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Interpolated FIR Filters Based on the Cyclotomic Polynomials

Hisakazu KIKUCHI!, Yoshito ABET,
Hiromichi WATANABET and Takeshi YANAGISAWATY, Members

SUMMARY Based on the cyclotomic polynomials, this paper
describes a family of efficient and practical interpolators for
interpolated FIR filters. The family can be applied to bandpass
filters as well as lowpass/highpass filters without any multiplica-
tions. It also mitigates the inconvenience to select a practical
interpolation factor, and gains a further saving in computational
complexity required. Several examples are given to demonstrate
the effectiveness for reducing the computational complexity
required.

1. Introduction

In practice finite impulse response (FIR) digital
filters require many multiplications and additions. The
filtering operation to do a given task regularly proceeds
by convolving a subsequent input signal with the impulse
response. Such regularity is favorable to software
simulated and signal processor based implementations.
Yet this is not the all desired. As for a special purpose
hardware implementations, the property contributes
inadequate efficiency. FIR digital filters still remain
expensive and bulky.

A full implementation of a digital filter of course
requires a special body of knowledge, as found in an
example®. It depends on particular applications in
addition to basic structures. Discarding the detailed
aspects in individual applications, one can focus a basic
structure for efficient implementations with respect to
computational complexity.

There are several literatures to decrease the
computational complexity. Van Gerwen et al. have
proposed difference routing digital filters® to replace
the complicated multiplications with simple shift-add
operations. The filter consists of an FIR part cascaded
with a resonator. Owing to its recursive structure, one
must take into account of special criteria both in the
design and in the implementation®. Another example is
the prefilter-equalizer design presented by Adams and
Willson®~©_ It aims at the reduction of multiplications
and additions. The computational complexity of the
corresponding implementation usually amounts to two
thirds, compared to conventional implementations.
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A further significant saving in arithmetic operations
can be obtained by interpolated FIR (IFIR) digital
filters presented by Neuvo, Dong, and Mitra™. An IFIR
filter consists.of two FIR sections : that is a model filter
with the impulse response inserted by several null sam-
ples each and an interpolator. The efficiency offered by
IFIR filters is a consequence of exploiting the redun-
dancy in filter coefficients. In principle the number of
arithmetic operations required for the implementation is
inversely proportional to an interpolation factor. More-
over, since the original version is inherently free from
recursion, it guarantees the absolute stability and the
absence of limit cycle oscillations.

This paper deals with a practical family of efficient
interpolators for IFIR digital filters®. In the original
IFIR filter implementations”, practical and efficient
interpolators are strictly available only to a special
interpolation factor of powers of two. In addition, the
interpolation with no multiplications is limited to
lowpass and highpass types. The inconvenience will be
mitigated by a novel interpolator family. Since the
family is characterized by the cyclotomic polynomials,
it inherits two properties: no multiplications and no
recursion.

The designed filters gain a salient saving in
computational complexity over the conventional filters,
and they will compete with the modified versions of IFIR
filters by Saramiki et al.®.

2. Interpolated FIR Filters

The transfer function of interpolated FIR filters” is
described by

H(z)=Hu(z")G(2) (1)

where Hy(z) and G(z) are referred to as a model filter
and an interpolator, respectively. An integer L denotes
the interpolation factor.

The structure of IFIR filters is a cascade of two FIR
sections as shown in Fig. 1. The first section generates a

Sy by (n) h(n)

——— Hyzb > Glz)  f——>

Fig. 1 Block diagram of an interpolated FIR filter.
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Fig. 2 Illustration of the IFIR filter principle.

sparse sequence /(%) of impulse response samples with
every Lth sample being non-zero. The sequence is
produced by inserting L —1 null samples between the
original sequence %x(#). The other section interpolates
the sparse sequence, and produces the desired impulse
response #(#n). The left column of Fig. 2 illustrates this
process.

As shown in the right column of the same figure, the
frequency domain interpretation facilitates understand-
ing of band-selective filtering. Regarding to a frequency
response, the exponential argument is simply abbreviat-
ed to the normalized frequency throughout this paper. A
model filter Hu(f) can span the long interval of a
passband and a transition band. The interval is reduced
to 1/L by replacing each delay of the model filter with L
delays. Since the process inevitably produces L replicas
of the desired passband, an interpolator follows the
model filter to attenuate the unwanted replicas. The
total system thus displays the desired frequency behav-
ior H(f), if the interpolator less affects the frequency
response of the desired passband.

