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SUMMARY In multi-hop wireless networks, communication quality
depends on the selection of a path between source and destination nodes
from several candidate paths. Exploring how path selection affects com-
munication quality is important to characterize the best path. To do this, in
[1], we used expected transmission count (ETX) as a metric of communi-
cation quality and theoretically characterized minimum route ETX, which
is the ETX of the best path, in a static one-dimensional random multi-hop
network. In this paper, we characterize minimum route ETX in static two-
dimensional multi-hop networks. We give the exact formula of minimum
route ETX in a two-dimensional network, assuming that nodes are located
with lattice structure and that the ETX function satisfies three conditions
for simplifying analysis. This formula can be used as an upper bound of
minimum route ETX without two of the three conditions. We show that this
upper bound is close to minimum route ETX by comparing it with simu-
lation results. Before deriving the formula, we also give the formula for a
one-dimensional network where nodes are located at constant intervals. We
also show that minimum route ETX in the lattice network is close to that in
a two-dimensional random network if the node density is large, based on a
comparison between the numerical and simulation results.
key words: multi-hop wireless networks, expected transmission count, the-
oretical analysis

1. Introduction

In multi-hop wireless networks [2], [3], source node S sends
a packet to destination node D by a multi-hop path consist-
ing of relay nodes. If candidate multi-hop paths exist be-
tween S and D, path selection from the candidates affects
the communication quality as follows. If we select a path
that minimizes the number of hops, links included in the
path tend to be long. This tendency increases packet losses
and retransmissions. As a result, the total number of trans-
missions until D receives a packet is increased. Conversely,
if we select a path consisting of short links, the number of
hops tends to increase. This tendency also increases the total
number of transmissions. Therefore, to minimize transmis-
sions, we should select a path that realizes an appropriately
small number of hops and appropriately short links.

Exploring how path selection affects communication
quality is important to characterize the best path. To do this,
we use expected transmission count (ETX) [4], defined as
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Fig. 1 Examples of ETX functions.

the expected number of transmissions required to success-
fully send a packet through a link, and route ETX [4], which
is the sum of the ETXs of all links in the selected path, as
metrics of communication quality. In [1], we theoretically
analyzed the minimum value of route ETX, which is called
minimum route ETX, in a one-dimensional multi-hop net-
work where nodes are randomly distributed, assuming that
all nodes are stationary, and the ETX function is a convex
monotonically increasing function as shown in Fig. 1, where
the horizontal axis is the length of a link and the vertical axis
is the ETX of a link. The ETX functions in Fig. 1 will be
explained in Sect. 2. We characterized a path that approxi-
mately minimizes route ETX and gave a formula to compute
the route ETX of this path. We also characterized minimum
route ETX by comparisons with route ETXs for the Shortest
Path Routing and the Longest Path Routing based on the re-
sults of theoretical analyses. From these characterizations,
we can well understand how route ETX is minimized in a
static one-dimensional network.

In this paper, we characterize how route ETX is min-
imized and compute minimum route ETX in static two-
dimensional multi-hop networks. Theoretical analysis of a
two-dimensional network is not easy if the nodes are ran-
domly distributed, as assumed in [1]. Hence, we assume
that nodes are located with lattice structure and that the ETX
function satisfies three conditions for simplifying analysis.
Under these assumptions, we characterize a path that mini-
mizes route ETX in the lattice network and give a formula
to compute minimum route ETX. This formula can be used
as an upper bound of minimum route ETX without two of

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers



746
IEICE TRANS. COMMUN., VOL.E92–B, NO.3 MARCH 2009

the three conditions. Then we show that this upper bound
is close to minimum route ETX by comparing it with sim-
ulation results of minimum route ETX. Before deriving the
formula, we also characterize minimum route ETX in a one-
dimensional network where nodes are located at constant
intervals. This characterization in a one-dimensional net-
work is utilized in the above characterization in the lattice
network. We also show that minimum route ETX in the lat-
tice network is close to that in a two-dimensional random
network if the node density is large by comparing the nu-
merical and simulation results.

The rest of this paper is organized as follows. In Sect. 2,
we explain our definitions and assumptions. In Sect. 3,
we theoretically analyze minimum route ETX in a one-
dimensional network where nodes are located at constant in-
tervals. In Sect. 4, we theoretically analyze minimum route
ETX in a two-dimensional network where nodes are located
with lattice structure and compare the numerical results of
minimum route ETX in the lattice network with simulation
results in a two-dimensional random network. Section 5
concludes this paper.

2. Definitions and Assumptions

In this paper, we theoretically compute minimum route
ETXs in static one-dimensional and lattice networks. De-
note by u(z) the ETX of a link with length z. Suppose that
0 < u(z) < ∞ for 0 ≤ z ≤ d, and u(z) = ∞ for z > d, where
d is a constant and means the maximum transmitting range.
Note that we assume that any pair of nodes has a link be-
tween them to explain the relation between a pair of nodes
in the analysis. Therefore, a pair of nodes whose distance
is greater than d cannot directly exchange any packets even
though they are assumed to have a link.

We use six ETX functions denoted by f1(z) to f6(z).
These functions, defined in Appendix A, are depicted in
Fig. 1, where it is assumed that d = 45 for f1(z), d = 57 for
f2(z), d = 71 for f3(z), d = 90 for f4(z), d = 100 for f5(z),
and d = 110 for f6(z). f1(z) to f4(z) are computed from
the relation between the packet reception rate and ETX, a
channel model, a radio receiver model, and other parameters
given in [4]–[6]. As seen from this figure, f1(z) to f4(z) are
convex monotonically increasing functions. In this paper we
assume that u(z) is a convex monotonically increasing func-
tion based on these facts. Also, f5(z) and f6(z) are defined as
convex monotonically increasing functions, as in Appendix
A.

