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lterative Design of Constrained IIR Digital
Filters Requiring No Initial Values

Hisakazu KIKUCHIf, Hiromichi WATANABE'
and Takeshi YANAGISAWATT, Members

SUMMARY An iterative design of constrained recursive digital
filters is developed. The designing scheme requires no initial
values. The constraints are subjected to degrees of both numera-
tor and denominator, transmission zeros and poles, if any, and
passband and stopband shaping. The resulting filter completes a
prescribed magnitude of either passband or stopband ripples. The
optimality property of the filters is examined in detail with
emphasis on specifications. The designing scheme involves the
elliptic design as a special case. Illustrative examples are also
given.

1. Introduction

As the digital integration of communication sys-
tems has been extensively developing, design techniques
of constrained digital filters have received a lot of
attention~"". For example, the stopband of an optimal
filter for a harmonic suppression is shaped to match the
magnitude ‘response of the output stage amplifier®,
Shenoi and Agrawal® have given a comprehensive intro-
duction to the similar problem in a digital switching
system and digital radio. Although a combination of an
equalizer and a lowpass filter is still used, the passband
shaped filter eliminates the need of a separate equalizer.

Typically, it is possible to meet those requirements
by designing a constrained filter which approximates an
arbitrary function. A fully analytical method is not yet
available, and iterative techniques I d to be introduced.
There are already a number of tect .iques for designing
those filters. The Fletcher-Powell algorithm, which was
employed in Ref.(3)and (4) to solve directly a non-
linear optimization problem, suffers from uncontrol-
lability of band edges and initial guess of a starting
point. The methods using linear programming®® show
a good behavior of convergence, but they require rather
long computational time and also restricted to the
design of lower order filters. Analytical techniques can
be combined with iterative procedures. One of the exam-
ples, applied to linear programming, displays good
magnitude responses”, whereas the algorithm and the
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optimality are not so clear and more detailed study may
be needed. Another combining scheme® can be used for
the design of a lowpass filter but the other types of
filters.

On the other hand, several variations of the Remez
algorithm®-“? have been applied to a large class of
rational approximation problems for lowpass filters.
Although the method in Ref. (8)is very general, initial-
ization is complicated.

Recently, Liang and de Figueiredo®? have shown an
interesting relationship, which shall appear later on.
Their method yields a filter with the prescribed ripple
ratio rather than the ripple itself. Furthermore it only
allows to design lowpass filters.

The proposed technique is an extension of their
method, and the detailed examination will prove the
optimality property. While avoiding the problem of
selecting initial values, this paper addresses the approxi-
mation problem when the magnitude characteristic is
subjected to the following constraints :

1) Some of the transmission zeros and the poles of
a filter may be prescribed in advance.

2) The desired passband and stopband shapes are
not necessarily flat. Furthermore, each band may have
multiple sizes of ripples independent of other bands.

3) The orders of a numerator and a denominator
may be different. Especially, this type of filters finds its
application in multirate filtering®?.

Figure 1 illustrates a typical case of possible con-
straints. The presented method using the Remez algo-
rithm has the following significant features :

1) It is possible to design a band-selective recur-
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Fig. 1 Tolerance schematic of a filter.
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sive digital filter with constraints.

2) It completes either a given passband ripple or a
given stopband ripple.

3) It needs no initial values, because the consis-
tency of boundary conditions with a non-trivial solution
is incorporated.

4) The iterative procedure converges fast, usually
in a few design cycles.

The remainder of this paper is organized as fol-
lows : First, the definite statement of the problem is
described and is followed by a solving algorithm. Then
we discuss some points of the algorithm and the
optimality property. Finally several example are given
to illustrate the iterative design with emphasis on
specifications.

2. Statement of the Problem

An IIR digital filter is described by a rational trans-
fer function

T:(z)F(z)
Ty(2)G(z)

where two polynomials T:(z) and T»(z) correspond to
constraints given in advance. Both polynomials may of
course be unities. Especially a useful application for
requiring T»(z) arises in the design of a Nyquist fil-
ter?,

Given T:(z), T»(2), the degrees of F(z) and G(z),
the passband ripples, and the stopband ripples, the
problem is to find unknown polynomials F(z) and G(z)
in such a way that the stopband ripples are minimized
under preserving their ratios.