It is a well-known fact that the impulse response
duration of an FIR digital filter is inversely proportional
to the transition band width®®. On the other hand, the
frequency response of an FIR digital filter can be short-
ened by inserting null samples between the original
impulse response. Hence, if the interpolator to suppress
the unwanted replicas is implemented by using a simple
structure, the computational complexity of IFIR filters
only amounts to the reciprocal of the interpolation
factor.

The availability of IFIR filters depends on that of
efficient interpolators. The most fundamental inter-
polators are represented by linear and quadratic
polynomials™. The first-order interpolators are of the
forms

Go(z)=(1+2zY/2, (2)
Gilz)=1—-zY/2. (3)
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The former has a zero at z=—1, and can attenuate a
possible replica at the corresponding frequency. The
latter applies to the opposite situation. In parallel the
second-order interpolator

Go2)=(1+2cos wez ' +2 5 /K (4)

has a pair of zeros on the unit circle at 7= w.

As mentioned earlier, the replacement of each delay
with L delays produces L periodic replicas of the model
filter response. The replicas occur at integral multiples
of 1/L in the normalized frequency. The above three
types of interpolators might be used to suppress all of
the unwanted replicas for an arbitrary interpolation
factor L. If those interpolators are exclusively applied,
the total interpolator composed from the cascaded sec-
tions of them may require an extra amount of multipli-
cations, compared to an estimate offered by the IFIR
principle. This may spoil the potential efficiency of IFIR
filters to some extent.

Instead, to take advantage of interpolation effects,
some realistic restrictions have been introduced in the
usage of those interpolators. The issue of inconvenience
from the restrictions will be dealt in part of the follow-
ing section, by contrast to a novel approach.

3. Cyclotomic Polynomials as Interpolators

Cyclotomic polynomials Cx(z) arise from a factor-
ization for the polynomial z¥ —1 as a product of irreduc-
ible polynomials with rational coefficients".

ZK_IZ‘}]—!(Ck(Z) (5)

where k£|K denotes that £ is a divisor of K. There is one
Cx(2) for each divisor £ of K, including £=1 and k=K.
The roots of Cx(z) are the primitive £th roots of unity.
The number of those roots is given by Euler’s function
@(k). It is equal to the number of positive integers prime
to £ and smaller than k. Therefore, ¢(k) specifies the
degree of Cu(2). Cx(2) is defined by

Ck(Z):(i'lk_Ll(Z*e_jzmm) ( 6 )

where (7, £)=1 denotes that 7 and % are co-prime.

The cyclotomic polynomials Ck(z) have an interest-
ing property : Ci(2) has coefficients from the set {0, 1,
—1}, if £ has no more than two distinct odd prime
factors. The smallest integer 2 with three prime factors
is £=105=3-5-7. Note that even if % is not less than 105,
there exist infinitely a great number of cyclotomic
polynomials of which coefficients pertain to 0, 1, —1. For
instance, see the case for £=128. As long as k£ is a
composite number without more than two odd prime
factors, the coefficients of the cyclotomic polynomials
are 0, 1, and —1.

These cyclotomic polynomials of course keep their
amplitude responses at lower levels smaller than unity
around their roots. Hence a cyclotomic polynomial is a
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Fig. 3 Suppression bands and root locations of 24 cyclotomic
polynomials.

candidate for a multiplication-free interpolator. This
observation leads to the introduction of a novel family
of efficient and practical interpolators. Each member of
the interpolator family is characterized by C:(z), and
the transfer function is of the form

Ci(z)z7?™). (7)

Since this interpolator is based on a polynomial, it is
inherently free from recursion. This fact is also prefer-
able to practical applications, because it guarantees the
absolute stability and the absence of limit cycle oscilla-
tions.

The interpolators based on the cyclotomic
polynomials show various amplitude responses.
Although the cyclotomic polynomials are infinite in
number, a set of 24 members is selected for their simplic-
ity. The explicit forms of them are included in the
Appendix. Every interpolator from this set requires no
more complexity than ten additions and twelve delay
elements.