Consider the following three conditions:

A1: u(z) is a convex monotonically increasing function.
A2: 1 < zu′′(z)

u′(z) < 5 for 0 ≤ z ≤ d, where u′(z) and u′′(z) are
the first and second derivatives of u(z), respectively.

A3: u(d) > 2u
(

d√
2

)
.

f1(z) to f6(z) satisfy A1, as mentioned. Figure 2 shows the
numerical examples of zu′′(z)

u′(z) for f1(z) to f6(z). From Figs. 1
and 2, f1(z) to f4(z) do not satisfy A2 but A3. f5(z) was

Fig. 2 Numerical examples of zu′′(z)
u′(z) .

originally defined as a function that satisfies both A2 and
A3. From the definition, f6(z) does not satisfy A3 but A2.
The above three conditions and these differences between
the ETX functions will be used to analyze minimum route
ETX in the lattice network.

Let U(r) be the route ETX of route r. Let Rk be the set
of all k-hop paths. Let rO,k be the k-hop path that minimizes
route ETX in Rk. Let rOR be the path that minimizes route
ETX in all paths. Namely, minimum route ETX is repre-
sented as U(rOR) = mink U(rO,k).

3. Analysis of a One-Dimensional Network

In this section, we consider a one-dimensional network
where the nodes are located at coordinate ia for all i, where i
is an integer, a is a positive real number, and a ≤ d. Suppose
that S and D are located at 0 and L, where L is a multiple of
a and L ≥ 0. Suppose that all nodes including S and D are
stationary. Figure 3 shows an example of the network.

Consider k-hop path r1 that consists of k links whose
lengths are �1, ..., �k, and another k-hop path r2 that consists
of k links whose lengths are �′1, ..., �′k. If we can construct a
sequence identical to �1, ..., �k by rearranging �′1, ..., �′k, then
we regard r1 and r2 as identical.

We can exactly compute U(rOR) by the following theo-
rems:

Theorem 1. Define n1,k, n2,k, �1,k, and �2,k as

n1,k = k − n2,k, (1)

n2,k =
L
a
− k

⌊ L
ka

⌋
, (2)

�1,k =
⌊ L
ka

⌋
a, (3)

�2,k = �1,k + a. (4)

Let r1,k be the k-hop path that consists of n1,k and n2,k links
whose lengths are �1,k and �2,k, respectively. r1,k always ex-
ists, and rO,k = r1,k.

Theorem 2. Let n0 be a positive integer that minimizes
u(n0a)

n0a . Then
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Fig. 3 One-dimensional multi-hop wireless network.

U(rOR)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U(rO,1), L ≤ n0a,

min

{
U

(
r

O,
⌊

L
n0a

⌋
)
,U

(
r

O,
⌈

L
n0a

⌉
)}
,

L > n0a.

(5)

Theorem 1 means that minimum route ETX is realized
by a path in which there are at most two kinds of link lengths
and the difference between them is a. In [1], we charac-
terized minimum route ETX in a one-dimensional random
network and showed that we can construct a path which ap-
proximately minimizes route ETX by making the lengths of
all links in the path close to each other. From these facts, we
can see that Theorem 1 supports this characterization in [1].
Theorem 2 gives two candidates for the number of hops that
realize minimum route ETX.

Theorems 1 and 2 analytically give minimum route
ETX in a one-dimensional multi-hop wireless network with-
out executing shortest path algorithms like Dijkstra algo-
rithm [7] assuming that nodes are located at constant in-
tervals along a straight line, link cost (i.e., ETX) is repre-
sented as a function of link length, and the function is a con-
vex monotonically increasing function. These theorems can
be used not only in such a wireless network but in general
networks as long as the above assumptions can be made.
Namely, links do not have to be wireless and can represent
various things with the above assumptions.

3.1 Proof of Theorem 1

To prove Theorem 1, we use Lemmas 1 and 2.

Lemma 1. If z1 < z2, then u(z1+a)−u(z1) < u(z2+a)−u(z2).

Proof. Let u′(z) be the derivative of u(z). Then

{u(z2 + a) − u(z2)} − {u(z1 + a) − u(z1)}
=

∫ a

0
u′(z + z2)dz −

∫ a

0
u′(z + z1)dz > 0 (6)

because u′(z + z2) − u′(z + z1) > 0 because u(z) is a convex
monotonically increasing function. �

Lemma 2. Suppose that r is a k-hop path consisting of k
links whose lengths are �1, ..., �k. If a pair of integers i and
j exists such that � j > �i + a, then r � rO,k.

Proof. Without loss of generality, we assume that �2 > �1 +
a. Let r′ be a k-hop path consisting of links whose lengths
are �1 + a, �2 − a, �3, ..., �k. Then we have

U(r)−U(r′) = {u(�2)−u(�2−a)}−{u(�1+a)−u(�1)}. (7)

From Eq. (7) and Lemma 1, we have U(r) > U(r′). This

inequality means that r � rO,k. �

Using these lemmas, we have Theorem 1 as follows: In
r1,k, the total length of the links equals L from Eqs. (1) to (4).
Therefore, r1,k always exists. Let r be a k-hop path different
from r1,k. Suppose that the lengths of links included in r are
�1, �2, ..., �k. Then there must be integer i such that �i < �1,k
or �i > �2,k because only r1,k consists of two kinds of links
whose lengths are �1,k and �2,k. If �i < �1,k, then there must
be integer j such that � j > �1,k so that �1+�2+...+�k = L, and
we have � j > �i + a. Hence, from Lemma 2, r � rO,k. In the
same manner, we can prove that if �i > �2,k, then r � rO,k.
Therefore, r � rO,k for all r ∈ Rk − {r1,k}. Consequently,
rO,k = r1,k.

3.2 Proof of Theorem 2

In this subsection, we represent rO,k as rO,k(L) to explicitly
represent it with parameter L. Let n0 be a positive integer
that minimizes u(n0a)

n0a . Let kO be the number of hops of rOR.
To prove Theorem 2, we use Lemmas 3 to 6.

