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Abstract—In a co- or cross-polarized channel, the polarization
states of the transmitting and receiving antennas are the same or
orthogonal, and the corresponding target nulls (i.e., the CO-POL
Nulls or X-POL Nulls) are defined as the polarization states of
the transmitting antenna such that the received power equals zero.
However, no systematic studies have been carried out to solve the
problem of the corresponding target nulls if the polarization states
of the transmitting and receiving antennas are independent. In this
paper, the target null theory is extended to the case of two inde-
pendent polarization states. For two arbitrary independent sym-
metric scattering matrices, it is proved that there exists only one
pair of polarization states such that both of the received powers
equal zero. This polarization states’ pair is called the co-null of the
two targets, which can easily be obtained by solving an eigenvalue
problem. Based on this concept and algebraic theory, the concept of
the co-null space is introduced for the symmetric scattering matrix
case, and many important results are presented, e.g., the relations
between the co-null and the CO-POL/X-POL Nulls, the properties
of the co-null space, and the relation between the co-null and target
decomposition. Finally, the co-null for the asymmetric scattering
matrix case is studied. The concepts of the mono-co-null space and
the bi-co-null space are introduced, and the relations between both
spaces are presented.

Index Terms—Polarization, radar polarimetry, scattering ma-
trix, target null.

I. INTRODUCTION

I N RADAR polarimetry, an important concept is the charac-
teristic polarization states first considered by Kennaugh [1]

in the early 1950s. Later, Huynen [2] redeveloped Kennaugh’s
work, and introduced his famous “polarization fork” concept il-
lustrating that the characteristic polarization states in the co-po-
larized channel form a fork on the Poincaré sphere. Since the
1980s, the optimization procedures for various cases were pre-
sented for obtaining characteristic polarization states, notably
by Boerner and his collaborators [3]–[9], Mott [10], Van Zyl
[11], [12], and Lüneburg [29], [30]. In a co-polarized or cross-
polarized channel, the polarization states of the transmitting and
receiving antennas are the same or orthogonal, and the charac-
teristic polarization states are defined as the polarization states
of the transmitting antenna such that the received power equals
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extreme values. For the symmetric coherent scattering matrix
case, it has been known that there exist in total five pairs of
characteristic polarization states in general. Among these char-
acteristic polarization states, the CO-POL Nulls and X-POL
Nulls are very important and useful. For example, Yamaguchi
et al.[13]–[16] utilized the CO-POL Nulls and X-POL Nulls of
clutter for polarimetric detection of objects buried in snowpack
and sandy ground.

For the cases of the co-polarized and cross-polarized chan-
nels, the target nulls (i.e., the CO-POL Nulls and X-POL Nulls)
have been studied in detail [2]–[11], [17]–[19]. However, no
systematic studies have been carried out to solve the problem
of the corresponding target nulls if the polarization states of the
transmitting and receiving antennas are independent. We know
nothing except that there exist infinite pairs of transmitting and
receiving polarization states such that the received power equals
zero [20], [21]. Therefore, it is necessary to systematically study
the target null problem for the case of two independent polariza-
tion states. On the other hand, group theory has been employed
by Cloude [24]–[26] to simplify the algebraic notation and gain
some geometrical insight into the complexities of polarimetry.
These works [24]–[26] have attracted many polarimetrists’ at-
tention. Recently, the authors introduced the concepts of the
co-null and the co-null Abelian group for extension of the target
nulls [22]. Following this work, this paper systematically studies
the target nulls for the case of two independent antenna polar-
ization states.

In Section II, we succinctly state some basic results on the
CO-POL Nulls and X-POL Nulls which are necessary for the
following sections. Then we present the concept of the co-null
of two targets for the symmetric scattering matrix case in Sec-
tion III. It is proved that there exists only one pair of polar-
ization states such that the received powers of two indepen-
dent targets equal zero (here, “two independent targets” means
that the scattering matrices of the two targets are linearly in-
dependent). This polarization states’ pair is called the co-null
of the two targets, which can easily be obtained by solving an
eigenvalue problem. From the concept of a co-null, another con-
cept, the co-null space, is introduced, and many interesting re-
sults are presented, e.g., the relations between a co-null and the
CO-POL/X-POL Nulls, the properties of a co-null space, the
relation between a co-null of two targets, and target decomposi-
tion. Using the concepts of the co-null and the co-null space, we
obtain two important classes of targets: the classes of the sym-
metric targets and H-targets.

