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Systematic Synthesis of Power-Wave Digital Filters

Hisakuzu KIKUCHI!, Hiromichi WATANABET?, Akinori NISHIHARATt
and Takeshi YANAGISAWATTT, Members

SUMMARY A systematic synthesis is presented to realize any
digital filter into a power-wave digital filter. After three canonical
matrix representations are introduced, a set of key concepts
which comprises cascade interconnection of digital two-ports,
pole localization, and computability is presented for the canonical
cascade synthesis of lossless digital two-ports. The synthesis
procedure consists of global decomposition and local decomposi-
tion. The procedure is so general as to give a unified solution to
arbitrary frequency responses realization, and is so useful as to
find new circuit structures. The synthesized circuits are of robust-
ness and modularity. An illustrative example is included.

1. Introduction

Since wave digital filters (WDFs) were presented
by Fettweis®~®, many researches have been done to
build low-sensitivity digital filters based on the matching
concept in power transfer scheme. This is because a
WDF bears many excellent properties such as low sensi-
tivity to coefficient quantization, low round-off noise,
wide dynamic range, good stability against inevitable
nonlinearities caused by finite-precision arithmetic, and
the absence of limit cycle oscillations®®,

The design of conventional WDFs is indirect ; it is
based on digital simulation of analog reference filters by
means of wave quantities. Reference filters have to be
synthesized by conventional classical network theory.
On the other hand, it is difficult to find a WDF realiza-
tion for some class of transfer functions which are
arbitrarily specified in the digital domain. For instance,
such difficulty appears when linear phase or group delay
response is considered.

In contrast, direct synthesis of WDFs has a consid-
erable significance. This is because a direct procedure
calls for neither analog filter theory nor classical net-
work theory. The second reason can be attributed to the
difference of manufacturing considerations between
analog passive circuit technology and digital circuit
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technology. Some of the disciplines intended in the for-
mer technology are the distinction of frequency band to
be handled by lumped or distributed networks, and the
minimization of the number of cumbersome circuit
components such as ideal transformers, circulators, or
nonreciprocal circuit components. On the other hand,
digital circuit technology gives higher priority to
modularity and throughput rate as well as the minimiza-
tion of computational complexity. There is no assurance
for good circuits in the context of analog passive circuit
technology to be so again for digital implementation.

There are only a limited number of direct proce-
dures for WDF systhesis. Orthogonal digital filters
presented by Deprettere and Dewilde®~® are the first
contribution, and are classified into power-wave digital
filters. Their theory is given in highly algebraic and
abstract description. The actual computation in the
realization procedure requires Givens’ algorithm® for
matrix triangularization.

Lossless bounded-real (LBR) theory has been
presented by Vaidyanathan and Mitra®~"?. The synthe-
sis procedure is characterized by ‘one-removal : the
extraction of ‘one’ on the unit circle from an LBR input
function. In their LBR approach, lossy and nonreci-
procal two-pair sections are used to realize a general
transfer function. Hence exactly speaking, the theory
addresses the synthesis of single-input single-output
digital filters rather than lossless digital two-ports, and
is not suitable for branching (directional) filter applica-
tions®.

The authors have described a direct synthesis of
power-wave digital filters on the basis of localization of
loss poles™~® A universal circuit structure as a basic
section has been derived definitely. The synthesis leads
to pipelinable realizations and branching filters realiza-
tion. However, the synthesis procedure is based on the
global decomposition merely characterized by transmis-
sion zeros. The procedure requires the preamble opera-
tion, and this is the obstacle to get a canonical realiza-
tion. Moreover, the synthesized filters guarantee exter-
nal passivity, but lack internal passivity, if a loss pole
exists off the unit circle.

To overcome the disadvantage and to improve
modularity, this paper addresses canonical cascade syn-
thesis of lossless digital two-ports™?"®, The synthesis is
described by three sorts of scattering representations,
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and is systematically performed by a set of tools. The
set consists of three sorts of cascade interconnections,
pole-localization principle, and the computability condi-
tion at interconnection junctions. The synthesis proce-
dure can be divided into two major steps : global synthe-
sis and local synthesis. Global synthesis is characterized
by the factorization of three kinds of scattering
matrices. On the other hand, local synthesis is character-
ized by both creation of special poles at zero and infinity
and their localization.

This paper is a generalization of Ref.(13), and
yields a systematic way to power-wave digital filters
which are suitable for CORDIC implementations rather
than conventional multiplication-add arithmetics. More-
over, a new realization of a general second-degree sec-
tion is given in addition to a design example.

2. Scattering Description for Digital Two-Ports

A linear shift-invariant digital two-port is described
by a scattering matrix

s

where X; and Y; (i=1, 2) indicate the input and output
at the 7th port, respectively. All entries in S(z) are
rational functions of z with real coefficients.

The two-port is schematically drawn in Fig. 1. The
figure is suitable to represent the transmission and
reflection of signals in ladder configuration and the
global structure of digital two-ports for digital filtering.
Hence only this schematic is used throughout this paper.

