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Theoretical Analysis of Route Expected Transmission Count in
Multi-Hop Wireless Networks

Kazuyuki MIYAKITA†, Student Member, Keisuke NAKANO†a), Member, Masakazu SENGOKU†,
and Shoji SHINODA††, Fellows

SUMMARY In multi-hop wireless networks, communication quality
depends on the route from a source to a destination. In this paper, we
consider a one-dimensional multi-hop wireless network where nodes are
distributed randomly and theoretically analyze the relation between com-
munication quality and routing policy using a measure called the Expected
Transmission Count (ETX), which is the predicted number of data trans-
missions required to send a packet over that link, including retransmissions.
First, we theoretically analyze the mean length of links, the mean number
of hops, and the mean route ETX, which is the sum of the ETXs of all
links in a route, of Longest Path Routing (LPR), and Shortest Path Routing
(SPR). Second, we propose Adjustable Routing (AR), an approximation
to Optimum Routing (OR), which minimizes route ETX. We theoretically
compute the above characteristic values of AR. We also theoretically com-
pute a lower bound of the mean route ETX of OR. We compare LPR, SPR,
and OR using the results of analyses and show differences between these
algorithms in the route ETX.
key words: multi-hop wireless networks, Expected Transmission Count,
theoretical analysis

1. Introduction

In multi-hop wireless networks [1], [2], a source node sends
data to a destination node through a multi-hop path consist-
ing of relay nodes. The multi-hop path is selected by the
routing algorithm used in the network. Although the mini-
mum hop algorithm is often used as a routing algorithm, this
algorithm tends to choose long links, and, as a result, such a
selection may cause frequent link failures and many retrans-
missions. One countermeasure is to choose shorter links to
construct a path; however, they may cause more hops. Due
to the increase of hops, the sum of retransmissions over all
links in the path may become larger than the minimum hop
algorithm. Therefore, it is important to construct a path that
simultaneously realizes appropriately short links and a small
number of hops.

The delay over a link can be characterized by such met-
rics as Per-hop Round Trip Time (RTT) [3], Expected Trans-
mission Count (ETX) [4], Medium Time Metric (MTM) [5],
Expected Transmission Time Metric (ETT) [6], and so on.
If the value of each of these metrics of a link is large, delay
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over this link will be large. The values of these metrics gen-
erally increase as the length of a link increases. If we use
ETX as a metric, we can evaluate the quality of a path from
the sum of the ETXs of all links included in the path. This
sum is called the route ETX. Namely, selecting a path with a
minimum value of route ETX is important. Of course, RTT,
MTM, and ETT can be used in the same manner.

Suppose that nodes are randomly distributed and the
communication range is finite. Then, source node S and
destination node D sometimes have multiple candidates for
the path between them. If S and D have candidate paths,
then the routing algorithm used in the network chooses a
path from the candidates. Then since the quality of a path
depends on the routing policy in the network, knowing the
effects of the routing policy on the quality of route is impor-
tant. However, to our knowledge, the theoretical analysis of
the quality of routes in networks where nodes are randomly
distributed has never been done.

In this paper, we theoretically analyze the characteris-
tics of a path of a Longest Path Routing (LPR) and a Short-
est Path Routing (SPR) using route ETX as a metric in a
one-dimensional multi-hop wireless network where nodes
are randomly distributed. Also, we theoretically analyze
Optimum Routing (OR), which minimizes the route ETX,
using an approximate method and a lower bound because it
is difficult to directly analyze OR theoretically. As an ap-
proximate method, we propose Adjustable Routing (AR) as
a model of OR, theoretically analyze the AR characteristics,
and use this value as an approximation of OR characteris-
tics. We show that OR characteristics are well described by
both the approximate method and the lower bound. Also,
we demonstrate how LPR and SPR behave differently from
OR and that OR greatly reduces route ETX compared with
LPR and SPR.

The rest of this paper is organized as follows. In Sect. 2,
we explain the definitions and assumptions. In Sect. 3, we
theoretically analyze the mean length of links, the mean
number of hops, and the mean route ETX of LPR. In Sect. 4,
we theoretically analyze these characteristic values of SPR.
In Sect. 5, we propose AR to analyze the mean link length,
the mean number of hops, and the mean route ETX of OR.
In Sect. 6, we give a lower bound of the mean route ETX
of OR. In Sect. 7, we compare the above characteristics of
LPR, SPR, OR, and AR using simulation and numerical re-
sults. Sect. 8 concludes this paper.
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2. Definitions and Assumptions

We consider a one-dimensional multi-hop wireless network
consisting of nodes randomly distributed along a straight
line, as shown in Fig. 1. Assume that the number of nodes
between S and D obeys a Poisson distribution with inten-
sity λ and that all nodes are stationary. In this paper, we
consider a one-dimensional multi-hop wireless network for
the following two reasons: First, a one-dimensional multi-
hop wireless network can be used as a model of a street
multi-hop wireless network. Second, analysis in a one-
dimensional multi-hop wireless network is not easy even
though it is simpler than that in a two-dimensional case.
Then, as a first step we analyze the route ETX in a one-
dimensional multi-hop wireless network.

Define S and D as source and destination nodes, respec-
tively. Suppose there are N nodes v1, v2, . . ., vN between S
and D, as shown in Fig. 1, where N = 7. For generalization,
S and D are also represented as v0 and vN+1, respectively.
For i = 0, 1, . . . ,N + 1, let Xi be the position of vi, where
Xi ≤ Xi+1. Suppose X0 = 0 and XN+1 = �, where � is the
distance between S and D. Let Yi be the distance between
vi−1 and vi, where i = 1, 2, . . . ,N + 1. Let d be the maximum
radio transmitting range of a node. Namely, two nodes can
be directly linked if the distance between them is not longer
than d, and they are not linked otherwise.

Let u(z) be the function of ETX of a link, where z is the
length of the link. We assume that u(z) is a convex monoton-
ically increasing function and u(0) > 0. Route ETX is the
sum of the ETXs of all links in the route. Let R be the set of
all routes that can connect S and D in the multi-hop wireless
network. Suppose that r ∈ R. Let L(r) be the mean length of
links included in r. Let H(r) be the number of hops of r. Let
U(r) be the route ETX of r. For example, Fig. 1 shows a 4-
hop route r that consists of S , v2, v5, v6, and D, and H(r) = 4,
L(r) = �4 , and U(r) = u(X2)+u(X5−X2)+u(X6−X5)+u(�−X6)
in this example.