Lemma 3.

U(rO,k(L + a)) = U(rO,k(L))

−u
(⌊ L

ka

⌋
a
)
+ u

(⌊ L
ka

⌋
a + a

)
. (8)

Proof. If L + a is not a multiple of ka, then
⌊

L+a
ka

⌋
=
⌊

L
ka

⌋
. If

L+a is a multiple of ka, then
⌊

L+a
ka

⌋
= L+a

ka and
⌊

L
ka

⌋
= L+a

ka −1.
In both cases, from Theorem 1, Eq. (8) holds. �

Lemma 4. Let ki be the number of hops of rOR for L = ia,
where i is an integer and i ≥ 0. If i < j, then ki ≤ k j.

Proof. First, we consider the case where j = i + 1. In this
case, from Lemma 3,

U(rO,ki ( ja)) = U(rO,ki (ia))

−u

(⌊
ia
kia

⌋
a

)
+ u

(⌊
ia
kia

⌋
a + a

)
, (9)

U(rO,k j ( ja)) = U(rO,k j (ia))

−u

(⌊
ia

k ja

⌋
a

)
+ u

(⌊
ia

k ja

⌋
a + a

)
. (10)

Assume that ki > k j. Then
⌊

ia
kia

⌋
a ≤

⌊
ia

k ja

⌋
a and

u

(⌊
ia
kia

⌋
a + a

)
− u

(⌊
ia
kia

⌋
a

)

≤ u

(⌊
ia

k ja

⌋
a + a

)
− u

(⌊
ia

k ja

⌋
a

)
(11)

from Lemma 1. Also, from the definition of ki, we have

U(rO,ki (ia)) < U(rO,k j (ia)). (12)

From Eqs. (9), (10), (11), and (12), we have

U(rO,ki ( ja)) < U(rO,k j ( ja)), (13)
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which is a contradiction. Therefore, ki ≤ k j. Next, when
j = i + m, where m is an integer and m ≥ 2, from the above
result, we obviously have ki ≤ ki+1 ≤ ki+2 ≤ ... ≤ ki+m = k j.
Then this lemma holds. �

Lemma 5. U(r) ≥ u(n0a)
n0a L for all r.

Proof. Suppose that r is a k-hop path that consists of k links
whose lengths are �1, ..., �k. Then

U(r) =
k∑

i=1

u(�i) ≥
k∑

i=1

u(n0a)
n0a

�i =
u(n0a)

n0a
L (14)

since u(�i)
�i
≥ u(n0a)

n0a for 1 ≤ i ≤ k. �

Lemma 6. If L is a multiple of n0a, then kO =
L

n0a .

Proof. We have U
(
rO, L

n0a

)
=

u(n0a)
n0a L from Theorem 1, and

U(r) ≥ U
(
rO, L

n0a

)
for all r from Lemma 5. Then kO =

L
n0a .
�

Using these lemmas, we have Theorem 2 as follows: If
L = n0a, then kO = 1 from Lemma 6. From this result and
Lemma 4, kO = 1 if L < n0a. Hence, U(rOR) = U(rO,1)
if L ≤ n0a. Next, we consider the case where L > n0a.
Suppose that L′ is a multiple of a and L′ > n0a. From
Lemma 6, kO =

⌊
L′

n0a

⌋
if L =

⌊
L′

n0a

⌋
n0a, and kO =

⌈
L′

n0a

⌉
if L =

⌈
L′

n0a

⌉
n0a. Since

⌊
L′

n0a

⌋
n0a ≤ L′ ≤

⌈
L′

n0a

⌉
n0a, we

have kO =
⌊

L′
n0a

⌋
or kO =

⌈
L′

n0a

⌉
if L = L′ from Lemma 4.

Consequently, U(rOR) = min

{
U

(
r

O,
⌊

L
n0a

⌋
)
,U

(
r

O,
⌈

L
n0a

⌉
)}

if

L > n0a.

3.3 Numerical Results

We show some numerical results of minimum route ETX in
a one-dimensional network, where a = 10. We compute
minimum route ETX by Eq. (5) for ETX functions f1(z),
f2(z), f3(z), and f4(z) depicted in Fig. 1. We set d to 45 for
f1(z), 57 for f2(z), 71 for f3(z), and 90 for f4(z). Figure 4

Fig. 4 Minimum route ETX, where a = 10.

shows the numerical results with simulation results com-
puted by the Dijkstra algorithm [7]. From Fig. 4, we can
confirm that the numerical results completely agree with the
simulation results.

4. Analysis of Two-Dimensional Networks

In this section, we consider a two-dimensional network
where nodes are located at coordinates (ia, ja) for all inte-
gers i and j, where a is a positive real number and a ≤ d.
Suppose that S and D are located at (0, 0) and (Lx, Ly), re-
spectively, where Lx and Ly are multiples of a, Lx ≥ 0, and
Ly ≥ 0. Suppose that all nodes including S and D are sta-
tionary. Figure 5 shows an example of the network. In this
section, we represent a link from a node at (x1, y1) to a node
at (x2, y2) as vector � = (x2 − x1, y2 − y1).

Consider k-hop path r1 consisting of k links �1, ..., �k,
and another k-hop path r2 consisting of k links �′1, ..., �′k. If
we can construct a sequence identical to �1, ..., �k by rear-
ranging �′1, ..., �′k, then we regard r1 and r2 as identical.

Consider the following three conditions on u(z):

A1: u(z) is a convex monotonically increasing function.
A2: 1 < zu′′(z)

u′(z) < 5 for 0 ≤ z ≤ d, where u′(z) and u′′(z) are
the first and second derivatives of u(z), respectively.

A3: u(d) > 2u
(

d√
2

)
†.