Heavy segments in Fig. 3 designate the frequency
ranges on which the magnitude of each cyclotomic
polynomial is smaller than unity. For convenience those
ranges are referred to as suppression bands"?"%®, Notice
that the heavier the segment grows, the smaller the
magnitude becomes. Light dots indicate the root loca-
tions of each polynomial. The figure will enable us to
select effective cyclotomic polynomials to attenuate

f I

H(z) =Hy (z1) G (2)

G(z)=1+z"14z72

Amplitude

0 1/6 2/6 3/6
Normalized Frequency

Fig. 4 Illustration of spectrum area suppression.

unwanted replicas. One can thus see that a variety of
combinations among the family allows us to apply the
interpolators to bandpass filters in addition to lowpass/
highpass filters without any multiplications.

Figure 4 illustrates how undesired replicas of a
model filter, Hy(z"), folded by L times is suppressed so
that suitable interpolators may result in the desired
response. The frequency responses of Hu(z") and the
cyclotomic interpolators are drawn in solid lines. The
resulting spectrum shape of H(z) is shaded. Therefore,
in order to achieve sufficient attenuation of undesired
replicas, it is natural to cascade several kinds of the
cyclotomic polynomials as a whole interpolator.

In the original IFIR structures”, individual inter-
polators are implemented to do linear and quadratic
interpolations between missing samples. Furthermore, a
power of two is in fact assigned to an interpolation
factor. This usage of the fundamental interpolators fills
a non-zero sample at the midpoint of two sampling
instances in every successive interpolation stage. By
contrast, in the cyclotomic polynomial-based interpola-
tion, one can use different polynomials in addition to
multiple use of the same polynomials in a cascade
configuration. This means that successive stages per-
form not only the lower-order interpolations but also
higher-order interpolations to produce the desired
impulse response. Thereby the facility of IFIR filters can
be extended.

4. Design Procedure

The first step to design an IFIR filter starts with
selecting a suitable interpolation factor L. While L is
preferred as large as possible, one of the replicas of a
model filter folded by L times must span the interval
over the desired passband and transition band. Thus,
from the given stopband frequency, fs, of a desired
lowpass filter, the maximum value for possible interpo-
lation factors is found as

Lmax:L05/fs_j (8)

where the brackets denote truncation. By replacing fs
with 0.5— %, Eq. (8) applies to highpass filters.
When a phantom model filter is a lowpass type, its
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replicas are centered at the normalized frequencies of
integral multiples of 1/L. If one of those frequencies fits
the center frequency of the desired IFIR bandpass filter,
the lowpass model filter can be used. In this case, Lmax is
specified also by Eq. (8 ) by replacing fs with (feo— fs1)/2,
where fs1 and fs; are the lower and the upper edges of
the bandpass filter.

Selecting a bandpass type as a model filter allevi-
ates the restriction about the desired center frequency.
Equation (8) also applies to this case, by replacing fs
with feo— fs1.

After the calculation of Lmax, an actual interpola-
tion factor L is assigned to the number smaller than
Lumax among highly composite numbers. Since a compos-
ite number is a product of several factors, such a num-
ber specifies many cyclotomic polynomials of lower-
degree rather than less those of higher-degree. The
richness in the members of those polynomials contrib-
utes the high facility of selection.

The second step is to compose an efficient set of
interpolators characterized by several cyclotomic
polynomials. At this step, one can apply Fig.3 to sup-
pressing the unwanted replicas. Thereby a suitable
cyclotomic polynomial is selected in such a way that its
suppression band covers the frequencies corresponding
to unwanted replicas.

A combination of several cyclotomic polynomials
must offer a sufficient attenuation in total. Thus such a
selection is repeated, until the successive process
achieves the objective. Each suppressing effect is at once
evaluated by calculating the amplitude response. At the
same time, every effect is successively accumulated into
the last one to assure that the total response accumulat-
ed up to the current stage is sufficient. Consequently, the
cyclotomic polynomials selected in this way constitute
the interpolating section G(z). This procedure can be
well performed with the aid of computer graphics in a
man-machine interactive mode.

The final step is to find the model filter Hx(z) that
determines the passband response of the desired IFIR
filter. It is necessary for the model filter to compensate
the amplitude distortion produced by the interpolator
G(2) in the passband. Provided that the computer pro-
gram for designing FIR filters® is used with slight
modifications, the designing equation is of the form

—d<W(AID()—Hu(NH]<d (9)

where § denotes an unknown deviation that arises from
the optimization. W(f) and D(f) represent the weight-
ing function and the desired function, respectively. Both
functions are described by the filter specifications, G(z),
and L, as follows.