In this paper, we consider four kinds of routing poli-
cies:

• Longest Path Routing (LPR): This method minimizes
the length of each link in the path by maximizing the
number of hops.
• Shortest Path Routing (SPR): This method chooses the

node furthest from v0 and within d of v0 as a first relay
node, and as a second relay node, it chooses the node
furthest from the first relay node and within d of the
first relay node. In the same manner, all relay nodes are
chosen. As a result, the number of hops is minimized.
• Optimum Routing (OR): This method minimizes the

route ETX.
• Adjustable Routing (AR): This method approximately

minimizes the route ETX.

Figure 2 shows examples of the paths selected by LPR, SPR,
and AR in a one-dimensional multi-hop wireless network.
In the following sections, we analyze the characteristic val-

Fig. 1 Street multi-hop wireless network.

Fig. 2 Routing algorithms.

ues of LPR, SPR, OR, and AR.

3. Analysis of Longest Path Routing

LPR minimizes the length of each link in the path by maxi-
mizing the number of hops. It selects a multi-hop path that
includes all of the N relay nodes between S and D. Suppose
that at least one path exists between S and D. Let rL be the
path selected by LPR from R. Let vL,0, vL,1, . . ., vL,N+1 be
the nodes included in rL, where vL,0 = S and vL,N+1 = D.
Then vL,i = vi for i = 1, . . ., N as shown in Fig. 2(a). For
i = 0, 1, . . . ,N + 1, let XL,i be the position of vL,i, where
XL,i ≤ XL,i+1. Let YL,i be the distance between vL,i−1 and vL,i,
where i = 1, 2, . . . ,N + 1.

In the following, we theoretically compute E(L(rL)),
E(H(rL)), and E(U(rL)). These mean values can be repre-
sented as follows:

E(L(rL)) =
∞∑

k=� �d �
P(H(rL) = k|R � ∅) �

k
, (1)

E(H(rL)) =
∞∑

k=� �d �
P(H(rL) = k|R � ∅)k, (2)

E(U(rL)) =
∞∑

k=� �d �
P(H(rL) = k|R � ∅)

× E(U(rL)|R � ∅,H(rL) = k), (3)

because H(rL) ≥
⌈
�
d

⌉
. In the following, we compute

P(H(rL) = k|R � ∅) and E(U(rL)|R � ∅,H(rL) = k).
First, we compute P(H(rL) = k|R � ∅). We have

P(H(rL) = k|R � ∅) = P(N = k − 1|R � ∅)
=

P(N = k − 1)P(R � ∅|N = k − 1)
P(R � ∅) . (4)
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Because N obeys a Poisson distribution with intensity λ, we
have

P(N = k − 1) =
(λ�)k−1

(k − 1)!
e−λ�. (5)

Also, we have

P(R � ∅|N = k − 1) = 1 +
� �d �−1∑

i=1

(−1)i

(
k
i

) (
1 − i

d
�

)k−1

.

(6)

This equation is given in [7]. We briefly explain the deriva-
tion of this equation in Appendix A. From Eqs. (5) and (6),
we have

P(R � ∅) =
∞∑

k=1

P(N = k − 1)P(R � ∅|N = k − 1)

= 1 +
� �d �−1∑

i=1

(−1)i

i!
e−iλd {λ(� − id)}i−1

× {λ(� − id) + i} . (7)

By substituting Eqs. (5), (6), and (7) into Eq. (4), we can
compute P(H(rL) = k|R � ∅). Note that if � ≤ d, then
P(H(rL) = k|R � ∅) = P(N = k − 1) because P(R � ∅|N =
k − 1) = 1 and P(R � ∅) = 1.

Next, we compute E(U(rL)|R � ∅,H(rL) = k). If k = 1,
then rL is a 1-hop path that directly connects S and D, and
E(U(rL)|R � ∅,H(rL) = 1) = u(�). If k ≥ 2, we have

E(U(rL)|R � ∅,H(rL) = k)

=

k∑
i=1

E
(
u(YL,i)|R � ∅,H(rL) = k

)
. (8)

To compute Eq. (8), we need the probability density function
of YL,i given that R � ∅ and H(rL) = k for i = 1, 2, . . . , k. De-
note the probability density function of YL,i given that R � ∅
and H(rL) = k by fYL,i (y|R � ∅,H(rL) = k), where y is a
possible value of YL,i. It is considered that YL,1, YL,2, . . .,
YL,k are identically distributed when R � ∅ and H(rL) = k
because of the following reasons: In [8], it is assumed that
η points are distributed independently and uniformly in the
interval (0, 1), and it is shown that the lengths of η + 1 di-
visions formed by these η points are identically distributed.
In our model, N means the number of nodes in [0, �] and
is a Poisson random variable. As mentioned in Appendix
A, if we observe the positions of nodes in the interval [0, �]
when N = η, where η is a non-negative integer, then these
η nodes are distributed independently and uniformly in the
interval [0, �]. From the above property in [8], therefore, we
can easily see that Y1, Y2, . . ., Yk are identically distributed
when N = k− 1. In addition to this fact, the condition R � ∅
can be represented as Y1 ≤ d, Y2 ≤ d, . . . , Yk ≤ d, and it is
considered that the condition R � ∅ equally affects Y1, Y2,
. . ., Yk when N = k − 1; therefore, it is considered that Y1,
Y2, . . ., Yk are identically distributed when N = k − 1 and
R � ∅. Furthermore, YL,i = Yi if R � ∅, and R � ∅ and

H(rL) = k if and only if R � ∅ and N = k − 1 when LPR is
used. Therefore, it is considered that YL,1, YL,2, . . ., YL,k are
identically distributed when R � ∅ and H(rL) = k. Hence,

E(u(YL,1|R � ∅,H(rL) = k))

= E(u(YL,2|R � ∅,H(rL) = k))

= · · ·
= E(u(YL,k |R � ∅,H(rL) = k)). (9)

Therefore, from Eqs. (8) and (9),

E(U(rL)|R � ∅,H(rL) = k)

= kE
(
u(YL,1)|R � ∅,H(rL) = k

)
= k

∫ �

0
fYL,1 (y|R � ∅,H(rL) = k)u(y)dy. (10)

Also, we have

P(R � ∅|N = k − 1) fY1 (y|R � ∅,N = k − 1)dy

= fY1 (y|N = k − 1)dy

× P(R � ∅|N = k − 1, Y1 = y), (11)

where fY1 (y|N = k − 1) is the probability density function of
Y1 given that N = k − 1, and this function is given in [7] as
follows:

fY1 (y|N = k − 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k − 1
�

(
1 − y
�

)k−2
, 0 ≤ y ≤ �,

0, otherwise.