If u(z) satisfies A1 to A3, we can exactly compute U(rOR) by
the following theorems:

Theorem 3. Assume that u(z) satisfies A1 and A2. Define
n3,k to n6,k and �3,k to �6,k as

n3,k = k − n4,k − n5,k − n6,k, (15)

n4,k =
Lx

a
− k

⌊Lx

ka

⌋
− n6,k, (16)

n5,k =
Ly
a
− k

⌊
Ly
ka

⌋
− n6,k, (17)

n6,k = max

{
0,

Lx + Ly
a

− k
⌊Lx

ka

⌋
− k

⌊
Ly
ka

⌋
− k

}
, (18)

�3,k =

(⌊Lx

ka

⌋
a,

⌊
Ly
ka

⌋
a

)
, (19)

Fig. 5 Lattice multi-hop wireless network.

†We used an equation u(ds,opt) = 2u
(

ds,opt

2

)
and a condition

u(d) ≥ 2u
(

d
2

)
, which are similar to A3, in [1]; however, these are

used just for obtaining ds,opt, which is an important parameter in
[1], and have no direct relation with A3.
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�4,k = �3,k + (a, 0), (20)

�5,k = �3,k + (0, a), (21)

�6,k = �3,k + (a, a). (22)

Let r2,k be the k-hop path consisting of n3,k links, n4,k links,
n5,k links, and n6,k links represented as �3,k, �4,k, �5,k, and
�6,k, respectively. If U(r2,k) < ∞, then U(rO,k) = U(r2,k).

Theorem 4. Assume that u(z) satisfies A1 to A3. Define r2,k

in the same manner as in Theorem 3. Then

U(rOR) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u(0), Lx = 0 and Ly = 0,

min
1≤k≤ Lx+Ly

a ,U(r2,k)<∞
U(r2,k),

Lx > 0 or Ly > 0.

(23)

We can exactly compute U(rOR) by Eq. (23) if u(z) sat-
isfies A1 to A3. Theorems 3 and 4 analytically give minimum
route ETX in a lattice multi-hop wireless network without
executing shortest path algorithms like Dijkstra algorithm
assuming that nodes are located with lattice structure, link
cost (i.e., ETX) is represented as a function of link length,
and the function satisfies A1 to A3. These theorems give an
analytical framework for solutions to shortest path problems
in general lattice networks as long as the above assumptions
can be made.

As can be easily expected, the ETX functions do not
always satisfy these conditions, especially A2 and A3. Even
if u(z) does not satisfy A1 to A3, the right side of Eq. (23) can
be used as an upper bound of minimum route ETX. Namely,
we generally have

U(rOR) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u(0), Lx = 0 and Ly = 0,

min
1≤k≤ Lx+Ly

a ,U(r2,k)<∞
U(r2,k),

Lx > 0 or Ly > 0.

(24)

The proof of Eq. (24) is provided in Appendix B. We numer-
ically evaluate the relation between this upper bound and
minimum route ETX in Sect. 4.3. We also compare the nu-
merical results of Eq. (23) with the simulation results in a
two-dimensional random network to investigate whether the
above theorems can be applied to random networks.

Before proving Theorems 3 and 4, we explain the
meaning of condition A2. Analysis of the lattice network
considered here is an extended version of that of the one-
dimensional network in Sect. 3. We showed how to con-
struct rO,k in a one-dimensional network when u(z) satisfies
A1 in Sect. 3. We intuitively expected that r2,k defined in
Theorem 3 equals rO,k in the lattice network when u(z) sat-
isfies A1 and tried to prove that r2,k and rO,k are identical
only with the assumption A1 because x-components of links
in r2,k equal links included in rO,k of the one-dimensional
network with L = Lx, and y-components equal those with
L = Ly. Unfortunately, however, we found that r2,k and rO,k

are not always identical if u(z) is a function that increases too
rapidly or too slowly. Then we added condition A2, which

means that u(z) does not increase too rapidly or too slowly.
As will be proved in the following subsection, while A1 and
A2 hold, r2,k and rO,k are always identical. Next, we explain
the meaning of A3. Suppose that rOR = rO,k. This means
that a k-hop path minimizes route ETX. We found that, even
in such a case, U(r2,k) can be infinity if u(d) is very small.
This means that U(r2,k) and U(rOR) are not identical in such
a case. Therefore, we added A3 to prevent a situation where
u(d) is too small to make U(r2,k) infinity.

4.1 Proof of Theorem 3

To prove Theorem 3, we use the following function:

û(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(z), 0 ≤ z ≤ d,
u′(d)
4d3

(z4 − d4) + u(d), z > d.
(25)

As easily proved, if u(z) satisfies A1 and A2, then û(z) satis-
fies the following conditions:

B1: û(z) monotonically increases with respect to z for z ≥ 0.
B2: û′(z)

z monotonically increases with respect to z for z ≥ 0,
where û′(z) is the derivative of û(z).

B3: û′(z)
z5 monotonically decreases with respect to z for z ≥ 0.

Let Û(r) be the route ETX computed using û(z) as a link
ETX function instead of u(z). Note that Û(r) = U(r) if
U(r) < ∞. Also, in general, Û(r) ≤ U(r) for any route
r. We also use the following function:

ûp(g, h, c) = û

(√
g2 + h2 + 2ghc

)

+û

(√
g2 + h2 − 2ghc

)
, (26)

where g ≥ 0, h ≥ 0, and 0 ≤ c ≤ 1. Also, if û(z) satisfies B1

to B3, we have

P1: If h′ ≤ h, then ûp(g, h′, c) ≤ ûp(g, h, c).
P2: If c′ ≤ c, then ûp(g, h, c′) ≤ ûp(g, h, c). Especially if
g > 0, h > 0, and c′ < c, then ûp(g, h, c′) < ûp(g, h, c).

P3: If h > 0, then ûp(g, h, 1) < ûp

(
g,
√

5h, 0
)
.

P4: If h > 0 and h ≥ √5h′, then ûp(g, h′, c′) < ûp(g, h, c).