As preliminaries, some definitions are given.
[Definition 1] (Causality and Stability) A causal and
stable discrete-time transfer function has no poles on the
unit circle and at any exterior point.

[Definition 2] (Passivity) A digital two-port is passive,
if and only if

(1) Every entry of S(2) is analytic in |2|>1,

and

(2) S*=2)S()=<I, for|zl=1 (2)

where the upper asterisk denotes transposed conjugate,
and I = diag{l, 1}.
[Definition 3] (Losslessness)
lossless,

S«(2)S(2)=1,

where the lower asterisk stands for para-conjugation :

If a digital two-port is

for all z (3)

X1_H

Yy €

Fig. 1 Block diagram for a digital two-port.

S«(2)=8*(1/z*).

A scattering matrix always exists for an actual
digital two-port, because Eq.(1) physically represents
the propagation of signals from inputs to outputs. A
digital two-port described by Eq.(1) maps an input
vector [ Xi, X:]? to an output vector [ Y3, Yz)?, where the
superscript indicates tranposition. To the same two-
port, if a different pair of vectors is used, another
equivalent mapping can be obtained. If Sz is not identi-
cally zero, another representation

el

is algebraically obtained with respect to the same digital
two-port. This matrix is referred to as a transfer scat-
tering matrix. The losslessness defined by Eq.(3) as
paraunitariness is described in terms of T'(2) as

JT(2)JT(z)=1I, for all z (5)

where J= diag {1, —1}. Such a notation was introduced
by Belevitch"® in classical network theory, and is called
J-losslessness after Deprettere and Dewilde®.

Similarly, if Su is not identically zero, the same
two-port may be represented by

[);]:H(z)[;l] (6)

2 2
where
JH «(2)JH(2)=1,

which we call a hybrid scattering matrix. Algebraic
formulas for the conversion between those matrices are
summarized in Table 1. Regarding T and H, the term
‘scattering’ will be suppressed for brevity.

With these definitions above, one can prove the
following theorem which characterizes a lossless digital
two-port.

[Theorem 1] (Canonical Form) The scattering matrix
S(2) of a causal, stable, lossless, digital two-port has a

for all z (7

Table 1 Algebraic conversion of scattering description.

s T H
S S11 Si2 U [Ty T L1 -Hpg
So1 Sa2 Tyl Ut -Tyg Hyy|Hyy  [H]

T 1 [ 1 -8y [Ty Ty 1 [Hy; - H])
SgilS11 -Isl Te;  Ta2 Hy(| 1 -Hyy

u 11 =Sy, 1 [Ty -ITI Hy;  Hyps]
Si1iS9;  IS| Torl 1 ~Tog (Hoy  Hgg
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unique representation

()= 1 [K(z) uF*(z)zN]
G(2) F(z) —uK«(2)z"

which has the following properties.

(1) G(z), F(z), and K(z) are polynomials of z with
real coefficients.

(2) G(z) is Hurwitz in the z-plane, and is monic, i. e.
its leading coefficient is unity.

(3) N is a certain integer which is expressed by

N=deg |S(z)| (9)

where the right-hand side denotes degree of the determi-
nant of S(z).

(4) u is a unimodular constant, i.e. 1 or —1.

(5) G(2), F(z), and K(2) are related by

Gx(2)G(2)=F«(2)F(2)+ K+(2)K(2). (10)

The form of Eq.(8) is referred to as the canonical
form of a scattering matrix, and a triplet of G(z), F(z),
and K(z) is called canonical polynomials®®“?, Property
(3) may seem to be self-contradictory, but it is not the
case ; one can evaluate |S(z)| from a given scattering
matrix which may be noncanonical. Although thorough
treatment on this respect is omitted here, a simple
example concerning this issue is given by

170 1
s(z>=;[1 0} (11)

(8)

and is shown in Fig. 2. The proofs for three theorems
described in this paper are also omitted, but they are
found in Ref.(18).

Regarding the same two-port treated in Theorem 1,
if F(z) or K(z)is not identically zero, the canonical
form of a transfer matrix or hybrid matrix is obtained
by algebraic conversion, as follows,

G(z) uKx(2)z"
T(z)=%[ i ] (12)
RILK(z) uGx(z)z"
or
1[G — uF*(z)zN]
H(z)= [ , (13)
K(2) F(z) —uG«(2)2"
respectively.
These canonical forms obey the next theorem.
[Theorem 2] Regarding each matrix representation

among S(z), T(z), and H(z), a product of two canonical

\I -1 I
/I 4 I
Y ]I 2! ke X

Fig. 2 Lossless digital two-port defined by Eq. (11).
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forms is also canonical.
Finally, a trivial comment is given. Any sign of

unimodular constant % is permitted in this theory. -

Nevertheless, if F'x(2)z" is the mirror image or antimir-
ror image polynomial of F(z), we also apply the conven-
tion in classical network theory®®” to this sign choice,
i.e

u=Fx(2)2"[F(2). (14)

This choice leads to the relationship, | T(z)|=1, and it is
said that such a two-port is reciprocal.