(12)

We briefly explain derivation of this function in Appendix
A. Obviously, we have

fY1 (y|R � ∅,N = k − 1) = fYL,1 (y|R � ∅,N = k − 1)

= fYL,1 (y|R � ∅,H(rL) = k). (13)

Also, P(R � ∅|N = k − 1, Y1 = y) equals the probability that
S and v1 are directly linked, and v1 and D have a multi-hop
path consisting of k − 2 nodes in [y, �]. Then from Eq. (6),

P(R � ∅|N = k − 1, Y1 = y)

= 1 +

⌈
�−y

d

⌉
−1∑

i=1

(−1)i

(
k − 1

i

) (
1 − id
� − y

)k−2

(14)

if 0 ≤ y ≤ d, and P(R � ∅|N = k − 1, Y1 = y) = 0 otherwise.
We can compute fYL,1 (y|R � ∅,H(rL) = k) by substituting
Eqs. (6), (12), (13), and (14) into Eq. (11). Note that if � ≤ d,
then fYL,1 (y|R � ∅,H(rL) = k) = fY1 (y|N = k − 1) because
P(R � ∅|N = k− 1) = 1 and P(R � ∅|N = k− 1, Y1 = y) = 1.

By substituting Eqs. (4) and (10) into Eqs. (1), (2), and
(3), E(L(rL)), E(H(rL)), and E(U(rL)) can be computed as
follows: If � ≤ d, then

E(L(rL)) =
1 − e−λ�

λ
, (15)

E(H(rL)) = λ� + 1, (16)

E(U(rL)) = e−λ�u(�) +
∫ �

0
u(y)λe−λy{λ(� − y) + 2}dy,

(17)
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and

E(L(rL)) =
�

P(R � ∅)
� �d �−1∑

i=0

(−1)i

i!
e−iλd {λ(� − id)}i−1 ,

(18)

E(H(rL)) =
1

P(R � ∅)
� �d �−1∑

i=0

(−1)i

i!
e−iλd

× {λ(� − id)}i−1
[
{λ(� − id) + i}2 + λ(� − id)

]
, (19)

E(U(rL)) =
λ

P(R � ∅)
∫ d

0

⌈
�−y

d

⌉
−1∑

i=0

(−1)i

i!

× e−λ(y+id) {λ(� − y − id)}i−1

×
[
{λ(� − y − id) + (i + 1)}2 − (i + 1)

]
u(y)dy (20)

if � > d, where P(R � ∅) is given in Eq. (7).

4. Analysis of Shortest Path Routing

SPR selects a multi-hop path that includes the minimum
number of relay nodes. In this paper, we suppose that SPR
chooses relay nodes in the following manner: it chooses
the node furthest from v0 and within d of v0 as a first re-
lay node, and as a second relay node, it chooses the node
furthest from the first relay node and within d of the first
relay node. In the same manner, all relay nodes are chosen.
Suppose that at least a path exists between S and D. Let rS

be the path selected by SPR. Let vS ,0, vS ,1, . . ., vS ,H(rS ) be
the nodes included in rS , where vS ,0 = S and vS ,H(rS ) = D.
For i = 0, 1, . . . ,H(rS ), let XS ,i be the position of vS ,i, where
XS ,i ≤ XS ,i+1. Let YS ,i be the distance between vS ,i−1 and vS ,i,
where i = 1, 2, . . . ,H(rS ). Let ti be the number of nodes
in the interval (Xi, Xi + d]. If vi is selected as the jth relay
node by SPR, vi+ti is selected as the j+1th relay node, where
j = 0, 1, . . . ,H(rS )−1. This means that vS , j+1 is the node fur-
thest from vS , j and within d of vS , j for j = 0, 1, . . . ,H(rS )−1,
and, as a result, rS minimizes the number of hops. An ex-
ample of rS is shown in Fig. 2(b).

First, we consider a case where � ≤ d. Here, SPR di-
rectly connects S and D. Then E(L(rS )) = �, E(H(rS )) = 1,
and E(U(rS )) = u(�).

Next, we consider a case where � > d. In SPR, H(rS ) ≤
2
⌈
�
d

⌉
− 1, as proved in Appendix B. Therefore, E(L(rS )),

E(H(rS )), and E(U(rS )) can be represented as follows:

E(L(rS )) =
2� �d �−1∑
k=� �d �

P(H(rS ) = k|R � ∅) �
k
, (21)

E(H(rS )) =
2� �d �−1∑
k=� �d �

P(H(rS ) = k|R � ∅)k, (22)

E(U(rS )) =
2� �d �−1∑
k=� �d �

P(H(rS ) = k|R � ∅)

× E(U(rS )|R � ∅,H(rS ) = k). (23)

In the following, we compute P(H(rS ) = k|R � ∅) and
E(U(rS )|R � ∅,H(rS ) = k). Define fS ,k(xS ,1, . . . , xS ,k−1)
as the joint probability density function of XS ,1, XS ,2, . . .,
XS ,k−1, where xS ,1, . . ., xS ,k−1 are possible values of XS ,1, . . .,
XS ,k−1, respectively. Then

fS ,k(xS ,1, . . . , xS ,k−1)dxS ,1 . . . dxS ,k−1

= P(xS ,1 ≤ XS ,1 < xS ,1 + dxS ,1, . . . ,

xS ,k−1 ≤ XS ,k−1 < xS ,k−1 + dxS ,k−1)

= P(xS ,1 ≤ XS ,1 < xS ,1 + dxS ,1, . . . ,

xS ,k−1 ≤ XS ,k−1 < xS ,k−1 + dxS ,k−1

|R � ∅,H(rS ) = k)

= P(R � ∅,H(rS ) = k,

xS ,1 ≤ XS ,1 < xS ,1 + dxS ,1, . . . ,

xS ,k−1 ≤ XS ,k−1 < xS ,k−1 + dxS ,k−1)

/ P(R � ∅,H(rS ) = k). (24)

Define CS ,k as the set of (xS ,1, xS ,2, . . . , xS ,k−1) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ xS ,1 ≤ d,
d < xS ,2 ≤ xS ,1 + d,
xS ,1 + d < xS ,3 ≤ xS ,2 + d,
. . .
xS ,k−3 + d < xS ,k−1 ≤ xS ,k−2 + d,
xS ,k−2 + d < � ≤ xS ,k−1 + d.