The proofs of P1 to P4 are provided in Appendix C.
To prove Theorem 3, we use Lemmas 7 to 10.

Lemma 7. Suppose that xi, yi, x j, and y j are multiples of a.
Let �i and � j be (xi, yi) and (x j, y j), respectively. Let �′i and
�′j be (x′i , y

′
i ) and (x′j, y

′
j), respectively, where x′i =

[ xi+x j

2a

]
a,

y′i = yi + y j − y′j, x′j = xi + x j − x′i , and y′j =
[
yi+y j

2a

]
a, where

[·] is the integer part of ·. If |x j − xi| ≥ 2a or |y j − yi| ≥ 2a,
then |�i+� j| = |�′i +�′j|, |� j−�i| > 0, and |� j−�i| ≥

√
5|�′j−�′i |.

Proof. Clearly, if |x j−xi| ≥ 2a or |y j−yi| ≥ 2a, then |� j−�i| >
0. Also, from the definitions of �′i and �′j, |�i + � j| = |�′i + �′j|.
If |x j − xi| ≥ 2a, then

1) |x j − xi| = 2a and |y j − yi| = 0,
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2) |x j − xi| = 2a and |y j − yi| ≥ a,
3) |x j − xi| ≥ 3a and |y j − yi| = 0, or
4) |x j − xi| ≥ 3a and |y j − yi| ≥ a.

In 1), |x′j − x′i | = 0 and |y′j − y′i | = 0; therefore, |� j − �i| = 2a
and |�′j − �′i | = 0. In 2), |x′j − x′i | = 0 and |y′j − y′i | ≤ a;

therefore, |� j− �i| ≥
√

5a and |�′j− �′i | ≤ a. In 3), |x′j− x′i | ≤ a
and |y′j − y′i | = 0; therefore, |� j − �i| ≥ 3a and |�′j − �′i | ≤ a. In

4), |x′j − x′i | ≤ a and |y′j − y′i | ≤ a; therefore, |� j − �i| ≥
√

10a

and |�′j−�′i | ≤
√

2a. Consequently, |� j−�i| ≥
√

5|�′j−�′i | in 1)
to 4). In the same manner, we can prove that if |y j−yi| ≥ 2a,
then |� j − �i| ≥

√
5|�′j − �′i |. �

Lemma 8. If |�i + � j| = |�′i + �′j|, |� j − �i| > 0, and |� j − �i| ≥√
5|�′j − �′i |, then û(|�i|) + û(|� j|) > û(|�′i |) + û(|�′j|).

Proof. Define g, h, c, g′, h′, and c′ as

g =
1
2
|� j + �i|, (27)

h =
1
2
|� j − �i|, (28)

c =
|� j + �i|2 + |� j − �i|2 − 4 min {|�i|, |� j|}2

2|� j + �i||� j − �i| , (29)

g′ =
1
2
|�′j + �′i |, (30)

h′ =
1
2
|�′j − �′i |, (31)

c′ =
|�′j + �′i |2 + |�′j − �′i |2 − 4 min {|�′i |, |�′j|}2

2|�′j + �′i ||�′j − �′i |
. (32)

From the assumptions, g = g′, h > 0, and h ≥ √5h′. Then
ûp(g′, h′, c′) < ûp(g, h, c) from P4. Also, by substituting
Eqs. (27) to (32) into Eq. (26), we have

ûp(g, h, c) = û(|�i|) + û(|� j|), (33)

ûp(g′, h′, c′) = û(|�′i |) + û(|�′j|). (34)

Consequently, û(|�i|) + û(|� j|) > û(|�′i |) + û(|�′j|). �

Lemma 9. Let r be a k-hop path consisting of k links �1 =
(x1, y1), ..., �k = (xk, yk). If a pair of integers i and j exists
such that |x j − xi| ≥ 2a, |y j − yi| ≥ 2a, or (|x j| = |xi| +
a and |y j| = |yi| + a), then k-hop path r′ exists such that
Û(r′) < Û(r).

Proof. Let �′i and �′j be (x′i , y
′
i) and (x′j, y

′
j), respectively,

where x′i =
[ xi+x j

2a

]
a, y′i = yi + y j − y′j, x′j = xi + x j − x′i , and

y′j =
[
yi+y j

2a

]
a. Let r′ be the k-hop path made by replacing �i

and � j of r with �′i and �′j. First, suppose that |x j − xi| ≥ 2a
or |y j − yi| ≥ 2a. From Lemma 7, |�i + � j| = |�′i + �′j|,
|� j − �i| > 0, and |� j − �i| ≥

√
5|�′j − �′i |. Then from Lemma 8,

û(|�i|)+ û(|� j|) > û(|�′i |)+ û(|�′j|). Hence, Û(r′) < Û(r). Next,
suppose that |x j| = |xi|+a and |y j| = |yi|+a. In this case, �′i =
(xi, y j) and �′j = (x j, yi). If we define g, h, c, g′, h′, and c′ as
Eqs. (27) to (32), we have g = g′ > 0, h = h′ > 0, and c > c′.

Hence, ûp(g′, h′, c′) < ûp(g, h, c) from P2. From this rela-
tion and Eqs. (33) and (34), û(|�i|)+ û(|� j|) > û(|�′i |)+ û(|�′j|).
Therefore, Û(r′) < Û(r). �

Lemma 10. Û(r2,k) = min
r∈Rk

Û(r).