The Remez algorithm provides an optimal
polynomial in the minimax sense” **. The optimality is
guaranteed by the alternation theorem of a cosine
polynomial. (For simplicity of notation, we write
H(e*™ ) as H(f)) -

Obviously G(z) cannot have any poles outside the
unit circle to ensure the stability. Hence G(z) has none
of the mirror image symmetries. This leads to the fact
that G(f) will never be a cosine polynomial of f. Thus,
with the algorithm, one cannot design a denominator of
an IIR digital filter.

Now, instead of Eq. (1), we consider the alterna-
tive formulation

H(z)= (1)

7 _ Tz(Z)F(Z)

A= e ) @
where

G(z)=G(z)G(z™1)z%8 @), (3)

Since G(z) becomes a mirror image or an anti-mirror
image polynomial, its magnitude response turns out to
be a linear combination of cosine functions. Hence it is
possible to apply the Remez algorithm to G(z).

The formulation requires extra computation of root

finding, and a half of roots of G(z) inside the unit circle
forms a solution for G(z). It should be noted that this
computation is easily carried out by several available
alogorithms. Particularly the Durand-Kerner-Aberth
method®® allows us to get simultaneously all roots of an
arithmetic equation, and every root has almost the same
error in computational precision. That is, the method
can afford to attain a good balance of numerical preci-
sion in the roots. This fact is very desirable for the
application to stringent specifications.

3. Description of the Algorithm

As a prelude to the problem formulation, several
notations are introduced. We write the allowable ripples
for the 7-th passband and stopband as dp:; and ds:, and
their maxima as dpm and dsm, respectively. W (f) and
D(f) denote a weighting function and a desired func-
tion, respectively. e, and es stand for deviations of the
denominator or the numerator in each design cycle.

The two polynomials F(z) and G(z) for a numera-
tor and a denominator are designed on a compact subset
B, union By of [0, 0.5], where Bs refers to the stopband
(s) and B, does to the passband(s). Let F(f) and G(f)
be linear combinations of m and » cosine functions,
respectively. That is, F(f) is a trigonometric
polynomial of m-th degree.

It is attractive to use the Remez algorithm, because
its convergence rate is quadratic?. Since the algorithm
works effectively on a set of linear expressions, linear-
ization of the formulation is required. Dividing the
design problem into two parts to deal with the numera-
tor and the denominator separately, we can linearize the
problem,

The final issue is the role assignment between the
numerator and the denominator. We made the decision
according to tradition : the denominator responds in the
passband and the numerator does in the stopband main-
ly.

Thus we get the linearized formulation definitely
and it is described in the following subsections.

3.1 Formulation for the Numerator

The designing equation for the numerator is for-
mulated in such a way that the weighted error between
the desired function and the numerator of interest oscil-
lates m+2 times between *es:

W(fk)[D(fk)_F(fk>]:(“‘Dkes,
for £=0, 1, -+, m+1 (4)

where D(f) and W (f) on the stopband(s) Bs take the
forms

D(F)=0, (5)
W (F)=(dsm/ds:) T=(F)] To(F) G2 (6)
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To get a non-trivial solution, we introduce bound-
ary conditions of F(z) within the passband(s) B,.

D(f)=To(fo) G(f)"*/ T=(f2) (7)
W(fx):(@s/dpz)/D(fz) (8)

To give a non-zero value to the desired function, such
one must be specified on a point f; in the passbands. The
number of those conditions depends on the degrees of
the numerator and the denominator as well as the band
specifications. Thus it is possible to determine the
unique number. The topic is, however, omitted at this
point, because it needs long discussion and it will be
understood naturally in the whole context of the subsec-
tion 4.3. Each f: typically takes the midpoint of each
passband. In the case that the passband includes the
critical frequency, 0 or 0.5, /% is fixed at that frequency.

