approximations hold. Fig-
ures 10(a) and (b) show the results of the MUSIC spectrum
and the estimated DOA errors by the 4-element array with
Axi; = Axzq = 0.652 and Axp; = 0.24. As can be seen in
these figures, good calibration performance can be realized
by the proposed calibration technique.
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Fig.10 DOA estimation results and estimation errors by the MUSIC al-
gorithm. N =4, Axjp = Ax3gq = 0.654, Axpz = 0.24, SNR = co(no noise).

Fig.11  DOA estimation with 4-element monopole array.

4.2 Experimental Results

Availability of the proposed calibration was also verified by
the experiments. The experiment was done with a network
analyzer in an anechoic chamber. The array employed in
the experiment was the 4-element uniform monopole array
on the finite ground plane as shown in Fig. 11. The array pa-
rameters are listed in Table 2. The size of the ground plane
was 21 X 3.51 whose edges were rounded so as to decrease
effect by the edge/corner scatterings. The estimation pro-
cedure is the same as described in the previous subsection.
The impedance matrix required in the first step can be eas-
ily derived by the measured S-parameters with the network
analyzer and Z;, is a known value, then we can obtain Cyg
in (5).

- Figure 12 shows the estimated Pvysic(6, ¢,) spectrum
for the one-wave incidence from 6, = 50° with 1 snap-
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Table 2 Array parameters for the experiment.

Frequency (Wavelength:1) | 2.4 GHz (A=12.5 cm)
Element length 3.11 cm (0.249 2)
Element radius 0.5 mm

Terminal Impedance (Z;) 50Q

Number of the elements (N) 4
Element Separation (Ax) 6.22 cm (0.4981)

Puwusic [dB]
40

070 0 2 DOA [deg]

Fig.12  DOA and compensation coefficient estimation by Pyusic(8, ¢,).
N =4, Ax = 04984, 6y = 50°, 1 snapshot.
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Fig.13  DOA estimation results and estimation errors by the MUSIC
algorithm. N =4, Ax = 0.4984, 1 snapshot.

shot data. The peak was detected at around (6,¢,) =
(50.2°,-24.4°). Since the estimation was carried out with
only one snapshot data, then the estimated peak became dull
and position of the detected peak would be slightly biased
due to the noise. In addition, although we tried to decrease
the effect of the edge scattering by the ground plane, the re-
maining scattered waves by the edges would also cause bias
of the peak. It will be improved when many-snapshot data
and a large-sized ground plane are available. The estimated
MUSIC spectrum and DOA errors are shown in Figs. 13(a)
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and (b). Improvement of the peak property in the MUSIC
spectrum is relative small as we expected. This was due to
the noise and the ground plane effect. However, as shown
in Fig. 13(b), the DOA estimation error can be decreased ef-
fectively by the proposed technique. These results show that
the proposed technique is available for the monopole-array
with half-wavelength separation,

5. Conclusions

In this paper, we propose a simple array calibration tech-
nique based on the impedance matrix of the array. The pro-
posed compensation technique is derived by the approxima-
tions to decrease the difference between the exact mutual
coupling matrix and the matrix derived by the open-circuit
technique. We show with some approximations and assump-
tions that accuracy of the mutual coupling matrix derived by
the open-circuit technique can be easily improved by adjust-
ing its diagonal elements.

Numerical and experimental results of the 4-element
arrays are provided to show validity and limitations of the
proposed technique. Although we apply many assump-
tions/approximations to derive the technique, the technique
is applicable for usual dipole/monopole arrays of quasi
single-mode elements with half-wavelength spacings.

Availability for arrays of the other single-mode ele-
ments, calibration performance in various SNRs, and still
remains to be considered. Effect of the size ground plane is
also one of the important problems to be clear for practical
applications. They will be done in near future,
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