Proof. Let r be a k-hop path different from r2,k. Suppose
that r consists of links �1 = (x1, y1), ..., �k = (xk, yk). First,
suppose integer i such that �i is not equal to �3,k, �4,k, �5,k, or
�6,k. In this case, xi <

⌊
Lx

ka

⌋
a, xi >

⌊
Lx

ka

⌋
a + a, yi <

⌊ Ly
ka

⌋
a,

or yi >
⌊ Ly

ka

⌋
a + a. If xi <

⌊
Lx

ka

⌋
a, then there must be integer

j such that x j >
⌊

Lx

ka

⌋
a so that x1 + x2 + ... + xk = Lx, and

we have x j − xi ≥ 2a. Hence, from Lemma 9, k-hop path r′
exists such that Û(r′) < Û(r). In the same manner, we can
prove that if xi >

⌊
Lx

ka

⌋
a + a, yi <

⌊ Ly
ka

⌋
a, or yi >

⌊ Ly
ka

⌋
a +

a, then k-hop path r′ exists such that Û(r′) < Û(r). Next,
suppose that �i is equal to �3,k, �4,k, �5,k, or �6,k for all i. In
this case, r includes both �3,k and �6,k since only r2,k consists
of three kinds of links:

{
�3,k, �4,k, �5,k

}
or

{
�4,k, �5,k, �6,k

}
. If

�i = �3,k and � j = �6,k, then |x j| = |xi| + a and |y j| = |yi| +
a. Hence, from Lemma 9, k-hop path r′ exists such that
Û(r′) < Û(r). From these results, k-hop path r′ exists such
that Û(r′) < Û(r) for all r ∈ Rk − {r2,k}. Therefore, Û(r2,k) =
minr∈Rk Û(r). �

Generally, Û(rO,k) ≤ U(rO,k) ≤ U(r2,k). From
Lemma 10, Û(r2,k) ≤ Û(rO,k). If U(r2,k) < ∞, then
Û(r2,k) = U(r2,k). From these relations, Theorem 3 holds.

4.2 Proof of Theorem 4

To prove Theorem 4, we use Lemmas 11 to 13.

Lemma 11. û(z) > 2û
(

z√
2

)
for z > d.

Proof. Let b(z) be û(z) − 2û
(

z√
2

)
. Then

db(z)
dz
= z ·

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
û′(z)

z
−

û′
(

z√
2

)
z√
2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (35)

We have b(d) > 0 from A3, and db(z)
dz > 0 from Eq. (35) and

B2. From these relations, b(z) > 0 for z > d. Therefore,

û(z) > 2û
(

z√
2

)
for z > d. �

Lemma 12. Suppose that x and y are multiples of a, x ≥ 0,
y ≥ 0, and

√
x2 + y2 > a. If x1 =

⌊
x

2a

⌋
a, x2 =

⌈
x

2a

⌉
a,

y1 =
⌈
y

2a

⌉
a, and y2 =

⌊
y

2a

⌋
a, then

√
x2

1 + y
2
1 ≤

√
x2+y2

2 and√
x2

2 + y
2
2 ≤

√
x2+y2

2 .

Proof. If
√

x2 + y2 > a, then 1) y � a, 2) y = a and x = a,
or 3) y = a and x ≥ 2a. In 1), we have y1 ≤ 2

3y and

x1 ≤ x
2 ; therefore,

√
x2

1 + y
2
1 ≤

√
x2

4 +
4y2

9 ≤
√

x2+y2

2 . In
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2),
√

x2
1 + y

2
1 =

√
x2+y2

2 because x1 = 0 and y1 = a. In 3),

y1 = a and x1 ≤ x
2 ; therefore,

√
x2

1+y
2
1√

x2+y2
≤

√
( x

2 )2
+a2

√
x2+a2

. Also,

in 3),

√
( x

2 )2
+a2

√
x2+a2

≤
√

( 2a
2 )2
+a2√

(2a)2+a2
≤ 1√

2
because

√
( x

2 )2
+a2

√
x2+a2

mono-

tonically decreases with respect to x and x ≥ 2a. Hence,√
x2

1 + y
2
1 ≤

√
x2+y2

2 in 3). In the same manner, we can prove

that
√

x2
2 + y

2
2 ≤

√
x2+y2

2 . �

Lemma 13. If U(r2,k) = ∞, then rO,k � rOR.

Proof. Suppose that U(r2,k) = ∞. In this case, r2,k includes
a link whose length is greater than d. Denote this link by
� = (x, y). Note that x ≥ 0 and y ≥ 0 because (x, y) is
included in r2,k and we have

√
x2 + y2 > a if |�| > d. We

build k + 1-hop path r3,k+1 by replacing � of r2,k with two
vectors denoted by �1 = (x1, y1) and �2 = (x2, y2). Suppose
that x1 =

⌊
x

2a

⌋
a, x2 =

⌈
x

2a

⌉
a, y1 =

⌈
y

2a

⌉
a, and y2 =

⌊
y

2a

⌋
a.

From Lemma 12, |�1| ≤ 1√
2
|�| and |�2| ≤ 1√

2
|�|. Then from

Lemma 11, û(|�1|)+ û(|�2|) ≤ 2û
(

1√
2
|�|
)
< û(|�|). This means

that Û(r3,k+1) < Û(r2,k). From this relation and Lemma 10,
we have Û(r2,k+1) < Û(r2,k).

Let kmin be the minimum value of k′ such that k′ > k
and U(r2,k′) < ∞. From the above relation, Û(r2,k) >
Û(r2,k+1) > ... > Û(r2,kmin ). Also, U(rO,k) ≥ Û(rO,k) ≥
Û(r2,k) from Lemma 10, and U(rO,kmin ) = Û(r2,kmin) from
Theorem 3. From these relations, U(rO,k) > U(rO,kmin ). This
inequality means that rO,k � rOR. �

Using these lemmas, we have Theorem 4 as follows.
Clearly, if Lx = 0 and Ly = 0, then U(rOR) = u(0). If Lx > 0
or Ly > 0, then we have

U(rOR) = min
1≤k≤ Lx+Ly

a

U(rO,k) (36)

since the number of hops of rOR is not greater than Lx+Ly
a .

From Eq. (36) and Lemma 13, we have

U(rOR) = min
1≤k≤ Lx+Ly

a ,U(r2,k)<∞
U(rO,k). (37)

Therefore, from Eq. (37) and Theorem 3, Eq. (23) holds.

