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Interference Rejection Characteristics by Adaptive Array at User
Equipment Using Measured K-Factor in Heterogeneous Networks

Kentaro NISHIMORI'?, Senior Member, Keisuke KUSUMI', Student Member, Misaki HORIO", Nonmember,

SUMMARY In LTE-Advanced heterogeneous networks, a typical cell
layout to enhance frequency utilization is to incorporate picocells and
femtocells in a macrocell. However, the co-channel interference be-
tween the marcocell and picocell/femtocell is an important issue when the
same frequency band is used between these systems. We have already
clarified how the interference from the femto(macro) cell affects on the
macro(femto) cell. In this paper, we evaluate the interference rejection
characteristics by an adaptive array with user equipment (UE). The char-
acteristics are evaluated based on the K-factor used in the Nakagami-Race
Fading model and the spatial correlation that is obtained in an actual out-
door environment. It is shown that a two-element adaptive array at the
macro UE (M-UE) can sufficiently reduce the interference from the femto
base station (F-BS) to the M-UE even if the number of total signals exceeds
the degrees of freedom of the array.

key words: heterogeneous networks, adaptive array, user equipment, K-
factor, zero forcing

1. Introduction

Due to the immense popularity of mobile phones and wire-
less LAN systems, increasing the data rate within a lim-
ited spectrum is a very important goal in wireless systems.
Macrocells, the service areas for which are one to several
kilometers, were introduced in conventional cellular sys-
tems. On the other hand, femto and picocells are currently
a focus of attention because small cells can enhance the
frequency utilization and can be established using a low-
power-consuming base station (BS) that requires a small in-
stallation space. In Long Term Evolution (LTE)-Advanced,
heterogeneous networks are extensively discussed in addi-
tion to traditional well-planned macrocell deployment to
improve further the frequency utilization [1]-[3]. In het-
erogeneous network deployment, low power nodes such as
femto, pico, and relay nodes are placed throughout a macro-
cell layout, and they are placed generally in an unplanned
manner. Hence, interference between the macrocell and
pico(femto)cells occurs because the transmission power of
the pico(femto)cells is different from that of the macrocell
and the service coverage areas are different between these
cells. The picocells and femtocells are used in outdoor and
indoor environments, respectively, and the cell size of a pic-
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ocell is basically the same as that of a femtocell, because the
transmission power levels are the same [2].

In order to avoid interference in the downlink between
the macrocell and picocells, Cell Range Expansion (CRE)
and Inter-Cell Interference Coordination (ICIC) were pro-
posed [4]. These schemes can avoid the interference be-
tween the macrocell and picocells while a number of sets of
user equipment (UEs) are connected to a picocell [4]. Since
a femto BS (F-BS) has a function referred to as a Closed
Subscriber Group (CSG), which allows only pre-registered
UEs (femto UEs (F-UEs)), the macro UEs (M-UEs) that
do not belong to the F-BS might receive/impart interference
from/to the F-BS. Hence, in this paper, we focus on the in-
terference between the F-BS and M-UE.

Since the BS antennas are allocated installation space,
there have been many BS interference rejection techniques
proposed and developed [5],[6]. Hence, the interference
from the M-BS to F-BS can be suppressed using conven-
tional techniques that employ an adaptive array at the F-BS
when the BS is equipped with a sufficient number of anten-
nas. Recently, the UE has been equipped with multiple an-
tennas due to the popularity of Multiple Input Multiple Out-
put (MIMO) systems [7], [8]. Interference rejection between
multiple macrocells using a two element adaptive array at
the UE was evaluated [9]. Moreover, since the downlink
transmission rate is higher than that for the uplink, interfer-
ence cancellation in the downlink (F-BS to M-UE) is more
important than that in the uplink (M-UE to F-BS). Hence,
we deal with interference rejection using an adaptive array
at the UE between the macrocell and femtocells.

We evaluated Signal to Interference plus power Noise
Ratio (SINR) characteristics using propagation characteris-
tics such as path loss, shadowing, and penetration loss on
outdoor to indoor propagation in heterogeneous networks
[10]. This paper shows that the SINR with one element re-
ception at the M-UE is less than 10 dB when the propagation
from the F-BS to M-UE is regarded as a Line of Sight (LOS)
environment.