(25)

Suppose that (xS ,1, . . . , xS ,k−1) ∈ CS ,k. Then fS ,k(xS ,1, . . . ,
xS ,k−1) ≥ 0. Also, R � ∅, H(rS ) = k, XS ,1 = xS ,1, . . .,
XS ,k−1 = xS ,k−1 if and only if there are k − 1 nodes at xS ,1,
. . ., xS ,k−1, respectively, and no node in the following in-
tervals: (xS ,1, d], (xS ,2, xS ,1 + d], . . ., (xS ,k−1, xS ,k−2 + d] be-
cause SPR selects the furthest node within d as the next re-
lay node. Note that these intervals do not overlap, and the
sum of the lengths of these intervals is (k − 1)d − xS ,k−1.
If (xS ,1, . . . , xS ,k−1) � CS ,k, then, fS ,k(xS ,1, . . . , xS ,k−1) = 0.
Hence,

P(R � ∅,H(rS ) = k,

xS ,1 ≤ XS ,1 < xS ,1 + dxS ,1, . . . ,

xS ,k−1 ≤ XS ,k−1 < xS ,k−1 + dxS ,k−1)

= λk−1dxS ,1 . . . dxS ,k−1e−λ{(k−1)d−xS ,k−1}. (26)

By integrating Eq. (24), we have

P(H(rS ) = k|R � ∅) = 1
P(R � ∅)

∫
. . .

∫
CS ,k

λk−1e−λ{(k−1)d−xS ,k−1}dxS ,1 . . . dxS ,k−1, (27)

where P(R � ∅) can be computed by Eq. (7). Also,

E(U(rS )|R � ∅,H(rS ) = k)

=

∫
. . .

∫
CS ,k

fS ,k(xS ,1, . . . , xS ,k−1)

×
⎧⎪⎪⎨⎪⎪⎩

k∑
i=1

u(xS ,i − xS ,i−1)

⎫⎪⎪⎬⎪⎪⎭ dxS ,1 . . . dxS ,k−1, (28)
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where xS ,0 = 0 and xS ,k = �. Although link lengths are
identically distributed for LPR as mentioned above, link
lengths have different probability density functions for SPR.
Then Eq. (28) cannot be represented as a simple form like
Eq. (10). By substituting Eqs. (27) and (28) into Eqs. (21),
(22), and (23), we can numerically compute E(L(rS )),
E(H(rS )), and E(U(rS )).

5. Analysis of Optimum Routing with Adjustable
Routing

5.1 Approximation to Optimum Routing by Adjustable
Routing

OR selects a multi-hop path that minimizes the route ETX.
Suppose that at least one path exists between S and D. Let
rO be the path selected by OR. Let vO,0, vO,1, . . ., vO,H(rO) be
the nodes included in rO, where vO,0 = S and vO,H(rO) = D.
For i = 0, 1, . . . ,H(rO), let XO,i be the position of vO,i, where
XO,i ≤ XO,i+1. Let YO,i be the distance between vO,i−1 and
vO,i, where i = 1, 2, . . . ,H(rO).

Because it is difficult to precisely analyze E(L(rO)),
E(H(rO)), and E(U(rO)), we consider an approximate
method. In this approximate method, we define a simple
model whose nature is expected to resemble OR’s. We call
this model Adjustable Routing (AR). Let rA be the path
selected by AR. We theoretically analyze the mean length
of links, the mean number of hops, and the mean route
ETX of AR, which are denoted by E(L(rA)), E(H(rA)), and
E(U(rA)), respectively, and use these values as approxima-
tions to E(L(rO)), E(H(rO)), and E(U(rO)). We try to verify
that ETX of AR can be used as an approximation to ETX of
OR based on some relations between ETXs of LPR, SPR,
OR, and AR. Also, comparison between the numerical re-
sults of theoretical analysis of AR and simulation results of
OR will be done in Sect. 7 to show the above approximation
method is valid. Furthermore, we consider a lower bound of
E(U(rO)) in the following section.

The following explains relay nodes selected by AR.
Suppose that at least one path exists between S and D. Let
vA,0, vA,1, . . ., vA,H(rA) be the nodes included in rA, where
vA,0 = S and vA,H(rA) = D. For i = 0, 1, . . . ,H(rA), let XA,i

be the position of vA,i, where XA,i ≤ XA,i+1. Let YA,i be the
distance between vA,i−1 and vA,i, where i = 1, 2, . . . ,H(rA).
Define ds as a positive constant and ds ≤ d. Let t′i be the
number of nodes in the interval (Xi, Xi + ds]. Suppose that
vi is selected as a jth relay node by AR. If t′i ≥ 1, vi+t′i is
selected as a j + 1th relay node, and vi+1 is selected as a
j + 1th relay node if t′i = 0, where j = 0, 1, . . . ,H(rA) − 1.
An example of rA is shown in Fig. 2(c).

In general, if λ is small, LPR, SPR, OR, and AR tend to
select similar paths because there are only a few candidate
paths between S and D. Then for small λ, ds is not expected
to be so sensitive to make E(U(rA)) close to E(U(rO)). For
large λ, however, we need to carefully decide ds to minimize
U(rA) because there are many candidate paths. In this paper,
we assume that u(z) ≥ 2u( d

2 ) and set ds to be ds,opt, which

satisfies the following condition:

u(ds,opt) = 2u

(
ds,opt

2

)
. (29)

We have:

Property 1: If u(z) is a convex monotonically increasing
function, u(0) > 0, and u(d) ≥ 2u( d

2 ), then a unique solution
exists for Eq. (29).

The proof is given in Appendix C. If ds = ds,opt, we also
have the following three properties on relations between
U(rA), U(rL), U(rS ), and U(rO).

Property 2: If ds = ds,opt, then U(rA) ≤ U(rL).

Property 3: If ds,opt

2 ≤ YA,i ≤ ds,opt for i = 1, 2, . . . ,H(rA),
and YS ,i > ds,opt for i = 1, 2, . . . ,H(rS ), then U(rA) < U(rS ).

Property 4: If ds,opt

2 ≤ YA,i ≤ ds,opt for i = 1, 2, . . . ,H(rA),
then U(rA) ≤ 2U(rO).

The proofs of these properties are provided in Appendices
D, E, and F. From Property 2, we have E(U(rA)) ≤ E(U(rL))
if ds = ds,opt for any λ. If λ is large, YA,i tends to satisfy
ds,opt

2 ≤ YA,i ≤ ds,opt for i = 1, 2, . . . ,H(rA), and YS ,i tends to
satisfy YS ,i > ds,opt for i = 1, 2, . . . ,H(rS ) because there are
many candidate paths for a large λ, and, as a result, the link
length tends to be close to ds,opt for AR and to d for SPR.
Then E(U(rA)) < E(U(rS )) is expected for a large λ from
Property 3. Hence, E(U(rA)) is expected to be smaller than
E(U(rL)) and E(U(rS )) even for large λ in addition to the
fact that only a small difference exists between E(U(rA)),
E(U(rL)), and E(U(rS )) for small λ. Furthermore, we have
E(U(rA)) ≤ 2U(rO) from Property 4. Consequently, it is ex-
pected that E(U(rA)) is smaller than E(U(rL)) and E(U(rS ))
and is close to E(U(rO)) for large λ by setting ds to be ds,opt.