In Section IV, we introduce the concept of the co-nulls of two
targets in the general scattering matrix case (including the asym-
metric scattering matrix and symmetric scattering matrix). For
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two asymmetric scattering matrices, this paper points out that
there exist two co-nulls, which can also be obtained by solving
an eigenvalue problem. Then we define the mono-co-null space
and the bi-co-null space and present some properties of the two
spaces, e.g., the relations between a mono-co-null space and a
bi-co-null space, and the relation between a co-null and target
decomposition for the asymmetric scattering matrix case.

In this paper, the proofs of some evident results are omitted.

II. CO-POL NULLS AND X-POL NULLS

In the polarization basis H–V (horizontal and vertical
polarizations), the Sinclair scattering matrix of a target in the
backscattering case is expressed as

(1)

where denotes the scattering element of
transmitting and receiving polarizations. For the reciprocal
backscattering case, , i.e., the scattering matrix is
symmetric. For the bistatic radar case, however, two coordinate
systems are necessary [10], and the corresponding scattering
matrix of a target may be asymmetric.

Let and denote the polarization states of the transmitting
and receiving antennas, respectively. Then the received power
is expressed as

(2)

where denotes the dot product of vectors, and the superscript
denotes the transpose. Without loss of generality, this paper

assumes that 1.
In the co-polarized channel case, , and the CO-POL

Nulls are defined as the transmitting polarization states such that
0. Usually, there exist two CO-POL Nulls.

For the symmetric scattering matrix case, the CO-POL Nulls are
determined by [2], [19]

(3)

In the cross-polarized channel case, , where
the superscript denotes the complex conjugate. The X-POL
Nulls are defined as the transmitting polarization states such that

0. For the symmetric scattering
matrix case, there exist two X-POL Nulls in general which are
determined by

(4)

Let and denote the two X-POL Nulls, then it is easy to
prove that

(5)

III. CO-NULL OF TARGETS FOR THESYMMETRIC SCATTERING

MATRIX CASE

In this section, we only consider the symmetric scattering ma-
trix case. If it is not specially mentioned, the H–V polarization
basis is implied in this section. The target nulls for the asym-
metric scattering matrix case will be studied in the next section.
Note that although some results in this section have been pub-
lished in part [22], it seems still necessary to restate them here
for systematically developing the target null theory because we
add some proofs and interpretations of these results which are
important for understanding the properties of the co-null.

A. Co-Null

Definition [22]: Let and denote the scattering ma-
trices of target 1 and target 2. If and satisfy the equations

0 and 0, then we call the co-null
(pair) of the targets 1 and 2, or the co-null of and . Fur-
thermore, if and also satisfy the equation , we
call the co-null of , , and .

From this definition, we have the following results:

R1) and are linearly independent. is the
co-null of and if and only if and are
two eigenvectors of the eigenvalue equation

.
Proof: Let be the co-null of and . Then we

have from and 0 that

(6.1a)

(6.1b)

which leads to

(6.2a)

Similarly, by use of the symmetry of two scattering matrices we
have

(6.2b)

From (6.2a) and (6.2b), we therefore derive the conclusion
R1).

R1 provides us not only a method for obtaining the co-null of
two targets but also a new physical meaning of the eigenvalue
equation . In particular, letting and

, one observes that the eigenvectors of
form the co-null of the two targets: the target corresponding to
the scattering matrix and the sphere target (corresponding
to the unit scattering matrix). This is a new interpretation of the
eigenvalue equation .

For the symmetric scattering matrix case, the order of the
transmitting and receiving polarization states (and ) in the
equation 0 can be ignored because the reciprocity
theorem holds. From this, we conclude according to R1 that
two arbitrary independent symmetric scattering matrices have
and only have one co-null pair if the magnitude of the
polarization state is not considered.
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TABLE I

Using the above result, one easily obtains the co-null of two
targets. Table I shows the co-nulls for some typical targets. From
the equation

(7)

it is straightforward to obtain the following result:

R2) If is the co-null of and , then is
the co-null of , and too, where

and are two arbitrary complex numbers.
According to the definition of the co-null, one easily observes

that

R3) The co-null of two different rank-1 scattering matrices

and

is

This result points out that there exists a simple relation be-
tween two rank-1 scattering matrices and their co-null ,
when and are linearly independent. Furthermore, we have
that

R4) is the co-null of and . If and are
linearly independent, there exist two rank-1 scattering
matrices which also have the co-null .