3. Conservation and Creation of Feedback Structures

By Theorem 2, a product of two canonical forms
S.(z) and S»(z) gives a canonical form of a new scatter-
ing matrix

S(z)=8.(2)8:(z). (15)

S(z) is realized by the cascade interconnection as shown
in Fig. 3. If S.(z) and Ss(z) have no common factor in
denominator, the poles of S(z) are distributed to and are
fixed at S.(z) and S»(z). Each member of those poles is
locally realized by each internal feedback structure of
Sa(z) and S:(z). The interconnection specified by Fig. 3
never create a new feedback structure. This intercon-
nection conserves two feedback structures in respective
circuits, and will be referred to as S-cascade intercon-
nection®#!%,

By contrast, the numerators of the entries in S(z)
can be realized only by the result of the interconnection
of S.(2) and S,(z), because they are the product-sums of
those in S.(z) and Ss(2).

A product of the canonical forms of two transfer
matrices is written by

T(2)=T.(2)To(z) (16)

and is realized by the cascade interconnection shown in
Fig. 4 which we call T-cascade interconnection. The
T -cascade structure locally realizes the factors of F(z)
within Tu(z) and Ts(z). Note that factors of F(z) are
the poles of the transfer matrix T'(z). On the contrary to

b

SG

Fig. 3 S-cascade interconnection.

Xl JEN : Y2
pa— b

| " A— X2

Fig. 4 T-cascade interconnection.
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Fig. 5 H-cascade interconnection.

the case for the S-cascade interconnection, whenever
two lossless digital two-ports are interconnected by the
T-cascade interconnection, a new feedback structure is
necessarily created. Alternately speaking, even though
both sections to be cascaded have no feedback loops,
T-cascade interconnection can create a feedback loop.

Owing to the newly created feedback structure, one
must, however, be careful about whether this feedback
is computable or not. Computability corresponds to the
local, physical realizability of interconnected networks,
and is different from the global, physical realizability
that means causality involved in a given transfer func-
tion. If a product of two transfer matrices is comput-
able,the corresponding digital two-port is physically
realizable. Note that the computability problem does
not arise in S-cascade interconnection.

In parallel to the case of transfer matrices, a prod-
uct of the canonical forms of two hybrid matrices,
described by

H(2)= Ha(2) Hy(2) W)

finds the H-cascade interconnection as shown in Fig. 5.
The H-cascade structure independently realizes the
factors of K,(z) and K.(z) in H.(z) and H,(z) , respec-
tively. Furthermore, H-cascade interconnection neces-
sarily creates a new feedback structure, even though
two sections to be cascaded are devoid of feedback
structures. Like the case of transfer matrices,
computability must be guaranteed at the junction of
interconnection. ’

The above observation suggests that a cascade
interconnection of lossless digital two-ports is character-
ized by local or independent realization of a certain
quantity, which may be G(z), F(z), and K(z) in the case
of 8(2), T(z), and H(z), respectively. Such an indepen-
dent realization is provided by the factorization of poles
in appropriate scattering descriptions. Conversely, cas-
cade systhesis of lossless digital two-ports may be de-
scribed by the decomposition of appropriate poles into
individual two-ports under leaving the decomposed frac-
tions being still the members of the original poles. The
strategy stated above is referred to as the pole-
localization™09,

Cascade interconnection of digital two-ports, pole
localization, and computability are a set of key concepts
for the cascade synthesis of lossless digital two-ports
presented in this paper. Three sorts of interconnections

presented here are essential to represent cascade inter-
connection of lossless digital two-ports, because each
product of S(z), T(z), or H(z) represents the unique
factorization of canonical polynomials which charcter-
ize lossless digital two-ports. One can define additional
matrix descriptions each of which denominator is G«2",
Fy2", or K«2". Yet, there is no need to employ those
descriptions for the application of lossless digital two-
port synthesis. This is because other scattering descrip-
tions derived by the exchange of numerator entries can
be mathematically expressed by the combination of the
basic three matrices and a permutation matrix defined
by

0 1
P=[ ] (18)
1 0 .

By the way, the pole localization demands the
decomposition of S(z), T(z), and H(z) on the basis of
respective poles. The next factorization theorem proved
using the minimum real-part theorem® guarantees the
passivity of two matrices obtained from the factoriza-
tion of a given canonical form.

[Theorem 3] If a given canonical form is factored into
two lossless matrices without higher-degrees, they are
stable.

This also implies that passivity is ensured, even if a
matrix factor is constant.