5.2 Analysis of Adjustable Routing

In this subsection, we theoretically compute E(L(rA)),
E(H(rA)), and E(U(rA)). Suppose that � ≤ ds. In this
case, AR directly connects S and D. Then E(L(rA)) = �,
E(H(rA)) = 1, and E(U(rA)) = u(�) if � ≤ ds. Suppose that
� > ds. In this case, H(rA) ≤ 2

⌈
�
ds

⌉
−1, which can be proved

in the same manner as in SPR, which is shown in Appendix
B. If � > ds, therefore,

E(L(rA)) =

2
⌈
�

ds

⌉
−1∑

k=� �d �
P(H(rA) = k|R � ∅) �

k
, (30)

E(H(rA)) =

2
⌈
�

ds

⌉
−1∑

k=� �d �
P(H(rA) = k|R � ∅)k, (31)

E(U(rA)) =

2
⌈
�

ds

⌉
−1∑

k=� �d �
P(H(rA) = k|R � ∅)

× E(U(rA)|R � ∅,H(rA) = k). (32)
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We compute P(H(rA) = k|R � ∅) and E(U(rA)|R �
∅,H(rA) = k) in the same manner as P(H(rS ) = k|R � ∅)
and E(U(rS )|R � ∅,H(rS ) = k).

Suppose that H(rA) = 1. Then obviously

P(H(rA) = 1|R � ∅) =
{

e−λ�, � ≤ d,
0, � > d.

(33)

E(U(rA)|R � ∅,H(rA) = 1) = u(�). (34)

Next, we consider H(rA) = k where k ≥ 2. Define
fA,k(xA,1, . . . , xA,k−1) as the joint probability density function
of XA,1, XA,2, . . . , XA,k−1, where xA,1, . . . , xA,k−1 are possible
values of XA,1, . . ., XA,k−1, respectively. Then

fA,k(xA,1, . . . , xA,k−1)dxA,1 . . . dxA,k−1

= P(xA,1 ≤ XA,1 < xA,1 + dxA,1, . . . ,

xA,k−1 ≤ XA,k−1 < xA,k−1 + dxA,k−1)

= P(xA,1 ≤ XA,1 < xA,1 + dxA,1, . . . ,

xA,k−1 ≤ XA,k−1 < xA,k−1 + dxA,k−1

|R � ∅,H(rA) = k)

= P(R � ∅,H(rA) = k,

xA,1 ≤ XA,1 < xA,1 + dxA,1, . . . ,

xA,k−1 ≤ XA,k−1 < xA,k−1 + dxA,k−1)

/ P(R � ∅,H(rA) = k). (35)

Define CA,k as the set of (xA,1, xA,2, . . . , xA,k−1) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ xA,1 ≤ d,
max {ds, xA,1} < xA,2 ≤ xA,1 + d,
max {xA,1 + ds, xA,2} < xA,3 ≤ xA,2 + d,
. . .
max {xA,k−3 + ds, xA,k−2} < xA,k−1

≤ xA,k−2 + d,
max {xA,k−2 + ds, xA,k−1} < � ≤ xA,k−1 + d.

(36)

Suppose that (xA,1, . . . , xA,k−1) ∈ CA,k. Then fA,k(xA,1, . . . ,
xA,k−1) ≥ 0. Also, R � ∅, H(rA) = k, XA,1 = xA,1, . . .,
XA,k−1 = xA,k−1 if and only if there are k − 1 nodes at xA,1,
xA,2, . . ., xA,k−1, respectively, and no node in g(xA,i−1, xA,i)
for i = 1, 2, . . . , k, where

g(xA,i−1, xA,i) =

{
(xA,i, xA,i−1 + ds], xA,i − xA,i−1 ≤ ds,
(xA,i−1, xA,i), otherwise.

(37)

Define that

G(xA,1, . . . , xA,k−1) =

∣∣∣∣∣∣∣
⎧⎪⎪⎨⎪⎪⎩

k⋃
i=1

g(xA,i−1, xA,i)

⎫⎪⎪⎬⎪⎪⎭ ∩ [0, �]

∣∣∣∣∣∣∣ ,
(38)

where xA,0 = 0 and xA,k = �. If (xA,1, . . . , xA,k−1) � CA,k, then
fA,k(xA,1, . . . , xA,k−1) = 0. Hence,

P(R � ∅,H(rA) = k,

xA,1 ≤ XA,1 < xA,1 + dxA,1, . . . ,

xA,k−1 ≤ XA,k−1 < xA,k−1 + dxA,k−1)

= λk−1dxA,1 . . . dxA,k−1e−λG(xA,1,...,xA,k−1). (39)

By integrating Eq. (35), we have

P(H(rA) = k|R � ∅) =
∫
. . .

∫
CA,k

1
P(R � ∅)

λk−1e−λG(xA,1,...,xA,k−1)dxA,1 . . . dxA,k−1, (40)

where P(R � ∅) can be computed by Eq. (7). Also

E(U(rA)|R � ∅,H(rA) = k)

=

∫
. . .

∫
CA,k

fA,k(xA,1, . . . , xA,k−1)

×
⎧⎪⎪⎨⎪⎪⎩

k∑
i=1

u(xA,i − xA,i−1)

⎫⎪⎪⎬⎪⎪⎭ dxA,1 . . . dxA,k−1, (41)

where xA,0 = 0 and xA,k = �. By substituting Eqs. (40) and
(41) into Eqs. (30), (31), and (32), we can numerically com-
pute E(L(rA)), E(H(rA)), and E(U(rA)).

6. Lower Bound of Mean Route ETX of OR

In this section, we compute a lower bound of E(U(rO)). Let
d0 be a value of z such that u(z)

z is the smallest. Define that

û(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(d0)

d0
z, z ≤ d0,

u(z), z > d0.
(42)

Define that

Ulow =

N+1∑
i=1

û(Yi). (43)

Then Ulow ≤ U(rO), as proved in Appendix G, and we can
use E(Ulow) as a lower bound of E(U(rO)). We can compute
E(Ulow) by Eqs. (17) and (20) after replacing u(z) with û(z)
because Yi is the distance between vi−1 and vi.