In this paper, we investigate the SINR characteristics
when using an adaptive array at the UE based on computer
simulation using measured propagation parameters in het-
erogeneous networks. By using the received power with a
two element array at the M-UE, we newly obtain the spatial
correlation and K-factor used for the Nakagami-Race Fad-
ing model because these parameters greatly affect the in-
terference rejection performance of the adaptive array [11],
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[12].

The path loss, shadowing, and penetration loss on out-
door to indoor propagation are utilized in [10] because the
measurements in [10] use two antennas at the receiver site.
Moreover, these propagation parameters are essential for
an exact evaluation of the SINR in heterogeneous networks
[10]. The computer simulation herein using these measured
propagation parameters shows that the two element adaptive
array at the M-UE greatly improved the SINR compared to
one element reception. Moreover, we verify that the adap-
tive array efficiently suppresses multiple sources of interfer-
ence between the F-BS and M-UE even if the total number
of signals (desired signal plus interference) exceeds the de-
grees of freedom of the array antenna.

The rest of the paper is organized as follows. Section 2
describes the target scenario and defines the problem to be
addressed. Section 3 presents the characteristics based on
the K-factor and spatial correlation obtained at the Faculty
of Engineering building of Niigata University, Japan. Sec-
tion 4 describes the SINR characteristics with and without
the adaptive array at the UE using the measured propaga-
tion parameters obtained in Sect. 3. Section 5 concludes the

paper.
2. Target Scenario and Problem Definition

Figure 1 shows a configuration for heterogeneous networks
in LTE-Advanced [1]. In such heterogeneous networks, pic-
ocells, femtocells, and relays are deployed inside the ser-
vice area of a macrocell in order to enhance the frequency
utilization and guarantee the quality of service in high traf-
fic areas. The picocell service area is several tens of me-
ters. Femtocells have drawn much attention recently be-
cause their transmission power level is very low and thus
they only require a low-power-consuming BS and small in-
stallation space inside a building. The cell size of a femto-
cell is the same as that of a picocell because the transmission
power levels are the same [2]

An important issue facing heterogeneous networks
is achieving co-existence between the macrocell and
pico(femto)cells that use the same frequency band, be-
cause 100 MHz broadband transmission is required in LTE-
Advanced [13] and the frequency band is limited. How-
ever, when co-existence is employed between the macro-
cell and pico(femto)cells, interference between the macro-
cell and pico(femto)cells occurs because the transmission
power and the service coverage area of the pico(femto)cells
are different from those of the macrocell. Although ICIC
and CRE [4] can be used to suppress the interference be-
tween the macrocell and picocells, the interference between
the macrocell and femtocells cannot be avoided because the
femtocell has the CSG function, which accommodates only
pre-registered UEs (F-UEs) and the M-UE cannot employ
pre-registration. The signal from/to the M-UE becomes in-
terference [2]. In this paper, we focus on the interference
between the macrocell and femtocells.

Figure 2 shows the interference between the macrocell
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Fig.2  Interference between macrocell and femtocells.

and femtocells. The figure shows four kinds of interference
sources between the macrocell and femtocells. Frequency
Division Duplex (FDD), in which different frequencies are
used between the BS (F-BS and macro BS : M-BS) and UE
(F-UE and M-UE), is basically adopted in LTE-Advanced
[13]. Regarding interference sources 3 and 4 in Fig. 2, the F-
UE can select an appropriate BS (F-BS or M-BS) and avoid
interference by using a channel allocation scheme such as
ICIC [4], because the M-BS does not have the CSG function
[2]. Since the aim of this paper is to evaluate the capability
of the adaptive array at the M-UE using measured propaga-
tion parameters, we only deal with interference source 1.