4. Global Synthesis
4.1 Preliminaries

A prescribed rational tranfer function, H(z), with
real cofficients can be embedded in any entry of a
scattering matrix. For example, if we identify H(z) with
Sa1(2), the canonical form is found by Theorem 1.
Through such embedding, the realization problem of a
transfer function is restated as the synthesis probiem of
a lossless digital two-port. Indeed, embedding is possible,
if

max{|H(z)|}=1, for |z|=1 (19)

is satisfied. The unimodular-bounded property is the
necessary and sufficient condition for the existence of a
set of canonical polynomials with real coefficients.
Cascade synthesis of lossless two-ports can still do
more than for low passband-sensitivity. In classical
network theory, it is a fact that a doubly-terminated
reactance ladder network can realize a frequency-
selective filter with high precision. The first reason is
due to matching in power transfer, and this contributes
to the low passband-sensitivity. The other is the indepen-
dent realization of transmission zeros by each arm in the
ladder. This in turn contributes to the stopband immu-
nity against parameter variations. According to this
lesson, if a prescribed transfer function is embedded into
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a transmission coefficent, S, it is reasonable to solve
the synthesis problem by means of global factorization
of transfer matrices that results in 7T'-cascade intercon-
nection.

Equivalently, one can use another factorization to
the same problem. If a transfer function is embedded
into a reflection coefficient such as Su, the hybrid matrix
factorization is preferable.

If an all-pole filter is considered in the context of the
above discussion, the scattering matrix factorization
may be better. This is why because such a filter is
primarily characterized by a denominator polynomial,
whereas a numerator consists of a multiple zero at the
origin in the z-plane. On the other hand, this special zero
with multiplicity brings about a peculiar situation,
because such a zero is realized by a simpler circuit
structure. Owing to the special property, an all-pole
filter embedded in Sx can be realized by T -cascade
interconnection. ‘

The same discussion applies to the case for FIR
filters. An FIR filter is realized by S-cascade intercon-
nection rather than 7T -cascade interconnection because
of the multiple pole at z=0, which permits the simplest
parameterization. This causes no contradiction to that a
linear-phase response cannot be realized with indispens-
able feedback loops.

Of course, any kind of global structures among S,
T, and H-cascades is permitted to synthesize a given
transfer function. In particular, S-cascade global struc-
ture offers the simplest pipelinability®®.

So, cascade synthesis of lossless digital two-ports
can afford to give many circuit realizations. One of them
has to be selected by application-specific considerations.
Any way, global synthesis is performed by the localiza-
tion of poles associated with three scattering matrices.
As for most practical applications to frequency-selective
filtering, the global structure for circuit realization
should be represented by T -cascade or H-cascade inter-
connection which localizes every loss pole.

4.2 Global Factorization of Transfer Matrices

After the embedding of a transfer function, one
obtains the canonical form of the corresponding transfer
matrix as

T(z)=

1 [G(z) uK*(z)z”]. (20)

F(z) K(z) uG«(2)z"

Assume that T is factored into a product of T: and T,
as in Eq.(16), then both 7. and T, are passive by
Theorem 3, unless their degrees exceed that of T'.

Among F, specifying a single factor F, with real
coefficients, one can define T, formally as the canonical
form of a transfer matrix, i. e.

POWER-WAVE FILTERS SYNTHESIS

367
1 [Ga uaKa*zL:I
Ta T

B Fa Ka uaGa*ZL (21)

where F., Ga, and K, are related by the paraunitary
condition as same as Eq.(10). Denoting T, with a
formal degree, N+ L, by T¢, and using the formula

To=T:'T=JTosJT (22)

one obtains the formal matrix as
1 [Ge ucKexz"**

TFTC[KC UeGex ] )
where

Fe=Fox2'F (24 a)

Ge=Gax2"'G—Kaxz"K (24 D)

Ke=—usKoG+ taGoK. (24 ¢)

The problem is to find a condition such that the degree
of the formal 7. is actually reduced to N-—L.
Specifically, we are concerned with the first and second
degree reduction.

At first, observe that every factor of any numerator
entry in lossless scattering matrix descriptions has its
mirror image in the corresponding entry at the opposite
column. If F.; cancels out between F; and G. in Eq. (23),
F. is a factor of G., and hence F.xz" is a factor of
Gex2"**. Again in Eq. (23), if F. cancels out between F¢
and Gex2V*E, Fy is a factor of Gex2"+E, and hence Fox2*
is a factor of G.. Namely, F.Fqx2" is a common factor
between F. and both Gc and Gex2"*~. Denoting the zero
of F, by a, one obtains a single condition

which is necessary and sufficient for the desired reduc-
tion in degree by 2L. The other expected requirement

Kfa)=0 (26)

is automatically fulfilled by paraunitariness.

If |al=1, then F,F.«z" has a double zero, because
the mirror image of such a zero is identical to itself. In
this case,

Ga)=0 @2n

turns out to be the additional condition, where the prime
stands for the derivative with respect to z.