Suppose that � = nd0 where n is a positive integer.
When λ is large, it is expected that we can construct an
n-hop path consisting of n links whose lengths are close
to d0 because there are many candidate paths. Consider
a situation where we can construct an n-hop path consist-
ing of n links whose lengths are equal to d0. This path
minimizes route ETX from Lemma 6 in Appendix F. Then
U(rO) = nu(d0). Also in this situation,

Ulow = u(d0)
N+1∑
i=1

Yi

d0
= nu(d0) (44)

because Yi ≤ d0 for i = 1, 2, . . . ,N + 1. Therefore, Ulow is
identical to U(rO) in the above situation, and similar situa-
tions are expected to appear when λ is large.

Conversely, as λ decreases, the number of candidate
paths between S and D decreases, and the number of candi-
date hops decrease and approach

⌈
�
d

⌉
. Consider a situation

where there is only one candidate path between S and D,
and the number of hops of the path is

⌈
�
d

⌉
. Then U(rO) and

Ulow are represented as follows:
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U(rO) =
� �d �∑
i=1

u(Yi), (45)

Ulow =

� �d �∑
i=1

û(Yi). (46)

Define that I = {i |i ∈ {1, 2, . . . , ��/d� } , Yi < d0} and suppose
that |I| = m. Then

U(rO) − Ulow =
∑
i∈I
{u(Yi) − û(Yi)} . (47)

Also, if Yi < d0, then u(Yi) − û(Yi) ≤
(
1 − Yi

d0

)
u(0). Hence,

U(rO) − Ulow ≤
∑
i∈I

(
1 − Yi

d0

)
u(0)

≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩m −

� −
(⌈
�
d

⌉
− m

)
d

d0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ u(0) ≤ u(0). (48)

Therefore, Ulow is close to U(rO) in the above situation. It is
expected that similar situations will appear when λ is small.
Hence, it is expected that Ulow will be close to U(rO) for a
small λ as well as for a large λ.

7. Comparisons between LPR, SPR, OR, and AR

In this section, we compute the characteristic values of LPR,
SPR, OR, and AR numerically and by computer simulation.
We compare the results to confirm the validity of the theo-
retical analyses and observe the differences between the four
methods.

In computer simulations, OR selects a multi-hop path
that minimizes route ETX as follows: Suppose that at least
one path exists between S and D. Consider a graph, which
consists of the set of nodes V = {vi|i = 0, 1, . . . ,N + 1} and
the set of links E = {(vi, v j)| the distance between vi and v j is
not greater than d}. Define the weight of a link as its ETX.
Then OR can find the path with the minimum ETX between
S and D using the Dijkstra algorithm. Also, in computer
simulations, we decide the number of nodes and positions of
the nodes according to the assumptions in Sect. 2. If at least
one path exists between S and D, we construct rL, rS , rA,
and rO by LPR, SPR, AR, and OR, respectively, and com-
pute the mean length of links, the number of hops, and the
route ETX of each path. Otherwise, we decide the number
of nodes and the positions of these nodes again. We repeat
these procedures 100000 times and compute the mean of
each characteristic.

We use u1(z) and u2(z) in Fig. 3 as functions of the ETX
of a link. u1(z) and u2(z) are assumed at a one-sided patio
and a concrete canyon, respectively, and the computations
of these functions are provided in Appendix H. Also, we set
d to 20. If d = 20, then u1(d) ≥ 2u1( d

2 ) and u2(d) ≥ 2u2( d
2 ).

Hence, we can use Property 1 by setting d to 20 while we
use u1(z) and u2(z) in Fig. 3. Note that u1(d) = u2(d) = 20,
both u1(z) and u2(z) are convex monotonically increasing

Fig. 3 Functions of link ETX u1(z), u2(z).

Fig. 4 Mean length of links.

functions, and u2(z) ≥ u1(z) for 0 ≤ z ≤ d. According to
Eq. (29), ds,opt = 16.5 for u1(z), and ds,opt = 11.4 for u2(z).
As mentioned, we set ds to be ds,opt for AR.

Figure 4 shows the numerical results of E(L(rL)),
E(L(rS )), and E(L(rA)), and the simulation results of
E(L(rL)), E(L(rS )), E(L(rO)), and E(L(rA)). Figure 5 shows
the numerical results of E(H(rL)), E(H(rS )), and E(H(rA)),
and the simulation results of E(H(rL)), E(H(rS )), E(H(rO)),
and E(H(rA)). Figures 6 and 7 show the numerical results of
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Fig. 5 Mean number of hops.

E(U(rL)), E(U(rS )), E(U(rA)), and E(Ulow), and the simula-
tion results of E(U(rL)), E(U(rS )), E(U(rO)), E(U(rA)). In
Figs. 4(a), 5(a), 6(a), and 7(a), the horizontal axis is �, and
λ = 0.5. In Figs. 4(b), 5(b), 6(b), and 7(b), the horizontal
axis is λ, and � = 60. Note that Fig. 4 includes two curves of
E(L(rO)), two curves of E(L(rA)) that are different in u(z),
just one curve of E(L(rL)), and one curve of E(L(rS )) be-
cause E(L(rL)) and E(L(rS )) do not depend on u(z). In the
same manner, Fig. 5 includes two curves of E(H(rO)), two
curves of E(H(rA)), one curve of E(H(rL)), and one curve
of E(H(rS )). Figure 6 shows E(U(rL)), E(U(rS )), E(U(rO)),
E(U(rA)), and E(Ulow) for u1(z), and Fig. 7 shows those for
u2(z).

In Figs. 4(a), 5(a), 6(a), and 7(a), curves of SPR dis-
continuously change at � = 20. This is because H(rS ) is
always equal to 1 if � ≤ 20, and H(rS ) ≥ 2 if � > 20 because
d = 20. Also, curves of OR and AR discontinuously change
at � = ds,opt because H(rO) and H(rA) are always equal to
1 if � ≤ ds,opt while H(rO) and H(rA) may be equal to more
than 2 if � > ds,opt.

In these figures, the numerical results of E(L(rL)),
E(H(rL)), E(U(rL)), E(L(rS )), E(H(rS )), E(U(rS )),
E(L(rA)), E(H(rA)), and E(U(rA)) agree well with the sim-
ulation results. Then we can confirm that the theoretical
analyses of LPR, SPR, and AR are valid. We can also con-

Fig. 6 Mean route ETX for u1(z).

firm that E(L(rL)) ≤ E(L(rO)) ≤ E(L(rS )) in Fig. 4 and that
E(H(rS )) ≤ E(H(rO)) ≤ E(H(rL)) in Fig. 5. Figures 6 and
7 show that OR significantly reduces route ETX compared
with LPR and SPR. From these results, we can confirm that
selecting a path with shorter links than SPR and with fewer
hops than LPR reduces route ETX as can be expected intu-
itively.