3.2 Formulation for the Denominator

In the parallel way to the numerator, the formula-
tion for the denominator implies that the weighted
difference between the target function and the denomi-
nator alternates z+2 times between * e, :

W(fk)[D(fk)—G(fk)]:(*l)kep,
for k=0, 1, -, n+1 (9)

where D(f) and W (f) on the passband(s) B, are of the
forms

D()=[F(F) T ) To(F)) (10)

Table 1 Expressions of a numerator and a denominator.

case degree m or n F(f) or E(f)
m

1 even M/2 Z a(k)cos(27fk)
k=0
m

2 odd (M+1)/2-1 cos(mf) )} a(k)cos(2rfk)
k=0
n

3 even M/2-1 sin(27nf) Z a{k)cos(2nfk)
k=0
m

4 odd (M+1)/2-1 sin(mf) ] a(k)cos(2nfk)
k=0
n

denominator N 1 blk)cos(27fk)

k=0

ITERATIVE DESIGN OF CONSTRAINED DIGITAL FILTERS

603

W(f):(dpm/dpi)/D(f)- (11)

Boundary conditions of G(z) for a non-trivial solu-
tion are described on some f: that belong to the stop-
band(s) Bs.

D(fx):[F(fx)Tz(fx)/Tp<fx)dsi]z (12)

Typically each f- takes each midpoint of adjacent stop-
bands. When the stopband includes the critical fre-
quency, 0 or 0.5, and if that frequency is assigned to one
of transmission zeros in advance, then f: is fixed near
the critical frequency.

Additional attention must be paid for the practical
expressions of W(f), D(f) and F(f). They have to be
modified so that they will be strictly cosine polynomials
of f. Although the detailed modification is found in Ref.
(15), we give its summary in Table 1, where M and N
stand for degrees of F(z) and G(z), respectively, to
avoid confusion and to complete the later discussion.

3.3 The Iterative Procedure

At the beginning of the iterative procedure, we set
as F(f)=1, G(f)=1 and es=e,=1, whatever the
specifications are.

We define a relative error e, by

er= |eﬂlast_ @pnewl/epnew. (14)
For a fixed small number ¢, if
er<eg, (15)

then the first design cycle is completed. Otherwise the
strategy, that is to solve Egs.(4) and (9) alternately,
is repeated so as to satisfy Eq.(15). Each set of Eqs.(4)
and (9), is solved by using the Remez algorithm®®,

Furthermore if dpm and epnew/2 are sufficiently
close, that is, if the inequalities

099dpm< epnew/2< loldpm (16)

hold, then the algorithm finds a final solution completely.
Otherwise reformulation of the problem

ds; dsi(epnew/dem)uz,
for every ds: that belongs to Bs (17)

is made to meet the prescribed ripples in the passbands.
This replacement must take place before the next iter-
ative procedure starts. The deduction of Eq.(17) is
deferred until the next section.
The iterative procedure is summarized below.
(Step 1) Repeat the two strategies below, until e,
< is established.

Solve the simultaneous Eq.(4 ).
Solve the simultaneous Eq.(9).

(Step 2) If Eq.(16) is satisfied, stop the iteration.
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Otherwise renew ds; with the substitution of Eq.(17) and
go to step 1.

Let us turn our attention to the alternative problem.
To meet the ripple requirement of the stopband instead
of the passband, we need two slight modifications. One
of them is concerning to the convergence criterion. To
complete the prescribed stopband attenuations within
1%, we use the inequalities

0.99ds n< 8 <1.01dsm (18 2)
8= TALIF)) Tl £)G )" (18b)

instead of Eq.(16). These are evaluated at one of the
edges of the stopband with the maximum deviation.
The other is of reformulation of the problem to
meet the prescribed stopband ripples. In this case, w
replace Eq.(17) with :

dsi ¢ d31(dsm/6)
for every ds; that belongs to Bs. (19)

4. Discussion
4.1 Order Estimation

The problem formulation demands to estimate the
order required for a given task. Although there is not a
general solution, instead a few methods are available.
For example, the required order of an FIR digital filter
is estimated by a Chebyshev solution"”. When the order
of the numerator is much higher than that of the denomi-
nator, the higher order may fall into this estimation.

In most cases, we have observed that an elliptic
filter can give a good estimate for the required order of
a recursive digital filter. Antoniou has given the evalua-
tion formula, and the detail is found in Ref.(18).

It is acceptable for our designing scheme to take
into account of a large class of specifications. It can
realize the multiple sizes of ripples in each passband
and/ or stopband, but there is no legitimate way to deal
with those specifications. To exploit the estimation
formula by Antoniou, it is necessary to know each
unique value of ripples for both stopbands and the
passbands, respectively. To this end, ingnoring the
sloped shaping in the tolerance scheme, we simply take
a geometric mean of the multiple moduli of the tolerant
ripples in the whole passband and the whole stopband,
respectively. A geometric mean is one of the most
familiar averagings and it does not exceed the arithme-
tic counterpart. Thus this facility alleviates the hard
work of order estimation.