W (f)=(6»/6s) G(fIL) (10 a)
1/G(fIL), for fEB,

D(f)={ (10 b)
0, for fEB;
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where 8, and s denote the ripples in passband and in
stopband, respectively. Two sets B, and Bs are the
passband and the stopband of a model filter, respective-
ly. When the model filter is, for example, a lowpass filter
specified as a passband edge f» and a stopband edge fs,
it follows that

Bo=[f; 0<f<72], (11 a)
Bs=[f: fs<f<05]. (11b)

Even though the desired response is a bandpass
filter, the corresponding model filter may be designed as
a lowpass filter. This choice leads to a significant saving
in the arithmetic operations needed. The reasons are
twofold ; first, the degree of a lowpass filter is roughly
half that of the bandpass counterpart. The other is due
to the capability of employing the higher interpolation
factor that is twice the factor for a bandpass model
filter.

In general, it is yet difficult to set one of the replicas
of a lowpass model filter at the desired position for an
IFIR filter. Selecting a bandpass model filter is still a
better strategy to relax the difficulty.

The above three steps gives the two FIR constitu-
ents, G(z) and Hu(z), for the desired IFIR filter.

It should be noted that there is the possibility to
simplify the primitive set of cyclotomic polynomials
selected as the interpolator G(z). The simplification
contributes to the reduction of additions. The essence
for the simplification can be found from Egs. (5) and
(6), by paying attention to which numbers specify the
divisors of K and which is prime to the index %. Some
useful properties have been summarized by McClellan
and Rader in Ref. (11) and are cited in Appendix B. By
means of the simplification, one can find that it is enough
to use a few simple cyclotomic polynomials in many
cases. Those polynomials are specified by any prime
numbers.

5. Design Examples

Several examples are given to demonstrate the
effectiveness of the method described in the preceding
sections. Table 1 shows all of the specifications of them
and the results due to the 8-bit coefficient quantization.
Table 2 summarizes each computational complexity.
For brevity, the trivial argument (z) for cyclotomic
polynomials is suppressed unless otherwise needed. The
multiple use of the same polynomial is specified by a
super-script.

(Example 1) The first example is a lowpass filter
with the same specifications as in Ref. (7)), and Lmax=
8. Although the IFIR filter obtained by Neuvo et al. has
been implemented with the interpolation factor L=2,
the factor can be increased up to the upper limit of
interpolation factors to decrease the multiplications
required. Figure 5(a) shows the amplitude response
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Table 1
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Specifications of the design examples and coefficient
quantization error.

Epee FREQUENCIES

APPROXIMATION

ERRORS IN DB

ExampLE 1 CONVENTIONAL [FIR witH L=2  IFIR with L=5 IFIR with L=8
pass(0.0000, 0.0404) 0.41C 0.46) 0.41C 0.52) 0.44(C 0.60) 0.42( 0.87)
sTor(0.0556, 0.5000) -32.6 (-30.4 ) -32.3 (-32.2 ) -31.8 (-30.8 ) -32.0 (-32.0)

ExAMPLE 2 CONVENT IONAL IFIR wiTH L=6  IFIR wiTH L=8 IFIR witH L=10
PAss(0.0000, 0.0250) 0.20( 0.23) 0.17C 0.49) 0.20C 0.48) 0.32( 0.85)
sTop(0.0500, 0.5000) -60.7 (-44.9 ) -61.2 (-50.6 ) -61.3 (-61.1 ) -60.2 (-61.4)

ExampLE 3 CONVENT IONAL IFIR wiTH L=4 IFIR witH L=5 IFIR wiTH L=8
s7op(0.0000, 0.0200) -27.8 (-24.9 ) -27.8 ( NA ) -29.4 (-28.7 ) -30.0 (-32.1)
pass(0.0300, 0.0500)  1.54(C 1.54) 1.65( NA ) 1.00( 1.04) 1.13C 1.15)
sTor(0.0600, 0.5000) -27.8 (-24.1 ) -27.8 ( NA ) -28.6 (-28.6 ) -27.7 (-27.7 )