3. Measured K-Factor and Spatial Correlation in a
Real Propagation Environment

3.1 Measurement Environment

In this section, the K-factor and spatial correlation are mea-
sured for the SINR evaluation using an adaptive array at
the UE when considering the desired signal from the M-BS
to the M-UE and the interference from the F-BS to the M-
UE. Since there are M-UEs that do not belong to the CSG
BS (F-BS), such M-UEs might impart/receive interference
to/from the F-BS [1]. Moreover, the femtocell is generally
used in indoor scenarios, and the propagation characteris-
tics between the femtocell and macrocells are different from
those inside a macrocell. We performed measurements to
obtain the K-factor and spatial correlation between the fem-
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tocell and macrocell and inside a macrocell, and reflected
the results in the computer simulation described in Sect. 4.

Figure 3 shows the considered measurement environ-
ment. The measurements are taken in the Faculty of Engi-
neering building of Niigata University in Japan. We assume
the scenario where the interference from the F-BS arrives
at the M-UE when the M-BS communicates with the M-
UE. The radio frequency is 2.2 GHz and a continuous wave
(10 W) is transmitted from the M-BS or F-BS to the M-UE.
The number of transmitter antennas is one at the M-BS and
F-BS. The M-UE is located in a parking area and moved
around Courses 1 to 10 (C 1 to C 10) in Fig.3. The M-
BS and F-BS are located on the top of the 6 floor Faculty
of Engineering building and the 4-th floor in Fig. 3, respec-
tively. The antenna heights of the M-BS and F-BS are 22.5
and 16.5 m, respectively. The M-BS, F-BS, and M-UEs are
equipped with sleeve antennas.

Figure 4 shows the measurement configuration at the
M-UE. The height of the M-UE is 1 m. As shown in this
figure, the element spacing of the two element linear array
is set to 0.5 4y (do: wavelength). The receiver obtains the
received power with the sampling rate of 5 ms.

The F-BS is located in the place in Fig. 5, because the
influence of the shadowing is changed by the difference of
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the place in Fig. 5 The location of the F-BS is indicated in
Fig. 5. The influence of the shadowing changes with differ-
ent locations. The figure shows that the antenna is located
near a window in Case 1. The antenna is located inside the
room in Case 2 and the distance between Case 1 and Case 2
is 7m. The distance between Case 1 and Case 3 is 5 m.

We previously confirmed that the measured path loss
for all the courses (C 1 to C 10) agrees fairly well with the
C 2-LOS path loss model in WINNER II [14] when consid-
ering the path loss from the M-BS to M-UE [10]. On the
other hand, based on the comparison between the measured
path loss from the F-BS to the M-UE and the B 2-LOS path
loss model in WINNER 1I [14], we confirmed that C 5 to C
8 and C 10 can be regarded as LOS andC 1 toC4 and C9
can be regarded as non-LOS (NLOS) [10].

3.2 Characteristics of K-Factor

We considered the Nakagami-Rice fading model as the
propagation model. In this fading model, the propagation
environment has one LOS path. The channel model is ex-
pressed as

K 1
H = —H —H 1
VK+1 Los+\/K+1 NLOS » (D

where H;pgs is a rank-one matrix corresponding to one
LOS path, and Hy s represents a component of multi-
path scatters [11]. Then, K is the Rice factor, which has
the strength of ||H ros|? relative to |[Hyros | and charac-
terizes the Nakagami-Rice distribution. Here, || - || denotes
the Frobenius norm. When K = 0 (—oo[dB]), this model
yields a Rayleigh distribution. Hy;ps denotes the chan-
nel matrix when considering independent and identically-
distributed (i.i.d.) Rayleigh fading. The flow to obtain the
K-factor and channel matrix is shown in Fig. 6. In the cal-
culation in Fig. 6, the received power is calculated while
changing the value of the K-factor. Step 4 in Fig.6 is ac-
tually employed by the computer simulation in Sect. 4. The
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Fig.6  Flow to obtain K-factor.

Table1  Median values for K-factor.
M-BS F-BS [dB]
[dB] Case 1l | Case2 | Case3
C1 1.51 0.59 0.59 -1.26
Cc2 -1.26 | -2.18 -0.34 -1.26
C3 -1.26 | -2.18 0.59 -1.26

C4 | -1.26 | -3.11 -2.18 -2.18
C5 -0.34 2.44 0.59 3.36

C6 -2.18 0.59 -2.18 1.51
C7 0.59 5.21 0.59 7.06
C8 -2.18 5.21 -3.11 5.21

Cc9 | -1.26 | -1.72 —-0.34 -0.34
C10 | -0.80 4.29 0.59 3.36

K-Factor is obtained using the received power correspond-
ing to the interval of 10 Ay (4p: wavelength).