The design method by means of the frequency trans-
formations“® provides neither bandpass nor bandstop
filters with odd-orders. On the other hand, our designing
scheme can deal with a transfer function whose order is
different in its numerator and denominator. As a conse-

quence, when the estimated value for required order of
a bandpass/ bandstop filter has its integer part of even,
the latter method can afford to clear the given
specifications with less complexity than the former one.
Even if the estimated value has an odd integer part, it is
often enough for the latter design to fulfill the require-
ments with less complexity.

4.2 Freedom from Initial Values

The boundary conditions are quite important. In a
design problem for an FIR digital filter, one polynomial
is only optimized on a union of disjoint closed subsets,
B, and Bs. Hence a trivial solution cannot result.

In the design problem for an IIR digital filter, on the
contrary, the numerator and the denominator are opti-
mized alternatively on Bs and B, respectively. Thus a
proper constraint must be imposed to sustain each
polynomial in a significant value on the complementary
bands. Otherwise the polynomial will unfortunately go
to a constant value and will result in a trivial solution.
Note that these boundary conditions must have the
consistency whose existence is expected when a solution
has been found. This discussion leads to the explicit
expressions of the boundary conditions.

Next, we consider the relationship

(es/ 2)ei=const. (20)

This has been shown by Liang and de Figueiredo after
tedious calculation®?.

It is easy to understand Eq.(20) intuitively. First,
the optimization for F(f) yields es and the optimization
for G(f) vields e,. Since G(f) is a squared magnitude
of G(f), the error reduces to approximately its half in
terms of G(f). Second, the design strategy, that is to
solve Eqs.(4) and (9) alternatively, gives the optimum
solution with maximum attainable ripples in both the
passband and the stopband. Third, in the same problem,
if a passband ripple greater than the former e, is
obtained, the stopband will dissipate the resulting mar-
gin. Therefore ¢% will be inversely proportional to e/ 2.
This completes intuitive confirmation of Eq.(20).

By exploiting this relationship effectively, we can
obtain the way to reach the prescribed ripple of either a
passband or a stopband. Let dp» and dsn refer to a set
of the maximum ripples of passbands and stopbands
that completes either of the allowable ripples in both
bands. Such a set will result from a design. Note that it
is different from the set of dy» and dsn» that is given in
advance. To avoid confusion, a subscript 0 is added to
the latter set of parameters.

Equation(20) suggests the existence of the next
relationship

dpmdsmzoc(ep/z)dgmo (21)

under a given set of domo and dsmo. If we desire to
complete each dp:, we have one degree of freedom of
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manipulating Js;. This manipulation can exclusively
reflect in the design procedure through Eqgs.(12) and
(13), but it keeps the other designing formulations
unchanged. The absolute value of ds; works on the
design independently, whereas the every other parame-
ter works in numerical ratios. Thus, from Eq.(21), it is
found that each ds. should be varied to the one which is
proportional to dsme{ep/ 2dpm)*’?. Moreover, the new ds;
should be caused to come from the last result of the
design process which reflects in the next reformulation.
Hence each ds; must be changed as follows :

dsi=dsio(ep/ 2dpm ). (22)

Equation(17) is an algorithmic representation of Eq.
(22).

As to fitting the stopband tolerance, note that es is
not equal to the stopband ripple but is proportional to it.
Thus Eq.(18 b) is used to assess the resulting attenua-
tion. Of course ds» reflects to es in a proportional
fashion. This discussion leads to Eq.(19).

In addition to the above points, the Remez algo-
rithm always converges, when it is applied to a
polynomial. The main part of the algorithm constitutes
of searching local extrema in conjunction with interpola-
tion which exhibits the proper ripples. If the interpola-
tion is possible to match a solution, the unique solution
always results from the convergence. Owing to those
facts, our procedure needs no initial values.

In contrast, the algorithm for designing lowpass
filters, presented in Ref.(11), needs an initial value at a
special frequency, 0.5. The initial guess of it is an issue
with slight difficulty. Furthermore that algorithm makes
the designed filter fit the prescribed ripple ratio rather
than the ripple itself.