After that, T. is determined by paraunitariness and
the degree reduction condition, thereby completing the
basic step in transfer matrix factorization. Such a de-
composition is repeated until a constant matrix Tex
appears. The termination of the procedure results in

T=Ta1Toz TonTon. (28)

Paying our attention to the feedback loops in Fig. 6,
it is found that if every path depicted by an asterisk has
a delay, the 7T'-cascade realization is computable. It is
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Fig. 6 T-cascade global structure.

thus adequate to incorporate a delay in Sx entry. In
parallel, if every reflection coefficient at the left-hand
port is devoid of delay-free propagation, the 7'-cascade
realization is computable. These conditions are expres-
sed in terms of canonical polynomials by

K(0)=0, (29 a)
K*(Z)2N|z=0=0 (29b)

at the right-hand and left-hand ports, respectively. On
the other hand, if any lossless digital two-port is realized
by the global structure shown in Fig. 6 where the right-
most section depicted by T». has a nonzero reflection
without delay at its left-hand port, the adjacent two-port
cannot have delay-free reflection at its right-hand port.
This statement is true for other interconnection junc-
tions. Therefore, if such a constant section is removed
from the rightmost port at first, then the resulting two-
port must satisfy Eq.(29 a). At the same time, one can
see that the synthesis similar to the realization expres-
sed by Eq.(28) can be performed from the rightmost or
the leftmost port.

4.3 Localization of Real Loss Poles

The canonical form of a, transfer matrix with a real
pole at z=a, which is one of the prescribed loss poles,
can be written as

1 Z2—p uak

Te=7—ay

FZ=a) | bz w,(1—p2)

where p, 7, and k are unknown real parameters. Owing
to the paraunitary condition, p, a, and 72 are related by

p=ra. (31)
The absence of the constant term of the numerator in (2,
1) entry is due to Eq.(29 a). The unimodular constant .
is arbitrary. For the case of |a|=1, from Egs.(25), (26),
one obtains

K(a) aG(a)1Tk G(a)

[ [ o) @

aGla) K(a)llpl LaK(a)]

(30)

and readily finds the solution as follows®®.
k=P(a)1—a")/(P¥a)—a®)
p=a(P¥a)—1)/(PXa)—-a*)

(33a)
(33b)

*=(P¥a)-1)/(P(a)—a’) (33¢)
where
P(2)=K(2)/G(z). (34)

It should be noted that P(z) is complementary to the
transfer function H(z) and has a useful relationship
shown by

Py«(a)P(a)=1. (35)
In the case of |a¢|=1, from Eqgs.(25), (27),

K(a) aG(a) k] [G(a) ‘
[K’(a) aG' (@) + c;(a)] u:[c;'(a)] 9
is obtained to find the solution
k=—a/(P(a)—aP(a)) (37a)
p=aP(a)/(P'(a)—aP(a)) (37D)
=P (a)/(P(a)—aP(a)). (37¢)

4.4 Localization of Complex Loss Poles

A second-degree section T, for the localization of a
complex conjugate pair of loss poles at z=a and a* is
written by

T.

. 1
~ fZZ—(a+a*)z+aa®}
[zz—(p+p*)z+pp* Ua (#)]
k(2*— gz) ua(#)

where the second column is abbreviated except for the
unimodular constant which is assumed to be unity.
Unknown parameters are f, k£, and ¢ in addition to a
complex parameter p which amounts to two real un-
knowns such as p+p* and pp*. Paraunitariness imposes

p*=r*aa*. (39)

One can thus obtain the linear system of four equations
with respect to &, kg, p+2p*, and pp* by using the
complementary function notation. The four equations
consists of two equations for degree reduction and their
complex conjugates. For |a/=1, solving the linear sys-
tem

(38)

—-P aP —a a k —1
—P* g*P* —g*¥ ¥ kg -1
a —a aP —P ||p+p* atP
a*z _ d* d*P* —_ P* pp* a*ZP*
(40)

where the argument of P(a) being suppressed, one gets
the solution, as follows.

k=(a—a®)[(aP— a*P*)(|a|*+ PP¥)
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~(aP*—a*P)(1+|al*PP*)
—(P—P*}a+a*aa*1+PP*]/d (41 a)
ka=(a—a*)[(a+ a*)(aP*— a* P)aa*+ PP*)
—(a®P*— a**P)(1+ aa* PP*)
+(P—P*)(PP*+a9]/d
p+p*=[(a+a*)(a’—a**)(aa*+|PI")
—(aP— a*P*)(a*P*— a**P)(1+ aa*)
+(P—P*)(aP*—a*P)(1+|al®]/d
pp*=aa*[(a—a*)*(1+|PI)
—2aP*— a*P)(aP— a*P*)
—(P—P*(1+|al)]/d

(41b)

(41¢)

(41d)
where
d=(a—a*)¥|al*+|P[%)
—(aP*—a*P)(1+|al*)
—2aa*(a*P*— a*?P)(P— P*) (41e)