In Figs. 4 to 7, we can confirm that E(L(rA)),
E(H(rA)), and E(U(rA)) are close to E(L(rO)), E(H(rO)),
and E(U(rO)), respectively, for both u1(z) and u2(z). These
results show that we can use E(L(rA)), E(H(rA)), and
E(U(rA)) as approximations for E(L(rO)), E(H(rO)), and
E(U(rO)). From Figs. 6 and 7, we can confirm that E(Ulow)
is close to E(U(rO)) for both u1(z) and u2(z) while it is easier
to compute E(Ulow) than E(U(rA)). This means that E(Ulow)
is a good lower bound for E(U(rO)).

8. Conclusion

We theoretically computed the mean length of links, the
mean number of hops, and the mean route ETX of the
Longest Path Routing and Shortest Path Routing. Also, we
proposed Adjustable Routing, which is an approximation
to Optimum Routing, and analyzed the above three char-
acteristic values of Adjustable Routing. We showed that
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Fig. 7 Mean route ETX for u2(z).

Adjustable Routing well describes Optimum Routing. We
also computed a lower bound of the mean route ETX of Op-
timum Routing and showed that it was close to the mean
route ETX of Optimum Routing. We compared Longest
Path Routing, Shortest Path Routing, and Optimum Routing
through analyses and showed that Optimum Routing signifi-
cantly reduces the mean route ETX compared with Longest
Path Routing and Shortest Path Routing. Future problems
include route ETX analyses considering multiple flows of
data, that cause interferences, and extensions of analyses to
two-dimensional networks.
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Appendix A: Computations of P(R � ∅|N = k−1) and
fY1 (y|N = k − 1)

In [7], it is assumed that η points are distributed indepen-
dently and uniformly in the interval (0, 1), and the probabil-
ity that the largest division formed by these η points does not
exceed ν, where ν is any real number, is computed. Denote
this probability by pη(ν). Then pη(ν) is given as follows [7]:

pη(ν) = 1 +
� 1
ν �−1∑
i=1

(−1)i

(
η + 1

i

)
(1 − iν)η . (A· 1)

In our model, N means the number of nodes in [0, �] and is
a Poisson random variable. We have a well-known property
of a Poisson distribution as follows: If we observe the posi-
tions of nodes in the interval [0, �] when N = η, where η is
a non-negative integer, then these η nodes are distributed
independently and uniformly in the interval [0, �]. Then
P(R � ∅|N = k − 1) is the probability that the largest di-
vision formed by k − 1 nodes which are independently and
uniformly distributed in [0, �] does not exceed d. We can de-
rive P(R � ∅|N = k−1) in the same manner as the derivation
of pη(ν) as follows:

P(R � ∅|N = k − 1) = pk−1

(
d
�

)

= 1 +
� �d �−1∑

i=1

(−1)i

(
k
i

) (
1 − i

d
�

)k−1

. (A· 2)

Next, we compute fY1 (y|N = k−1). In [7], the probabil-
ity that the smallest of η points which are independently and
uniformly distributed in (0, 1) takes a value lying between ν
and ν + dν, where 0 < ν < 1, is exactly computed. Denote
this probability by qη(ν). Then qη(ν) is given as follows [7]:

qη(ν) = η(1 − ν)η−1dν. (A· 3)
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In our model, fY1 (y|N = k − 1)dy is the probability that the
smallest of k − 1 points which are independently and uni-
formly distributed in [0, �] takes a value lying between y and
y+dy. We can derive fY1 (y|N = k−1)dy in the same manner
as the derivation of qη(ν) as follows:

fY1 (y|N = k − 1)dy = qk−1

(
y

�

)

= (k − 1)
(
1 − y
�

)k−2 dy
�
. (A· 4)

Then

fY1 (y|N = k − 1) =
k − 1
�

(
1 − y
�

)k−2
. (A· 5)

Appendix B: Proof of Relation H(rS) ≤ 2
⌈
�
d

⌉
− 1

In SPR, XS ,i+1 > XS ,i−1 + d for i = 1, 2, . . . ,H(rS ) − 1. Then
YS ,i+1 + YS ,i = XS ,i+1 − XS ,i−1 > d for i = 1, 2, . . . ,H(rS ) − 1.
Assume that H(rS ) ≥ 2

⌈
�
d

⌉
. Then

� =

H(rS )∑
i=1

YS ,i ≥
� �d �∑
i=1

(YS ,2i−1 + YS ,2i) >
� �d �∑
i=1

d

=

⌈
�

d

⌉
d ≥ �, (A· 6)

which is a contradiction. Therefore, H(rS ) ≤ 2
⌈
�
d

⌉
− 1.

Appendix C: Proof of Property 1

Define that udi f (z) = u(z) − 2u( z
2 ) and u′(z) = du(z)

dz . Then
dudi f (z)

dz = u′(z) − u′( z
2 ). Because u(z) is a convex mono-

tonically increasing function, dudi f (z)
dz > 0 for z > 0. Also,

from the assumptions, udi f (0) = −u(0) < 0, and udi f (d) =
u(d) − 2u( d

2 ) ≥ 0. Consequently, a unique solution of
udi f (z) = 0 exists in the interval (0, d].

Appendix D: Proof of Property 2

From the definitions in Appendix C, we have:

Lemma 1: If z1 and z2 are positive real numbers and z1 +

z2 ≤ ds,opt, then

u(z1 + z2) ≤ u(z1) + u(z2). (A· 7)

Proof. Because udi f (ds,opt) = 0 and udi f (z) is a monotoni-
cally increasing function, udi f (z1+z2) ≤ 0. Then u(z1+z2) ≤
2u( z1+z2

2 ). Also, 2u( z1+z2
2 ) ≤ u(z1) + u(z2) because u(z) is a

convex monotonically increasing function. From these in-
equalities, Lemma 1 holds. �
From this lemma,

Lemma 2: Let M(vi, vi+k) be the path that connects two
nodes vi and vi+k and includes vi+1, vi+2, . . ., vi+k−1 as re-
lay nodes, where k is a positive integer. Suppose again that
AR constructs a path consisting of vA,0, vA,1, . . ., vA,H(rA). If

ds = ds,opt, then

u(YA,i) ≤ U(M(vA,i−1, vA,i)), (A· 8)

where i = 1, 2, . . . ,H(rA).