4.3 The Optimality Property

The other topic to be discussed is the optimality
property. We have divided the design problem into the
two separate but dependent steps, while it is originally
the single problem where both the numerator and the
denominator should be optimized simultaneously. Hence
the resulting solution may not be optimum with respect
to its magnitude response in the sense of the Chebyshev
approximation.

In general®, a trigonometric polynomial of m-th
degree has at most m+1 local extrema in the closed
interval [0, 0.5]. In the case of a lowpass or a highpass
filter, since there are two band edges except for both 0
and 0.5, the polynomial can have at most m+3 local
minima and maxima, including the band edges.

Turning our attention to the problem formulation,
the Remez algorithm, implemented by Parks et al.®®,
always finds m+2 local extrema of error function in the
design of a numerator. Thus, in each case of a lowpass
filter and a highpass filter, () has at least m-+1 local
minima and maxima on the closed subset Bs, and the
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additional one at fz € By, where the boundary condition
is specified. That is, F(f) has at least m+2 local
minima and maxima on the closed subset Bs U fxp which
contains all of the stopband edges. Because F(f) is
optimized on Bs U fup, and fz is a point that belongs to
the passband and is duplicate for one of the band edges
for itself. Consequently, the weighted F(f) exhibits m
+1 alternations between +es on the stopband Bs.

The same discussion is true for the denominator
G(f). The Remez algorithm finds #+2 local extrema.
G(f) has at least #+1 local minima and maxima on By,
and an additional one at fis, where G(f) is sustained by
the boundary condition. Hence the weighted G(f) shows
n+1 alternations between 1+ ¢, on the passband B;.

If the passband ripples are rather small in magni-
tude, thus if we can consider

(liep)m:liep/Z (23)

G(F)"* also oscillates, z-+1 times, between 1ten/2 on
By. Therefore, F(f)/G(f)"* exhibits at least m+1 and
n+1 alternations on Bs and B,, respectively. Hence,
according to the alternation theorem®®, F(f)/G(F)*? is
the best unique solution in the weighted Chebyshev
approximation.

The situations of bandpass filters are more compli-
cated. We start with the discussion on a bandpass filter
with an even-degree denominator. In the first stopband
that is preceding to a passband, the denominator
decreases monotonically from a value sustained by a
boundary condition. The denominator shows #+1 alter-
nations in the passband, before it increases monotonical-
ly in the last stopband. Since this behavior is natural,
any more boundary conditions are not needed. While a
boundary condition is also necessary for the numerator,
this is same with the case of lowpass/ highpass filters.
Thus the optimality property is also valid in this case.

When a bandpass filter, however, has a denominator
of odd-degree, the optimality property may be
disappeared. If we set a boundary condition exclusively
in the first stopband, the denominator will decrease
monotonically after #+1 alternations in the passband.
Note that »-1 is an even integer in this case. If the
conditioning is so bad, it will go to zero. Since this zero
results in a pole on the unit circle, the unstable filter will
happen.

The difficulty can be avoided by sustaining G(f) at
both f1s and f2s, which are the points of the preceding
and following stopband, respectively. While the result-
ing solution is possible to have at least n+2 local
extrema on By U fis U fas, it displays only at least »
times alternations on Bp. Thus, F(f)/G(f)"? exhibits
only at least m+»+1 alternations on B, U Bs. Due to
lack of a single alternation, the solution may no longer
be optimum. There is still an exceptional possibility. As
long as the Remez algorithm yields the extraripple
numerator’? in fortune, the optimum solution can be
obtained.
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Regarding to a bandstop filter, the particular ex-
pression of a numerator lays a restriction to its feasibil-
ity. Table 1 in the Sect. 3 shows the four cases of
possible expressions for a numerator. The case 1 is
acceptable to a constituent candidate of a bandstop
filter, because the other three expressions produce trans-
mission zeros at 0 and/or 0.5.

To get an optimum bandstop filter, it is enough to
choose the case 1 as a numerator. When the numerator
is sustained by a boundary condition on one frequency of
passhands, it will show a monotonic behavior in the
passbands. Both rising and falling behaviors in the last
passband are acceptable to the numerator of interest. As
a consequence, there are m+1 alternations in the stop-
band. The denominator has also a single boundary
condition in the stopband, and will exhibit »+1 alterna-
tions in a whole of the passbands. Therefore we can
always obtain the optimum bandstop filter with a numer-
ator of even-degree.