ExampLE 4 CONVENTIONAL IFIR wiTh L=20
pass{0.0000, 0.0100) 0.17C 0.25) 0.17C 0.18)
stor(0.0195, 0.5000) -40.1 (-35.9 )  -40.1 (-40.6 )

EXAMPLE 5 CONVENT IONAL IFIR wite L=15 [IFIR wiTH L=30
sTor(0.0000, 0.3183) -49.2 (-29,4 ) -49.1 (-44.6 ) -53.4 (-53.4)
pass(0.3283, 0.3383) 0.08( 0.08) 0.10C 0.23) 0.92C 0.76)
sTop(0.3483, 0.5000) -49.2 (-44.5 ) -48.9 (-46.6 ) -49.0 (-49.0 )

IN A PAIR OF FIGURES DRAWN AS ###(###), THE LEADING AND THE FOLLOWING IN PARENTHESES
DENOTE THE APPROXIMATION ERRORS USING THE COEFFICIENTS IN INFINITE WORDLENGTH AND 8-

BIT, RESPECTIVELY.

Table 2 Comparison on the computational complexity.

ExaMpLE 1 CONVENT IONAL [FIR wiTH L=2

M A D M A D
MobeL FILTER 25 48 96
INTERPOLATOR 0 2(°2) 2
TotaL FILTER 50 98 98 25 50(50) 98

IFIR wiTH L=5 IFIR wiTH L=8

M A D M A D
10 19 95 8 14 112
0 12(12) 12 0 12012) 36
10 31(31) 107 8 26(26) 148

ExampLE 2 CONVENT IONAL IFIR wiTH L=6 [FIR with L=8 IFIR with L=10
M A D MoA D M A D M A D
MopbeL FILTER 9 17 102 7 12 96 5 8 80
INTERPOLATOR 0 12(24) 24 0 13(21) 36 0 20(36) 57
TotaL FILTER 55 108 108 9 29(41) 126 7 25(33) 132 5 28(44) 137
EXAMPLE 3 CONVENTIONAL IFIR wiTH L=4 IFIR wiTh L=5, IFIR wiTh L=8
M A D M A D M A D M A D
MopeL FILTER " NANA NA 12 22 110 8 14 12
[NTERPOLATOR NA  NA NA 0 10(16) 16 0 12(26) 36
TotaL FILTER 56 110 110 18 30 110 12 32(38) 126 8 26(40) 148
EXAMPLE 4 CONVENTIONAL IFIR wiTH L=20
M A D M A D
MobEL FILTER 6 10 200
INTERPOLATOR 0 21(53) 67
ToraL Fiuter 111 220 220 6 31(63) 267
EXAMPLE 5 CONVENT IONAL IFIR wITH L=15 IFIR wiTH L=30
M A D M A D M A D
MopEL FILTER 9 16 240 5 8 240
INTERPOLATOR 0 15(34) 40 0 23(85) 121
ToTaL FILTER 131 260 260 9  31(50) 280 5 31(93) 361

M, A, AND D STAND FOR THE NUMBERS OF MULTIPLICATIONS, ADDITIONS, AND DELAYS, RESPECTIVELY.
() DENOTES THE NUMBER OF ADDITIONS BEFORE SIMPLIFYING THE SETS OF CYCLOTOMIC POLYNOMIALS.

with L="5. The interpolator to this case is a triple
cyclotomic polynomial Cs.

Figure 6 illustrates that the combination of the
model filter with L =8 and the interpolator produces the
desired IFIR filter. The interpolator consists of Cy’, C4,

and C2

As can be seen from Table 2, the implementation
with L=5 has gained a considerable saving in arithme-
tic operations at the expense of a slight increase of delay
operations. While the highest value for L results in the



KIKUCHI et al: CYCLOTOMIC POLYNOMIAL BASED IFIR FILTERS

m 0

o

o -20

o -40

©

b=} .

+ =60

5 | il
0 0.1 0.2 0.3 0.4 0.5

Normalized Frequency

Fig. 5 Example 1. Amplitude response of IFIR filter with L=
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Fig. 6 Amplitude responses of (a) model filter, (b) inter-
polator, (¢) IFIR filter with L=8(= Lmax) for the first
example.
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Fig. 7 Example 2. Amplitude response of IFIR lowpass filter
with L=10(= Lmax).
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Fig. 8 Example 3. Amplitude responses of IFIR bandpass filters
with (a) L=5, (b) L=8.

fewest multiplications, this leads to much more delay
elements.