4.3 Numerical Results

We show some numerical examples of Eq. (23). We use
functions f1(z) to f6(z) defined in Sect. 2 as u(z), and show
the numerical results of Eq. (23) for these functions. The
numerical results of Eq. (23) for f5(z) are the exact values
of the minimum route ETX, and those for f1(z) to f4(z) and
f6(z) are the upper bounds of the minimum route ETX be-
cause f1(z) to f4(z) do not satisfy A2 and f6(z) does not
satisfy A3. Figures 6 and 7 show the numerical results of
Eq. (23) for f5(z) and f6(z), respectively. In Fig. 6, a = 20

Fig. 6 Minimum route ETX, where a = 20, u(z) = f5(z), and d = 100.

Fig. 7 Minimum route ETX, where a = 20, u(z) = f6(z), and d = 110.

Fig. 8 Minimum route ETX, where a = 10, u(z) = f1(z), f2(z), f3(z),
f4(z), d = 45 for f1(z), d = 57 for f2(z), d = 71 for f3(z), and d = 90 for
f4(z).

and d = 100, and a = 20 and d = 110 in Fig. 7. Fig-
ure 8 shows those for f1(z), f2(z), f3(z), and f4(z), where
a = 10, d = 45 for f1(z), d = 57 for f2(z), d = 71 for f3(z),
and d = 90 for f4(z). Suppose again that source node S is
assumed to be at (0, 0). In these figures, the x-, y-, and z-
axes represent Lx, Ly, and the minimum route ETX for the
destination node at (Lx, Ly), respectively. In Figs. 6 and 7,
Lx = 0, a, 2a, ..., 12a, and Ly = 0, a, 2a, ..., 12a. In Fig. 8,
we show the minimum route ETXs for three values of Lx

to make this figure more visible. Then Lx = 0, 6a, 12a, and
Ly = 0, a, 2a, ..., 12a. These figures also show the simulation
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Fig. 9 Minimum route ETX, where a = 10, u(z) = f1(z), and d = 45.

Fig. 10 Minimum route ETX, where a = 40, u(z) = f1(z), and d = 45.

results of the minimum route ETX computed by the Dijkstra
algorithm. From Fig. 6, we can confirm that the numerical
results completely agree with the simulation results because
f5(z) satisfies A1, A2, and A3. Figure 7 shows that the upper
bounds are close to the simulation results even though f6(z)
does not satisfy A3. As mentioned in Appendix A, we define
f1(z) to f4(z) assuming that transmitters and receivers are
mica2 mote nodes. As a result, unfortunately, these func-
tions do not satisfy A2; however, Fig. 8 shows that the up-
per bounds are close to the simulation results. From these
results, Eq. (23) gives a good approximation to minimum
route ETX even if A2 or A3 is not satisfied although deriva-
tion of u(z) based on actual communication nodes, such as
mica2 mote, sometimes causes violation of A2 and A3.

Next, we compare the numerical results of Eq. (23)
with the simulation results of the minimum route ETX in a
two-dimensional network where the nodes are randomly dis-
tributed. In computer simulations, we randomly distribute N
nodes on a [−200, 200] × [−200, 200] square area, where N
is decided based on a Poisson distribution with intensity 1

a2 .
The densities of the nodes are the same in both networks.
We locate S and D at (0, 0) and (Lx, Ly), respectively. If
there is at least one path whose ETX is finite between S and
D, we construct a path that minimizes route ETX using the
Dijkstra algorithm and compute the minimum route ETX.
Otherwise, we decide N and distribute N nodes again be-
cause S and D have no path in the random network. We re-
peat these procedures 1000 times and compute the mean of

minimum route ETX. Figures 9 and 10 show the numerical
and simulation results for a = 10 and a = 40, respectively.
f1(z) is used as u(z), and d is set to 45. These figures show
that the numerical results of Eq. (23) are close to those in
the random network for a = 10, although there is a differ-
ence between them for a = 40. These results indicate that
Eq. (23) can be used as a good approximation to minimum
route ETX even in a random network when the density of
nodes is large.

5. Conclusions

In this paper, we theoretically and precisely analyzed mini-
mum route ETX and characterized path rO,k, which realizes
minimum route ETX, in a static one-dimensional multi-hop
wireless network where nodes are located at constant inter-
vals. Using a similar idea to that in the one-dimensional
case, we also characterized rO,k in a static lattice multi-hop
wireless network and derived a formula to compute mini-
mum route ETX if the ETX function satisfies three given
conditions and an upper bound of minimum route ETX oth-
erwise. From numerical results, we showed that the for-
mula can be used as an approximation of minimum route
ETX even if these conditions are not satisfied. We also
compared minimum route ETX in the lattice network with
that in a two-dimensional random network and showed that
the formula for the lattice network can be used for the two-
dimensional random network if the density of nodes is large.
The analyses in this paper focus on ETX, and we assume
that the ETX function is a convex monotonically increas-
ing function with respect to the length of a link. If we use
metrics that do not satisfy this assumption, we cannot al-
ways use the results of this paper and may need other ap-
proaches to analysis of the communication quality. For ex-
ample, medium time metric (MTM) [8] is a typical metric
that does not satisfy this assumption because MTM is rep-
resented as a step-like function with respect to the length of
a link. Hence, future problems include the analysis of com-
munication quality using other metrics like MTM. Analyses
of minimum route ETX considering interferences and other
distributions of nodes are also our future problems.
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Appendix A: ETX Functions

In [4], the ETX of a link whose length is z, u(z), is assumed
to be u(z) = 1

p(z)2 , where p(z) is the packet reception rate
(PRR) at a receiver z away from a sender. Since PRR is gen-
erally represented as a random variable, we use its expected
value as p(z). Then

p(z) =
∫ ∞

−∞
Ψ(γdB) f (γdB, z)dγdB, (A· 1)

where Ψ(γdB) is the PRR for the signal to noise ratio (SNR)
γdB, and f (γdB, z) is the probability density function of SNR
for link length z. From a radio receiver model in [5], we
can compute Ψ(γdB) for some common modulation and en-
coding schemes. In this paper, we assume non-coherent fre-
quency shift keying modulation and non-return-to-zero en-
coding. Then