Table 1 shows the median values of the K-factor when
considering all the courses for the M-BS/M-UE and F-
BS/M-UE (Cases 1 to 3). As shown in Table 1, the K-factor
is less than 6 dB except for C 7 of Case 3. Regarding C 5,
C 7, and C 8 in Cases 1 and 3, K-factors higher than those
in the other courses are observed because the perfect LOS
environment is guaranteed at C 5, C 7, and C 8 as shown
in Fig.3. These results indicates that Rayleigh fading is
appropriate as the propagation environment when consider-
ing both the desired signal in the macrocell and interference
from the femtocell to macrocell.

Figure 7 shows the Cumulative Density Func-
tion (CDF) of the K-Factor when the results on all the
courses are combined. The results on the M-BS/M-UE and
F-BS/M-UE (Cases 1, 2, and 3) are compared in Fig. 7. The
figure shows that the distributions are almost the same be-
tween the M-BS/M-UE and F-BS/M-UE (Cases 1, 2, and 3).
The median values from the M-BS/M-UE and F-BS/M-UE
(Cases 1, 2, and 3) are —0.33, 0.59, —0.33, and 0.58, respec-
tively. Hence, the K-factor is very small regardless of the
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cell configuration even if a LOS environment is considered
in heterogeneous networks.

3.3 Spatial Correlation Characteristics

When using (1) as the channel matrix, the assumption of the
second term on the right side in (1) is very important because
i.i.d. is assumed in (1) but a high spatial correlation might
be observed in an outdoor scenario, especially at the BS site
[15],[16]. Hence, we measured the spatial correlation at
the M-UE. Since the received powers of antennas 1 and 2
are obtained in this measurement, the spatial correlation is
expressed as

1 & _

7 2 (Ri) = Ri) (Ra() = o)
i=1

p= . @

1 1<
JZ (RiG) - Ry) JLZ (Rai) - Ra)’

i=1
— 1
Re= 7 ;Rk(z‘) (k=1,2), 3)

LM~

where R (i) and R,(i) denote the instantaneous received
powers at antennas 1 and 2, respectively. R; and R, are the
averaged received powers at antennas 1 and 2, respectively,
using L samples. In this measurement, R; and R, are ac-
tually obtained by the number of samples corresponding to
the interval of 10 Ay. L is approximately 2,500 because the
sampling rate of the receiver is 5 kHz and the moving speed
of the M-UE is 20 Ay/s.

Figure 8 shows the spatial correlations using (2) and
(3) when considering the received powers of the M-BS/M-
UE and F-BS/M-UE (Cases 1 to 3). Generally speaking,
the complex channel vector should be used to evaluate the
adaptive array with spatial correlation [12]. We compared
the spatial correlation using the complex channel vector to
that using (2) based on measured data. When 2 X 1 complex
channel vectors for the desired signal and interference are
hs and h;, respectively, spatial correlation p, is calculated
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For reference, |p.|* is plotted in Fig. 8 when i.i.d. is assumed
for hg and h;. The reason why locI? is used instead of |o.|
in (4) is that (2) denotes the correlation using power and
not amplitude. Figure 8 shows that the spatial correlations
based on the measurement results are lower than those based
on the calculated results when considering i.i.d. in (4).

The 90% CDF values for the spatial correlation are
plotted in Fig. 9 considering each measurement course, be-
cause the bad condition should be evaluated when consid-
ering the system evaluation [11]. From the results in Fig. 8,
since the spatial correlation based on Case 1 is almost the
same as that for Case 3, the results in Case 1 are plotted in
Fig.9. As shown in Fig. 9, the spatial correlations based on
the measured results are smaller than the spatial correlation,
loc|?, regardless of the measurement course. Although the
definition using (2) and (3) is different from that using (4), it
is shown that the measured spatial correlation indicates that
the propagation environment with the array antenna at the
M-UE can be regarded as i.i.d. The assumption of the sec-
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ond term on the right side in (1) can be properly used for the
evaluation of the M-UE in heterogeneous networks.