Proof. Assume that vA,i−1 corresponds to vk. First, suppose
that t′k ≤ 1. Then vA,i = vk+1 due to the nature of AR. Hence
M(vA,i−1, vA,i) is a direct link between vA,i−1 and vA,i if t′k ≤ 1.
As a result, Lemma 2 holds if t′k ≤ 1. Conversely, suppose
that t′k ≥ 2. Then vA,i = vk+t′k and YA,i ≤ ds,opt due to the
nature of AR. Hence,

U(M(vA,i−1, vA,i)) = u(Yk+1) + u(Yk+2) + . . . + u(Yk+t′k ).

(A· 9)

By repeatedly applying Lemma 1 to u(Yk+1)+u(Yk+2)+ . . .+
u(Yk+t′k ), we can obtain

u(YA,i) = u(Yk+1 + Yk+2 + . . . + Yk+t′k )

≤ u(Yk+1) + u(Yk+2) + . . . + u(Yk+t′k )

= U(M(vA,i−1, vA,i)). (A· 10)

�
From this lemma, we have U(rA) ≤ U(rL).

Appendix E: Proof of Property 3

Property 3 can be proved from the following lemmas.

Lemma 3:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u(z)
z
≤ u(ds,opt)

ds,opt
,

ds,opt

2 ≤ z ≤ ds,opt,

u(z)
z
>

u(ds,opt)

ds,opt
, otherwise.

(A· 11)

Proof. First, suppose that ds,opt

2 ≤ z ≤ ds,opt. Then

u(z) − u
( ds,opt

2

)
z − ds,opt

2

≤
u(ds,opt) − u

( ds,opt

2

)
ds,opt − ds,opt

2

(A· 12)

because u(z) is a convex monotonically increasing function.
From Eqs. (29) and (A· 12), u(z)

z ≤ u(ds,opt)
ds,opt

. Also, we have
u(z)

z >
u(ds,opt)

ds,opt
if z > ds,opt or z <

ds,opt

2 in the same manner as

the case where ds,opt

2 ≤ z ≤ ds,opt. �

Lemma 4: If ds,opt

2 ≤ YA,i ≤ ds,opt for i = 1, 2, . . . ,H(rA),

then U(rA) ≤ u(ds,opt)
ds,opt
�.

Proof. From Lemma 3,

U(rA) =
H(rA)∑
i=1

u(YA,i) =
H(rA)∑
i=1

u(YA,i)
YA,i

YA,i

≤
H(rA)∑
i=1

u(ds,opt)

ds,opt
YA,i =

u(ds,opt)

ds,opt
�. (A· 13)

�
In the same manner, we have:
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Lemma 5: If YS ,i > ds,opt for i = 1, 2, . . . ,H(rS ), then

U(rS ) > u(ds,opt)
ds,opt
�.

Appendix F: Proof of Property 4

Let d0 be a value of z such that u(z)
z is the smallest. Then

Property 4 is proved by Lemmas 4, 6, and 7:

Lemma 6: U(rO) ≥ u(d0)
d0
�.

Proof. From the definition of d0, u(YO,i)
YO,i
≥ u(d0)

d0
. Then

U(rO) =
H(rO)∑
i=1

u(YO,i) =
H(rO)∑
i=1

u(YO,i)
YO,i

YO,i

≥
H(rO)∑
i=1

u(d0)
d0

YO,i =
u(d0)

d0
�. (A· 14)

�

Lemma 7: u(ds,opt)
ds,opt

≤ 2 u(d0)
d0

.

Proof. From Lemma 3 and the relation u(d0)
d0
≤ u(ds,opt)

ds,opt
,

ds,opt

2 ≤ d0 ≤ ds,opt. Also, u( ds,opt

2 ) ≤ u(d0) ≤ u(ds,opt) be-
cause u(z) monotonically increases. From these relations,
d0u

( ds,opt

2

)
≤ ds,optu(d0). From this relation and Eq. (29), we

have u(ds,opt)
ds,opt

≤ 2 u(d0)
d0

. �

Appendix G: Proof of relation Ulow ≤ U(rO)

Because u(z) ≥ û(z) for any z,

U(rO) = u(Y1 + Y2 + . . . + Yi1 )

+ u(Yi1+1 + Yi1+2 + . . . + Yi2 ) + . . .

+ u(Yik−1+1 + Yik−1+2 + . . . + Yik )

≥ û(Y1 + Y2 + . . . + Yi1 )

+ û(Yi1+1 + Yi1+2 + . . . + Yi2 ) + . . .

+ û(Yik−1+1 + Yik−1+2 + . . . + Yik ), (A· 15)

where ik = N+1. Also, û(z1+z2)−û(z1) ≥ û(z2)−û(0) = û(z2)
for any z1 and z2 because û(0) = 0 and û(z) is a convex
monotonically increasing function. Namely, û(z1 + z2) ≥
û(z1) + û(z2). By repeatedly using this relation, we have

û(Yij+1 + Yij+2 + . . . + Yij+1 )

≥ û(Yij+1) + û(Yij+2) + . . . + û(Yij+1 ). (A· 16)

From Eqs. (A· 15) and (A· 16), U(rO) ≥ ∑N+1
i=1 û(Yi) = Ulow.

Appendix H: Computation of Link ETX

Assume that link ETX function u(z) is a function of p(z),
which is the probability that a packet is successfully trans-
mitted over a wireless link of length z, and that u(z) = 1

p(z)2

as assumed in [4]. We use the following model for p(z),
which is derived in [9] with assumptions that non-coherent

FSK modulation and NRZ encoding are used.

p(z) =
∫ ∞

−∞
fXσ (x)

(
1 − 1

2
e−

γ(z)
2 · 1

0.64

)8α

dx. (A· 17)

In this equation, Xσ dB is a zero-mean Gaussian RV (in dB)
with standard deviation σ, fXσ (x) is the probability den-
sity function of Xσ, α is the packet size (in bytes), and
γ(z)dB = Pt dB − PL(z)dB − Pn dB, where Pt dB is the trans-
mitting power, PL(z)dB is the propagation loss at a length
z, and Pn dB is the noise floor. PL(z)dB can be computed as
PL(z)dB = PL(z0)dB+10n log10

(
z
z0

)
+Xσ dB, where PL(z0)dB

is the propagation loss at a reference length z0 and n is the
path loss exponent. In this paper, we use two examples of
link ETX functions u1(z) and u2(z), which are calculated
with the following parameters obtained by [10]. u1(z) is as-
sumed at a one-sided patio, and n = 3.2, σ = 1.85, z0 = 1
m, PL(z0)dB = −36.6 dB, and Pt dB = 0.3353 dBm. u2(z) is
assumed at a concrete canyon, and n = 2.7, σ = 5.1, z0 = 1
m, PL(z0)dB = −46.35 dB, and Pt dB = 1.2097 dBm.
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