Finally all of the above discussion is possible to
apply to the other types of specifications. For example,
it is true for a filter with prescribed transmission zeros.
Since the zeros given in advance does not, of course,
contribute the optimizing parameters, the complete
equiripple response cannot occur, even though we intend
so it is. Note that, however, it is still the optimum
weighted Chebyshev approximation with respect to
F(F)/G(f)*2, when it is one of the cases of a lowpass/
highpass filter or a bandpass filter with a denominator of
even-degree and a bandstop filter.

Even if passband and stopband shapings are added
to the constraints of a filter, the optimality property
discussed above is completely conserved.

4.4 Limitations of the Method

All of the limitations of our design originates in
three facts. One of them is the fact that it is strictly
available only to optimize the limited number of param-
eters in our problem formulation. The approximating
function has the form of F(f)/G(f)"?, and the total
number of adjustable parameters are limited in m+n
+2, where m is almost a half degree of F(z).

By contrast, in more general, we can consider the
other formulation of F(z)F(z™')/G(2)|sem, as an
optimization problem in terms of a fully magnitude
squared function. This formulation has M+N+2
parameters. While N and » are equal to each other, it
should be noted that M is almost twice as many as m.
Thus our solution may not be the optimum, as long as
we test the optimality property in terms of a fully
magnitude squared function.

However, the more general form has a more
difficult problem : The optimization process has to be
carried out under forcing the numerator to be non-
negative. Our scheme does not suffer from this problem
and gains the computational saving.

The second reason for the limitations is due to the
Remez algorithm. It allows us to find an optimum solu-
tion under prescribing the band edges. Although it
always finds one of optimum polynomials in a wide
sense, it is not necessarily possible to find an extraripple
solution. Thus if a very particular problem is considered,
and when the specifications are appropriate in terms of
band edges, we always have only the opportunity to get
the optimum solution.

We attribute the third reason to a fact that Eq.(20)
is valid for the limited applications. If the desired filter
has a rather wide transition band, not too narrow pass-
band and stopband, and not too small passband and
stopband ripples, that is right.

5. Examples

Here are several examples to illustrate the
effectiveness of the iterative design described in the
preceding sections. All of the examples are designed
with the aids of a 16-bit personal computer, NEC PC-
9801E, while ¢ in Eq.(15) takes 0.05.

(Example 1) Let us consider the following
specifications for a seventh-order lowpass filter. Its
passband edge is 0.2 and the stopband edge is 0.22 in the
normalized frequency. The desired passband ripple is 0.5
dB, and the stopband attenuation is desired as much as
possible. To make a comparison with the elliptic filters,
any other constraints are not imposed.

The design procedure attained the stopband
attenuation of 51 dB after five and a half minutes. In this
case, m=3, n=7. The magnitude response is shown in
Fig. 2. By inspection of the response, there are twelve
alternations and it is found that the filter is optimum
according to the alternation theorem.

We also designed the elliptic filter with the same
specifications by the computer program of Ref.(21),
however, any considerable differences could not be
found. This demonstrates that the elliptic design falls
into a special case of our design.

Our improved technique has another flexible advan-
tage ; The lowpass filter has a transmission zero at 0.5.
In the another design technique®, on the contrary, such
one cannot be realized because of necessity of an initial

—10
—20
—40

Magnitude in dB

—80

0 0.t 0.2 0. 3 0. 4 0.5
Normalized Frequency
Fig. 2 Magnitude response of the lowpass filter.
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Magnitude in dB

0 0.1 0.2 0.3 0. 4 0.5
Normalized Frequency
Fig. 3 Magnitude response of the bandpass filter with the
prescribed transmission zero at 0.2.

value at 0.5.

(Example 2) Let us consider the bandpass filter
with a prescribed transmission zero at 0.2. The passband
spans the interval from 0.3 to 0.4, and the allowable
ripple in the passband is fixed at 1dB. The stopband
edges are 0.25 and 0.44. The attenuations are specified
with 40 dB in the lower band and 30 dB in the upper
band, respectively. The numerator, including a pair of
the prescribed zeros, is twice the order of a denominator
which is five.

After three minutes, the design procedure converg-
ed in the number of two iterations. Figure 3 shows the
magnitude response, and it has only five alternations in
the passband. Since the order of this bandpass filter is
odd, and m =3, »=5, this is the case that the optimum
one in terms of a fully magnitude response does not
occur in nature.