4. Effectiveness of UE Adaptive Array Using Measured
K-Factor

From the measurement results regarding the K-factor and
spatial correlation, it is shown that (1) can be properly used
to evaluate the M-UE in heterogeneous networks. In this
section, the SINR is evaluated when considering the adap-
tive array at the M-UE using the measured K-factor and
propagation parameters in [10].

The SINR is evaluated using the measured propagation
parameters at only one location. Moreover, since the simu-
lation parameters are limited in this study, the measurement
at other locations and simulations using various parameters
will be required for a more exact evaluation. Hence, this
simulation in this study is regarded as a case study.

4.1 Simulation Environment

Tables 2 and 3 show the propagation and simulation param-
eters, respectively, for the evaluation of interference rejec-
tion using an adaptive array at the M-UE. The parameters in
Table 2 are cited from [10] because the measurement loca-
tion herein is the same as that in [10]. Since we confirmed
that the measured path loss agrees well with that from the
WINNER II model [10], the path loss from the WINNER
II model is adopted in this evaluation. The parameters in
Table 3 basically follow those in [2], because the param-
eters are used in the standardization evaluation for LTE-
Advanced. The noise power is actually —104 dBm, because
the bandwidth is assumed to be 10 MHz in this paper.
Figure 10 shows an example of the positional relation-
ship between the macrocell and femtocells. The numbers of
macrocells (N,,) and femtocells (Nr) are one and three, re-
spectively. Although multiple macrocells should be taken
into account in a precise evaluation, a single cell for the

Table 2

Parameter Value
Path loss (M-BS, M-UE, LOS) Model C2 [14]
Path loss (F-BS, M-UE, LOS) Model B1 [14]
Path loss (F-BS, M-UE, NLOS) | Model Bl [14] + 20dB
Path loss indoors 10.9dB [10]
Wall penetration 5.6dB [10]
Std. of small fading Measured results [10]

Propagation parameters.

K-factor Measured results
Table 3  Simulation parameters.
| Parameter H Macrocell | Femtocell |
Cell radius 289 [m] 40 [m]

BS Tx power 46 [dBm] 30 [dBm]

BS ant. gain 14 [dBi] 5[dBi]

UE ant. gain 0 [dBi] 0[dBi]

Noise power —174[dBm/Hz] | —174 [dBm/Hz]

Height (BS) 22.5[m] 16.5 [m]

Height (UE) 1.0 [m] -
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Fig.10  Example layout of macrocell and femtocells (Number of
femtocells, N = 3).

macrocell is assumed in this paper to consider multiple in-
terference sources that are purely only from F-BSs as shown
in Fig. 10. The number of F-BSs is set to one to four in the
simulation. The SINR is calculated using an adaptive array
at the M-UE, when changing the location of the M-UE and
F-BSs. The number of trials is set to 10,000 and the CDF of
the SINR is obtained. The SINR is expressed as

Pg

SINR = ————,
P; + Py

(5)
where Pg, P;, and Py denote the desired signal, interfer-
ence, and noise power, respectively.

The distribution of the K-factors obtained in Fig. 7 are
reflected in the simulation. The channel matrix is calculated
using (1). When the two element array at the M-UE and one
desired signal and interference are assumed in (1), Hypgs is
expressed as

G G; )’ ©)

HLOS = i o b .
- Aod sin 6; —j2m/Apd sin 6,
G‘Ye J2m/Apd sin O G;e j2m/ Aod sin 6;

where 6y and 6; denote the direction of arrival for the desired
signal and the interference, respectively, and these values
are given according to the location of the F-BS and M-UE
in each trial. Term d is the element spacing and is 0.5 4 in
the simulation. Terms G, and G; denote the gain due to the
path loss, respectively.