For |a|=1, the solution to the following system

pP —aP a —-a k 1
p* —a*pP* a* —a*|| kg 1
P —P—aP 1 —2a]||ptp* - 0
P* —px—g*p* 1 —2a*|| pp* 0
(42)
is of the form
k=—(a—a®)[(a—a*)(aP’ +a*P™)
—(a+a*(P—P¥)]/d (43 a)
kg =—(a—a*)[(a—a*)(P'+P™)
—2(P—P*)]/d (43b)

p+p*=[(a—a*){(a+a*)|P'P—(PP*+P*P)}

+2(aP*— a*P)(P—P*%))/d (43 ¢)
pr*=[(a—a*)}|P'*—(P—P*/d (43d)
where
d=(a—a*)aa*{|P|*—2(PP™*— P*P")}
+(a@*P*— a**P)(P— P*). (43 e)

After the successive application of the described
pole-localization to all loss poles, a given transfer
matrix is factored into Eq.(28). The global synthesis
with respect to loss poles of a lossless digital two-port is
thus completed, and results in a canonical factorization.
Hence,

[pl<1 (44)

is guaranteed by Theorem. 3. Thus, every entry of the
scattering matrix associated with the factorization is
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analytic in [z|=1. Then, from the maximum modulus
theorem® and the paraunitary property,

IA1=1 (45 a)
|£|=<1 (45Db)

are deduced by evaluating Sz(z) and Su(z) at infinity,
respectively.

5. Local Synthesis with Localization of Poles at Zero
and Infinity

The primary concern here is addressed to the local
realization of the first/second-degree sections. The pro-
cedure to be described below can be still applied to any
factorization of scattering matrix descriptions.

In general, a circuit without feedback loops has a
simple structure. The simplest canonical sections are a
constant paraunitary section and a first-degree allpass
section that consists of a single pure delay and an inter-
connection wire. By Theorem 2, any circuit obtained
from arbitrary combinations with three cascade inter-
connections is also a canonical digital two-port. One of
the key concepts says that a new feedback structure can
be created from the cascade interconnections. Thus we
are led to a possibility stated as any lossless digital
two-port can be realized with constant paraunitary
sections and pure delays.

5.1 Primitive Sections

A constant paraunitary digital two-port is written
by

k
s={ “f ] (46)
f - uk :

where the constant » may be assigned as one. f and &
are related by
A+ EA=1. 47

Its flow-graph representation is trivial, and is thus omit-
ted.

There are trivial four kinds of the first-degree pure
delay sections as follows.

1 rz 0
S=-= ] (48 a)
20 —1
gL o
S=— (48 b)
20 —=z
[0 1
S== (48 ¢)
“lz 0
g=1[° z] (48 @)
zl1 ¢
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where a unimodular constant is stripped. The constant
can be added by special forms of the constant par-
aunitary section, if desired. Their circuit realizations
are also trivial. A single pole at z=0 is just realized by
a delay element.

The pure delay sections and the constant par-
aunitary section are primitive, because they cannot be
factored any more by using the key concepts.

If Eq.(46) and anyone in Eqgs.(48) are multiplied, a
first-degree paraunitary section with the pole still left at
'z=0 is obtained. By contrast, a new pole at z+0 or a
feedback structure is created, if either the hybrid
matrices for Eq.(46) and one of Egs.(48 a), (48 b) or the
transfer matrices for Eq.(46) and one of Eqs.(48 ¢), (48
d) are multiplied.

5.2 First-Degree Paraunitary Section

To make an inspection of actual signal propagation,
the first-degree paraunitary transfer matrix for localiz-
ing a real loss pole is rewritten in the corresponding
scattering matrix as follows.

_ zlp [f(zkj ) uaf(1— az)]

Owing to the computability requirement in the global
T -cascade structure, Si; entry has a special zero located
at z=0. To take advantage of this fact, Eq.(49) is
converted to the following hybrid matrix

:L[ Z—p —uaf(l—az)]
Y oRlf(z—a) —udl—p2)

thus a special pole comes out at the origin. Of course,
such a pole is realized by a single delay element.

At first, as H-cascade interconnection creates a new
feedback structure, it is unnecessary for two sections
which are cascaded, to incorporate a feedback loop in
advance. Secondly, referring Fig.7, in order for the
H-cascade interconnection to be computable, one
observes that a new feedback loop, indicated by ABCD,
to be built by the interconnection must be interrupted by
a delay element. This statement is generally true for
H-cascade interconnections, hence its explicit represen-

(49)
- uak

(50)

X1—ﬁ

Fig. 7 Computability in H-cascade interconnection.

tation is given in terms of canonical polynomials as
follows :

F(0)=0, for H, (51a)

or

Fu(2)2"|=0=0, for H:. (51Db)

Thirdly, the H-cascaded structure has a delay element
in the reflection, indicated by FAE, at the right-hand
port. Finally, since the two-port of interest is first-
degree, if its realization is canonical, the number of
delay elements must be one. Consequently, the delay
must be exposed on the path depicted by A. It follows
that the first-degree hybrid matrix to be factored is of

the form

1 4 —F1:|

H,= [ (52)
UKz, 1

where two parameters are related by the paraunitari-
ness, and the degree reduction condition in the hybrid
matrix representation imposes

F=f. (53)

H, is thus factored as a product of the canonical forms
of two hybrid matrices, i. e.