(Example 2) The lowpass filter as the second exam-
ple has been also dealt with in Ref. (9 ). Figure 7 shows
the response of the IFIR filter with L=10 that is the
permissible limit to this example. The cyclotomic inter-
polator comprises Cis, Cs, Cr(2%), Cs5(2%), Cs(2%), Cs(29),
Cx(z°), and C°.

The computational complexity for this implementa-
tion is listed in Table 2 in addition to the data for
different implementations. Those additional data can be
drawn by applying Cs(2%)*, Ca(2%)? and C.? for L=6, and
C, C8, Ci(2%), Co2°), Co(2°), and C° for L=8. By
comparing those with the results by Saramiki et al.”®,
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Fig. 9 Example 4. Amplitude response of IFIR lowpass filter
with L=20.

one can find that all of them are competitive to each
other. The efficiency will have to be determined by a full
implementation for individual applications.

(Example 3) From a bandpass model filter, a ban-
dpass IFIR filter has been designed with increased inter-
polation factors than 4. Whereas the factor 4 was used
by Neuvo et al., it has been selected as L=>5 and L=8.
Although the virtual Lmax is 12 according to Eq. (8), the
real Lnax reduces to 8 because of the requirement of a
passband position.

For L=5, the interpolator based on the cyclotomic
polynomials has its factors such as G Cx2°), and
Ci(z°). The designed IFIR filter has the amplitude
response shown in Fig. 8 (a). By making a comparison
between the data in Table 2 and those in Ref. (7 ), one
can see that the designed filter requires 12 multiplica-
tions fewer than 18 in Ref. (7). The price payed for the
reduction amounts to the increase of delays by 15 %.

As for the case of L=8, the interpolator is factored
as Cs(2%)® Cy(2°3, Ci(2%), and C2 The resulting ampli-
tude response is shown in Fig. 8 (b).

(Example 4) A very narrow-band lowpass filters has
been designed as an IFIR filter. In this case, Lmax=25,
and L has been determined as 20. The interpolator for
this example comprises Ca, C5(2%)°, Cx(2"), Cx(2")?, and
C;2. Figure 9 shows the amplitude response of the IFIR
filter, and Table 2 proves its prominent efficiency.

(Example 5) The final example is a very narrow-
band IFIR bandpass filter with L=15. It has been
designed from a lowpass model filter having the permis-
sible interpolation factor Lmax=33. The largest factor is
of course acceptable for the cyclotomic polynomial
based interpolators. However, this introduces much
more delays than those in the conventional FIR filter.

The factors of the interpolator used are Cs(2%)°
Ci(2%), and C:2 Figure 10 shows the amplitude responses
of the model filter with the sampling rate increased by
15, the interpolator, and the total IFIR filter. The com-
parison with the conventional FIR filter is listed in Table
2. It is evident that a desirable trade-off has been
achieved in terms of the computational complexity.
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Fig. 10 Example 5. Amplitude responses of (a) model filter
with L times sampling rate, (b) interpolator, (c¢)
IFIR filter with L=15.

6. Discussion

Finite wordlength properties of IFIR filters have
been already analyzed in Ref. (7) in terms of the stan-
dard deviation of the error in the frequency response due
to coefficient quantization and output roundoff noise
variance. The results are right if the length of a model
filter is long. All of them also apply to the cyclotomic
polynomial based IFIR filters.

However, as the interpolation factor goes high, the
model filter can be implemented with a short length of
its impulse response. The high interpolation factor may
destroy the assumption of the statistical analysis, espe-
cially regarding the frequency response degradation
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caused by coefficient quantization.

Table 1 shows the degradation behavior due to the
8-bit coefficient quantization in fixed-point binary repre-
sentation. The number of bits includes the sign bit and
the coefficients have been scaled by the greatest one to
fit its effective figures for 8 bits.

As seen from Table 1, the coefficient quantization
property of IFIR filters is superior than that of
conventinal FIR filters in a stopband, but the situation is
opposite in a passband.