(Example 3) Once again consider a bandpass filter
with different magnitudes of ripples in one passband and
one stopband. The specifications are as follows : The
lower stopband is up to 0.1 with the attenuation of 45 dB.
The passsband spans the interval from 0.15 to 0.25,
where two different ripples of 1 dB and 2 dB are desired
in the lower region up to 0.2 and in the upper region
from 0.2, respectively. Similarly, two different attenua-
tions of 65 dB and 60 dB are specified in the sub-bands
from 0.3 to 0.35 and above 0.35, respectively. The latter
two sub-bands constitute the upper stopband. While the
order of the numerator is nine, that of the denominator

0

N

—30 P SV !
B L1 [} SUO,

Magnitude in dB

—80

eol- SR e h
o} 0.1 0.2 0.3 0.4 0

Normalized Freguency

Fig. 4 Magnitude response of the bandpass filter with different
ripples in one passband and one stopband.
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is eight.

The optimum magnitude response show in Fig. 4
was obtained after four minutes computation. The
optimality is evident, because the response exhibits five
and nine alternations in the stopband and the passband,
respectively, and m =4, n=8.

(Example 4) A lowpass filter has been also
designed to compensate the droop of 6 dB/ oct roll-off,
that may arise in the preceding system, in the stopband.
The orders of both the numerator and the denominator
are six. The passband up to 0.17 is desired to have the 1
dB ripple. The stopband is beyond 0.2 and must be
shaped to match the inverse characteristic of the given
droop.

The procedure resulted in the optimum magnitude
response shown in Fig. 5 after 2.5 minutes. The attenua-
tion of the filter is higher by 2 dB than the optimum flat
-band filter which is equivalent to the elliptic counter-
part. This is one solution to the problem presented in
Ref.(1).

(Example 5) Finally a bandstop filter has been
designed to fit the stopband tolerance. The given
attenuation is 60 dB over the frequencies from 0.2 to
0.35. The two sizes of the passband ripple take 0.1 dB
and 1 dB over the first passband, and they are assigned
to the lower region up to 0.1 and the subsequent region
up to 0.15, respectively. The higher passband above 0.4 is
specified with 1 dB.

The order estimation with the modified facility has
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Fig. 5 Magnitude response of the lowpass filter with the stop-

band shaping.
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Fig. 6 Magnitude response of the bandstop filter to fit the
stopband tolerance.
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given a value of 10.8 as the order enough to clear the
specifications. Letting the common order be ten among
the numerator and the denominator, the design has
produced the optimum magnitude response depicted in
Fig.6. In the drawing of the response, the additional plot
of the passbands are enlarged by 20 times along the
vertical axis. Two values of the passband ripples have
been actually minimized to 0.073 dB and 0.73 dB, respec-
tively.

6. Concluding Remarks

An iterative procedure for the design of IIR digital
filters using the Remez algorithm has been developed. It
is possible to design lowpass, highpass, bandpass and
bandstop filters with constraints. The constraints are
subjected to degrees of numerator and denominator,
transmission zeros and poles and passband and stopband
shaping.

The designed filter completes a prescribed passband
or stopband ripple. In certain applications, it can exhibit
the optimality property with respect to a magnitude
response. We have studied the individual cases about the
optimality. in detail and have shown definitely a class of
the optimum weighted Chebyshev approximations. In
addition, the method can produce the elliptic filters as a
special case without constraints.

The procedure needs no initial values. The reasons
are twofold. First, the consistency with a solution has
led to the boundary conditions for a non-trivial one.
Secondly, the Remez alogorithm always converges for a
cosine polynomial.

The design procedure converges fast. This is highly
dependent on the fact that the convergence rate of the
Remez algorithm is quadratic.

A computer program has been implemented in a
high-level interpreter language, BASIC, and partially
machine code programs on a 16-bit personal computer.
It will find its applications in laboratory and personal
uses.

To get rid of the design limitations and to complete
the automatic design, much more experimental and
theoretical studies are required. One of the very interest-
ing issues is a tradeoff between the degrees of a numera-
tor and a denominator through an extraripple filter.
Another one is to relax tight requirements for hardware
implementations by making use of the non-optimum
filters.
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