H,=H.H, (54)
where
L1 b |
Hz:K[Fz Ua ] 55
and is parameterized by
K:=k/K. (56)

The above local synthesis for the first-degree section is
summarized as

Ta’\’Ha, Ha=H1H2 (57)

where the tilde~ denotes the equivalent transformation
between two representations of the same two-port. By
inspection of the second column of Eq.(55), it is found
that there are no negative signs which are expected in
the notation of hybrid matrices. Hence, to save an inver-
ter to be involved in the implementation, it is effective to
set u,=—1 for the first degree section. The circuit

LT

<&
1 XZ

Y

Fig. 8 Realization of the first-degree section.
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realization is shown in Fig.8.
5.3 Second-Degree Paraunitary Section

The second-degree transfer matrix for the global
T-cascade structure is irreducible in real coefficient
polynomials. One of the canonical polynomial, F(z),
which is in the Ta entry, is still reducible. In particular
it contains a factor z due to computability. If the matrix
is converted to the equivalent hybrid matrix

1

H.= k2(z—q)
[ 2—(p+p*)z+pp* —m(#)} (58)
f—(a+a¥z+aa®} —u.t)y

a special pole occurs at the origin. In the same manner
to the first-degree section, H, is decomposed into the
first-degree section H: which has the pole at 2=0 and
the other first-degree section H, :

Ha=H1£I1, (59)

where H; is identical to Eq.(52) accompanied with Eq.
(53), and H; is of the form

H.— 1
AT - kK

[ 2= {p+ 1" —(a+a)r) K u,,(#)]
—fl(p+p*—a—a¥)z—(pp*—aa®)}[KE  ua(#)
(60)

In H,, there are no factors of naked z which we wish
to get, but we can create such a factor by removing a
constant paraunitary section H, from H to bring about
the first-degree remainder H; ;

I_Il=H2L12. (61)

Referring Fig.9 which illustrates the process up to the
present, it is readily found that in order for the H-
cascade of H, and H; to be computable, path D among
the loop indicated by ABCD has to be interrupted by a

X, —> ORI ¢
H 2
— ! -1
z
H2
B
[ |
C A
)
D
Y1<-— H, ¢&— X,

Fig. 9 Illustration of the pole-localization process for the
second-degree section.
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delay element. Other possibilites are excluded as fol-
lows. If path A has a delay, the totally composite
second-degree section has the reflection with a couple of
unit delays at the right-hand port, but this is in contra-
diction with the form of Eq.(58). As H, is a constant
section, path B is devoid of delay elements. If path C
has a delay elment, the composite section gives a unit
delay in the left-hand port reflection. This again causes
a contradiction to Eq(58). Hence, the constant par-
aunitary section H; is determined in such a way that H.
meets Eq.(51 b). The result is as follows.

1 1 _F2
HZZEI:F} 1 ] (62)
where
F=f(a+a*—p—p*) /KL, (63)
o KK
=TG-k
z— qk*|KiK# —ua(#)
. [[faa*Kf—{D+p*— (a+a"AFR]KIKE —ua(#) ]
(64)

The numerator of (2, 1) entry in H; is a constant,
and a zero at infinity has been certainly created in that
entry. To fix the factor as a local pole, H: is converted
to the transfer matrix counterpart T and then the
infinite pole is localized by a first-degree section Tj,
thereby producing the final constant section 7i. The
result is given as

T=-1 [ 8 K3] (65)
R Kz 1
1 uKu
1
n_ E [K4 Ua ] (66)
where
Ka=FkK\ K, (67)
K= —qk/Kle. (68)
X 1 ] —> Y 2
H

Fig. 10 Realization of the second-degree section.
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The local synthesis for the second-degree section is
summarized as

T.~H,, Ha:HILII, L11=H2LI2, Ez’\'lz, IzzTan-
(69)

Figure 10 shows the realization circuit under the choice
of #u.=1 for saving an inverter.

In this way, a general canonical synthesis of lossless
digital two-ports is completed. This yields an alternative
and systematic design of power-wave digital filters
equipped with high modularity.

A constant paraunitary matrix, Eq.(46), can be
interpreted as unitary mapping from an input vector
[ X3, X2]t onto an output vector [ Ys, Yi]%. If we define a
plane rotation matrix by

kR f
RzP[ } (70)
f —k
then R is expressed by
cos 8 —sind
- } )
sind cosf
where
g =tan"(&/f). (72)

Plane rotation is well performed by CORDICs (Coordi-
nate Rotation Digital Computers) ®»“9-#)_ The synthes-
ized circuits are thus suitable for CORDIC-based imple-
mentations. :
Here, it is appropriate to make a comment on

scattering representation to create a pole at zero or
infinity. Such a removal keeps the passivity because of
Theorem 3. Therefore, the proposed synthesis procedure
allows us to find many equivalent realizations which
may be the mixture of S, 7', and H-cascade structures.