As the principle for the adaptive array, zero forcing
(ZF), which is known as a simple decoding method for
adaptive arrays and MIMO transmission, is adopted. Us-
ing the Minimum Mean Square Error (MMSE) criterion
is proposed to reduce the interference according to the in-
terference power. The received signal and reference sig-
nal for the desired signal are required in the MMSE algo-
rithm. It is shown that the SINR by MMSE outperforms
compared to that by ZF [17]. However, there is an issue
when using the MMSE when considering the control signal
in LTE-Advanced because the Space Frequency Block Code
(SFBC) is used in the control signal, and the MMSE must
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handle two signals for each symbol. From the viewpoint
of the degrees of freedom at the array antenna, employing
MMSE for interference cancellation is not suitable.

Although it is generally difficult to obtain a channel
response regarding the interference, the control signal can
be utilized not only for the desired signal but also for the
interference because we assume a “single” radio interface
based on LTE-Advanced between the macrocell and fem-
tocell [4]. Moreover, the interference cancellation using
the control signals between the marcocell and picocell in
LTE-Advanced was proposed [18]. It is shown in [18] that
the control signals for the macrocell and picocell at the M-
UE can be obtained, although the interference between the
macrocell and picocells occurs during the data period. In ad-
dition, multiple control signals are used to cancel multiple
interfering signals in [9].

However, since a two element adaptive array is consid-
ered, the adaptive array cannot cancel the interference when
there are more than two signals. To address this problem,
we propose the following scheme.

Step 1 The 2 x 1 channel vector, h;,, which is the interfer-
ence from the F-BS to M-UE with the highest power
among all the interfering sources, is estimated.

Step 2 The weight of ZF is calculated using h;, obtained
in Step 1 and kg which is the 2 X 1 channel vector
between the M-BS and M-UE.

Step 3 The SINR is calculated using the weight in Step 2.

When using an adaptive array and the above steps, Ps, Py,
and Py are given as

Ps = E [[w§ s sa], (7)

Py = E [win(®?].and 8)
Np

Py = E|w§hyis0F + ) wihyic0)? |, ©)
k=2

where wg is the weight of ZF for the interference rejection.
Terms s4() and ir(f) (k = 1 ~ Np) are the desired signal and
k-th interference, respectively, at time index ¢. Term n(¢) is
the thermal noise vector at the receiver. For the interference
power, P;, note that the first term on the right side is zero
but the second term exists as residual interference. Term
E[] is the expectation value and five samples are used to
obtain Pgs, P;, and Py instead of using E [-], four samples at
least are required for the calculation of weight on the two el-
ement adaptive array [19]. Channel vectors (hg and hj,) are
obtained using the least square method with five samples.

4.2 SINR Characteristics of UE Adaptive Array

Figure 11 shows the CDF of the SINR when a two element
adaptive array is applied to the M-UE. The power differ-
ences between Cases 1 and 2 and Cases 1 and 3 in Fig. 5 are
obtained based on the measurement results and the median
values are 5.6 and 10.9 dB, respectively. The number of F-
BSs (Np) is set to 2 in Fig. 11. Since the total number of sig-
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nals exceeds the number of antennas at the M-UE, the adap-
tive array cannot completely cancel the interference. How-
ever, as shown in Fig. 11, the SINR is greater than 10dB
even when an outdoor LOS environment between the F-BS
and the M-UE in Case 1 is considered.

In order to understand the reason why the high SINR is
obtained, the Signal to Interference power Ratio (SIR) with-
out the array antenna is plotted in Fig. 12 when considering
Case 1 and a LOS scenario for the F-BS to M-UE under out-
door propagation conditions. Interference sources #1 and #2
in Fig. 12 denote the interference sources with higher and
lower power, respectively. Figure 12 shows that since there
is a power difference between interference sources #1 and
#2, the proposed scheme can be used to reject the domi-
nant interference. In the case of Fig. 12, interference source
#1 can be completely cancelled by ZF. On the other hand,
the SIR is approximately 10dB for interference source #2
at 10% of the CDF and the SINR with the adaptive array
is almost 13 dB due to the array gain as shown in Fig. 11,
although the proposed scheme does not employ nulling for
interference source #2. One problem with the ZF algorithm
is that the desired signal decreases in power due to the in-
terference cancellation when the spatial correlation between
the desired and interfering signals is very high. However,

IEICE TRANS. COMMUN., VOL.E96-B, NO.6 JUNE 2013

—— CDF=10%
-.— CDF=1%

[\
[e)
T
g
~
o
o
=
o
|

SINR [dB]
=
I

0 L _
10 Te—-— . wlamy
220 \ \ \ \

1 2 3 4
Number of femtocells, NF

Fig.13  SINR versus sources of interference (LOS, Case 2).