In general, a cyclotomic polynomial based inter-
polator has a single peak in the desired passband,
because a vacancy of a equi-spaced zero on the unit
circle controls the spectral shape. As the interpolation
factor increases, the distance between the zeros next to
the vacancy must be shortened. Deeper attenuation
requires multiple use of similar interpolators in a cas-
cade configuration. Both facts make the interpolator
peak sharp. Therefore the corresponding model filter
must compensate the sharp droop in the passhand. One
can observe this effect in Fig. 6 (a). The model filter
should realize stringent zeros closer to the unit circle.
This is the reason why the coefficient sensitivity of the
IFIR filters requiring very small amount of multiplica-
tions is poor in a passband.

The poor behavior will be overcomed by introduc-
ing a spectral shaping section having the structurely-
insensitive property as in the improved prefilter-equal-

“izer design®.

As for the stopband, there are no considerable
disadvantages, because an interpolator attenuates the
undesired replicas of the model filter in a stopband.

Finally miscellaneous issues related to hardware
implementations are added. Since a cyclotomic
polynomial based interpolator has a large gain constant,
an additional multiplier should be inserted between the
model filter section and the interpolator to adjust the
passband gain to be unity. Otherwise the internal signal
wordlength must be increased. Note that there is the
need for the extra multiplier even in the conventional
FIR filters, if the internal signal wordlength is fully used.
This means that the signal wordlength required in IFIR
filter implementations are same with that in conven-
tional FIR filters.

Several examples dealt in this paper reveals that
there are many variations in interpolated FIR digital
filters. Those variations are competitive to each other in
terms of the computational complexity. In the hardware
design for implementing a practical IFIR filter, one of
the variations has to be selected by the specific design
considerations. The decision is an open problem and will
depend on future studies.

7. Conclusion

An efficient and practical family of interpolators
has been described for interpolated FIR digital filters.
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That is characterized by the cyclotomic polynomials,
and inherits the multiplication-free and recursion-free
properties. The family is applicable to bandpass filters
as well as lowpass/highpass filters with no multiplica-
tions. This extends the potential facility of IFIR filters.
In addition, the described approach together with the
interpolator family permits to employ a larger interpola-
tion factor. As a result, the IFIR filters can afford to
gain a further saving with respect to arithmetic opera-
tions.

Finite wordlength properties in the implementations
with larger interpolation factors and hence with the
model filters having rather short length have been dis-
cussed with several examples.

Further improvements will be gained by introducing
a spectral shaping section.
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Appendix A

The explicit formulas of the 24 cyclotomic

polynomials are listed for a practical use with their
alternative expressions if available.

Ci(z)=z—1
Cz)=z+1
Ci2)=22+1=Cy2?
Ciz)=2"+2z+1
Cz)=22—2+1=Cs(—2)
Ce(2)=2z"+1=Cyz"
Cu(z)=2—2"+1=Cs(— 25
C(z)=z'+22+2*+2+1
Cw(z)=2"—2+2"—z2+1=Cs—2)
Co(z)=2+2+1=Ci(2®)
Cis(2)=2—22+1=Cs(— 2%
Cz)=2+ 2"+ 2+ 2+ 2+ z2+1
Cu(z)=2— 2+ 21— 2+ 22— 2+1=Ci—2)
Cis(2)=2+1=Cx2*)
Cu(2)=22—2*+1=Cx(— 2
Culz)=2— 2+ 2t — 22+ 1=C5(— 2%
Cis(2)=2—2"+2—*+7F—z+1
Ca(2)=2+2"— 2" —2*— 2+ z+1=Cis(—2)
Cu(2)=2"+2°+ 28+ 2+ 284+ 2+ 2+ 2+ 2+ z+1
Co2)=2"— 2+ 22—+ 25— L+ -+ P2—2z2+1
=Cu(—2)
Ci(2)=2"2—28+1=Cs(— 2"
Cu(2)=2"%— 2"+ 22—+ 2 — 22+ 1=C— 2P

Cul(z)=2%—2"+22— P+ 25—+ 22 —z+1

Ci2)=22+ N2 — P+ 25— 2 — P+ z+1

= Cz]( - Z)

Appendix B

n,

m,

[Theorem 1]
Co(z)=2""+ 2P+ +2z+1

[Theorem 2] For # odd and %=3,
Can(2)=Ca(—2).

[Theorem 3]

If p is a prime,

For any choice of the integers m and

Cmnk(z) = C,,m(z”k_l).

[Theorem 4] If p is prime, and p does not divide

Cn(2")=Cpn(2) Cn(2).
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