Ψ(γdB) =

⎧⎪⎪⎨⎪⎪⎩1 − 1
2

exp

⎛⎜⎜⎜⎜⎜⎝−10
γdB
10

2
· BN

Δ

⎞⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

8α

, (A· 2)

where α is the packet size (in bytes), BN is the noise band-
width (in Hz), and Δ is the bit data rate (in bps). Also, from a
channel model in [5], SNR obeys a normal distribution with
mean μ and variance σ2, where

μ = Pt − PL(z0) − 10η log10

(
z
z0

)
− Pn, (A· 3)

where Pt is the transmitting power (in dB), PL(z0) is the
propagation loss (in dB) at reference length z0, η is the path
loss exponent, and Pn is the noise floor (in dB). Namely,

f (γdB, z) = 1√
2πσ

e−
(γdB−μ)2

2σ2 . [5] suggests to use the empirical
data of σ, η, and PL(z0) shown in [6]. Hence, we assume a
parking structure as a propagation environment and set these
parameters to σ = 3.95, η = 3, and PL(1) = 34.35 dB [6].
In [5], as an example of the set of parameters needed for the
above computation, the following values are given: Pn =

−105 dBm, z0 = 1 m, α = 50 bytes, BN = 30 kHz, Δ =
19.2 kbps, and −20 dBm < Pt < 5 dBm. To determine these
parameters, mica2 mote is assumed as a wireless node. This
paper uses these values. We examine four values for Pt as
follows: Pt = −15 dBm for f1(z), Pt = −12 dBm for f2(z),

Pt = −9 dBm for f3(z), and Pt = −6 dBm for f4(z).
We also define f5(z) and f6(z) as follows:

f5(z) =

⎧⎪⎪⎨⎪⎪⎩
(

z
40

)3
+ 1, z ≤ 100,

∞, z > 100,
(A· 4)

f6(z) =

⎧⎪⎪⎨⎪⎪⎩
(

z
110

)5
+ 1, z ≤ 110,

∞, z > 110.
(A· 5)

Appendix B: Proof of Eq. (24)

Clearly, if Lx = 0 and Ly = 0, then U(rOR) ≤ u(0). If Lx > 0

or Ly > 0, then Lx+Ly
a is a positive integer. On the other

hand, U(rOR) ≤ U(r2,k) for any positive integer k because
r2,k is one of the paths that connect S and D while rOR is the
path that minimizes route ETX in all paths which connect S
and D. Therefore, Eq. (24) holds.

Appendix C: Proofs of P1 to P4

By partially differentiating Eq. (26) with respect to h,

∂ûp(g, h, c)

∂h
=

(h + gc)û′
( √
g2 + h2 + 2ghc

)
√
g2 + h2 + 2ghc

+
(h − gc)û′

( √
g2 + h2 − 2ghc

)
√
g2 + h2 − 2ghc

. (A· 6)

From Eq. (A· 6), B1, and B2, ∂ûp(g,h,c)
∂h ≥ 0. Hence, P1 holds.

By partially differentiating Eq. (26) with respect to c,

∂ûp(g, h, c)

∂c
=
ghû′

( √
g2 + h2 + 2ghc

)
√
g2 + h2 + 2ghc

−
ghû′

(√
g2 + h2 − 2ghc

)
√
g2 + h2 − 2ghc

. (A· 7)

From Eq. (A· 7) and B2, ∂ûp(g,h,c)
∂c ≥ 0. In addition, if g > 0,

h > 0, and c > 0, then ∂ûp(g,h,c)
∂c > 0. Hence, P2 holds.

To prove P3, from Eq. (26), we only have to prove in-
equality 2û

( √
g2 + 5h2

)
−û(|g−h|)−û(g+h) > 0. In general,

we have

û

(√
g2 + 5h2

)
− û(|g − h|) =

∫ √g2+5h2

|g−h|
û′(z)dz. (A· 8)

By substituting z = t
1
6 into Eq. (A· 8), we have

û

(√
g2 + 5h2

)
− û(|g − h|) =

∫ (g2+5h2)3

(g−h)6

û′(t1/6)
6t5/6

dt.

(A· 9)

From B3, û′(t1/6)
6t5/6 ≥

û′
(√
g2+5h2

)

6
(√
g2+5h2

)5 for t ≤ (g2 + 5h2)3. Then we

have
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û

(√
g2 + 5h2

)
− û(|g − h|)

≥
{
(g2 + 5h2)3 − (g − h)6

}
·

û′
( √
g2 + 5h2

)
6
(√
g2 + 5h2

)5 . (A· 10)

In the same manner, we have

û

(√
g2 + 5h2

)
− û(g + h)

≥
{
(g2 + 5h2)3 − (g + h)6

}
·

û′
( √
g2 + 5h2

)
6
(√
g2 + 5h2

)5 . (A· 11)

From Eqs. (A· 10) and (A· 11), we have

2û

(√
g2 + 5h2

)
− û(|g − h|) − û(g + h)

≥ (120g2h4 + 248h6) ·
û′
( √
g2 + 5h2

)
6
(√
g2 + 5h2

)5 . (A· 12)

The right side of Eq. (A· 12) is greater than 0 because h > 0
and û′

( √
g2 + 5h2

)
> 0, which is derived from B1. There-

fore, P3 holds.
By applying P2, P3, P2, and P1 in this order to

ûp(g, h′, c′), we have

ûp(g, h′, c′) ≤ ûp(g, h′, 1) < ûp

(
g,
√

5h′, 0
)

≤ ûp(g, h, 0) ≤ ûp(g, h, c). (A· 13)

Then P4 holds.
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