(%)
[en)
T

w/0 array
0, ]
10+ —— CDF=10% |
-.— CDF=1%
220 | | | |

1 2 3 4
Number of femtocells, N -

Fig.14  SINR versus sources of interference (NLOS, Case 2).

when using the proposed scheme the desired signal does not
decrease in power due to interference cancellation because
the K-factor is very small and the spatial correlation between
the desired and interfering signals is very low. Hence, it
is shown that the two element adaptive array at the M-UE
obtains a sufficient SINR by cancelling only one source of
interference with the highest power level among multiple
interference sources when considering the propagation en-
vironment in heterogeneous networks.

Figures 13 and 14 show the SINR characteristics ver-
sus the number of interference sources in outdoor LOS and
NLOS environments between the F-BS and M-UE, respec-
tively. Case 2 is assumed as the setting for the F-BS. The
1% and 10% values of the CDFs are plotted in these fig-
ures. The figures show that the adaptive array at the M-UE
can achieve a 9-dB improvement in the SINR compared to
one element reception, even if the total number of signals
exceeds the degrees of freedom at the array antenna. As
shown in Fig. 13, the SINR is greater than 14 dB even in the
outdoor LOS environment with four sources of interference,
which is the most severe environment in the simulation.



NISHIMORI et al.: INTERFERENCE REJECTION CHARACTERISTICS BY ADAPTIVE ARRAY AT USER EQUIPMENT

5. Conclusion

This paper investigated the SINR characteristics when using
an adaptive array at the M-UE based on the measured K-
factor in heterogeneous networks. From the measurement
results at the M-UE when considering an environment in
a heterogeneous network, we observed that the K-factor is
less than 6 dB in almost all measurement courses regardless
of the M-BS/M-UE and F-BS/M-UE. Moreover, we showed
that the spatial correlation between two antennas is very low
at the M-UE and the propagation between two antennas at
the M-UE is regarded as i.i.d. Based on computer simu-
lation using measured propagation parameters, we showed
that a two element adaptive array achieves a 9-dB improve-
ment in the SINR compared to one element reception when
there are 4 sources of interference. Moreover, we clarified
that the adaptive array at the M-UE efficiently reduces the
interference between the F-BS and M-UE even if the total
number of signals exceeds the degrees of freedom at the ar-
ray by applying ZF to nullify the source of interference with
the highest power level because each power level among the
interfering sources is different.

Although, in this paper, a single antenna is assumed for
the transmitter at the BS for the desired signal and interfer-
ence, MIMO transmission and multiple MIMO interference
should be considered in future work because MIMO trans-
mission is now incorporated into LTE and is an important
fundamental technology in LTE-Advanced.

In this study, the F-BS is assumed to be randomly lo-
cated inside the service area in the M-BS by using the model
described in [2]. On the other hand, many F-BSs will be
located inside one building when considering an area with
heavier traffic. Since multiple interfering signals with al-
most the same power simultaneously arrive at the M-UE,
the performance of a two element adaptive array at the M-
UE should be evaluated in such a scenario.

As for other future work, evaluation of broadband
transmission with multiple macrocells is essential. The fre-
quency correlation characteristics should be evaluated be-
cause these enable evaluation using exact propagation pa-
rameters in broadband Orthogonal Frequency Division Mul-
tiplexing (OFDM) systems [20]. Moreover, frequency cor-
relation characteristics will help the evaluation using the K-
factor because the results using the K-factor can be regarded
as those at each subcarrier in the OFDM systems, and the
frequency correlation characteristics and K-factor can be
combined as parameters in evaluating broadband transmis-
sion.
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