6. An Example

A 6th-degree lowpass filter is designed by the
method in Ref.(22) to give a realization example for the
proposed synthesis. The specifications for this filter are
given for a branching filter application dealt in Ref.( 3)
where a 7th-degree realization is given. The passband
and stopband are split into two parts, respectively.
Every edge frequency is an integer-multiple of 1/12. The
transition band is from 2/12 to 4/12. Two ripples in the
lower and upper passbands are 17 uB and 0.17 4B,
respectively (1 xuB=107°dB). The minimum attenuation

Table 2 Coefficients of the transfer function.

DEGREE NUMERATOR DENOMINATOR
6 6.15449E-02 1.00000E+00
5 2.47573E-01 -6.84019E-03
4 5.10444E-01 1.03642E+00
3 6.35419E-01 -5.22801E-03
2 5.10444E-01 2.43270E-01
1 2.47573E-01 -7.20307E-04
0 6.15449E-02 7.67985E-03

Table 3 Rotation angles for CORDIC-implementation.

variations permitted in the synthesis. We have described
. . GLoBAL LocaL SecTion INDEX
basic three sorts of global structures in Sect.4, and the SECTION
topics in this paper is mainly tailored to give a clear-cut INDEX 1 ? 3 4
presentation. Yet, the local synthesis procedure pre-
sented can offer many other variations. Any synthesis 1 0.942653  2.101194 -0.246552 -1.052533
can be performed by the local synthesis without the 2 1.283795  1.968184  0.779937 -0.824199
global synthesis. As demonstrated in Sect.5.3, a con- 3 1.191050  2.192306  1.064982 -0.205005
stant paraunitary section can be removed from any 4 0.061885
X — ¥
Y X,=0
U U %
1lst section 2nd section 3rd section final
section

Fig. 11 Sixth-degree lowpass filter that serves for a branching
filter with the complementary output.
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0 Lowpass Highpass
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= =20 J
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B =40 1
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E
<r

-60 .‘\ f

-80 . . . /\

0 0.1 0.2 0.3 0.4 0.5

Normalized Frequency in Hz

Fig. 12 Amplitude responses of the transfer function and the
complementary function realized with 20-bit fixed-
point binary.

in the lower stopband is 64 dB, and that in the other is 44
dB.

The transfer function is summarized in Table 2.
The realized circuit is shown in Fig. 11, where a small
box indicated by T represents a unit delay element. The
realization parameters are given in Table 3 in terms of
rotation angles, in radian, to be used for a CORDIC-
based implementation. In the table, the global section
index specifies a section in the global factorization of
the transfer matrix, and the local section index denotes
a section which appears in the same order as described
in Sect.5.3.

A CORDIC performs plane rotations with succes-
sive bit-by-bit operations, and is strictly a nonlinear
system. No implementations with CORDICs have a
transfer function in the strict sense of linear systems. Of
course, finite wordlength effects may be simulated by
rounding rotation angles to get a virtual transfer func-
tion representation. This is, however, different from the
reality.

Figure 12 has been obtained by the 1024-point dis-
crete Fourier transform of the actual impulse response
samples generated by bit-by-bit calculation with 20-bit
fixed-point binary. It is found that a branching filter
response is completed. This is a direct consequence of
the lossless two-port synthesis.

7. Conclusion

In this paper, we have described a systematic way
to power-wave digital filters through the synthesis of
lossless digital two-ports. The synthesis is based on a set
of physical concepts : pole-localization, cascade inter-
connection of digital two-ports, and computability. The
canonical realization obtained ensures both external and
internal passivities and produces high modularity,
because it consists of constant paraunitary digital two-
ports and pure delay elements. In process of the synthe-
sis, it has been demonstrated that the described
approach is useful and general. While the application
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technique to find new circuits is outlined, its actual
demonstration and applications will be given in other
opportunities.

Although the aspect on pipeline processing has been
dropped in this paper, note that it is possible both to
introduce redundancy required for pipelining and to find
pipelinable realizations"®®.
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Appendix

The derivation of Eq. (25) is outlined below. In
Sect. 4.2, the cancellation of common polynomial fac-
tors between numerator and denominator is discussed
with the aid of canonical forms of lossless digital two-
ports. Through the discussion, it is apparent that the
degree reduction is ensured by Eqs. (25), (26). At least,
either of them is necessary.

If Eq. (25) is satisfied, Eq. (26) is also fulfilled by
Egs. (25), (10) with respect to G¢, F; and K., as follows ;
since a is the zero of Fy, and since F¢ has the factor F,,

Fe(a)=0. (A1)
On the other hand, Eq. (10) gives a relationship
Gc*(a)Gc(a)=Fc*(a)Fc(a>+Kc*(a)Kc(a). (A’Z)

The left-hand side vanishes because of Eq. (25). Hence
we obtain

Kex(a)K(a)=0. (A-3)

According to the same discussion on the cancellation
between numerator and denominator, F.F.xz" is a com-
mon factor between F. and both K. and K.«z"**. This
leads to Eq. (26).
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