Proof: Express as the form

Using R3, we can easily obtain two desired rank-1 scattering
matrices that have the co-null .

B. Co-Null Space

Next, we will introduce the definition of the co-null space and
present its properties.

R5) If is regarded as a special scattering ma-
trix, then all scattering matrices having the null
form a two-dimensional (2-D) linear space, called the
co-null space. In this case, the null is also called
the co-null of the space.

Proof: Denote the set of the scattering matrices that have
the null as . From R2, one can conclude thatis a linear
space. On the other hand, every scattering matrix in the set
satisfies 0, i.e., a scattering matrix in the sethas
only two independent complex elements (variables). Therefore,

is a 2-D linear space.
R5 demonstrates that all targets in a co-null space share the

same null . From R5 and the definition of the linear space
[27], we know that there are infinite targets in a co-null space.
If we select the co-null of the space as the polarization states of
the transmitting and receiving antennas, then an echo from any
target in the co-null space can be suppressed. This conclusion is
potentially useful for target discrimination in clutter, or polari-
metric contrast enhancement.
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R6) For an arbitrary co-null space, two linearly indepen-
dent nonsingular scattering matrices exist such that
every scattering matrix in the space can be expressed
as the linear combination of them.

Proof: Let and denote two linearly independent
matrices in a co-null space.

1) If and are nonsingular, R6 holds evidently.
2) If and are singular, without loss of generality,

we assume that

and

Because and are linearly independent, we know
that and . Consider

which means that is nonsingular. Similarly,
can also be proved to be nonsingular. Note

that and are linearly independent
because and are two linearly independent ma-
trices. Therefore, R6 is true.

3) If is nonsingular and is singular, then it is easy
to prove that there exists at least one numbersuch that

is nonsingular. Since and are lin-
early independent, and are also linearly
independent. It follows that R6 is true.

Summing up the above cases, one deduces that R6 holds.

R7) Let be the co-null of a co-null space. If and
are linearly independent, then two rank-1 scattering

matrices exist such that every scattering matrix in the
space can be expressed as the linear combination of
them.

Proof: Without loss of generality, we assume that

and

Then it is evident that

and

are two independent matrices that have the co-null . From
R2 and R5

is the co-null space which has the co-null .
R7 points out the simple relation between a co-null space

and its co-null if and are independent. By using the
proof of R7, we can straightforwardly write the general form of
a co-null space from its co-null. Therefore, a rank-1 scattering
matrix is very important in a co-null space.

R8) If a space has the co-null , then there exist a
rank-1 scattering matrix and a nonsingular scattering
matrix such that every scattering matrix in the space
can be expressed as the linear combination of them.

Proof: Denote the co-null space as. According to R6,
we know that there exist infinite nonsingular scattering matrices
in . Let denote one of them.

On the other hand, one can easily obtain a rank-1 scattering
matrix in from its co-null [see the proof of R7)]. Obvi-
ously, and are linearly independent. Note that the di-
mension of is 2. So every scattering matrix in the space
can be expressed as the linear combination ofand .

R9) Let and be two co-null spaces which have the
co-nulls and , respectively. If

and

then for an arbitrary scattering matrix , there
exists a scattering matrix in such that

In this case, the space is called the rotation space
of the space with the rotation angle denoted as

.
R10) If a sphere belongs to a co-null space, then

.
Proof: Let be a scattering matrix in the

space . Since the sphere target belongs to the space, i.e.,
, we conclude from the definition of the

linear space that

(8)

The above result means that, for an arbitrary scattering matrix
, its rotation scattering matrix with rota-
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tion angle also belongs to the space. Therefore,
.
Conversely, if , one can easily prove that

by using the above method.
From the assumption of R10, we know that the co-null

of the space satisfies

or

(9)

which means that the polarization states of the receiving and
transmitting antennas have the same ellipticity angle, and have
two orientation angles with 2 difference.

Example 1: From Table I, it is known that is the
co-null of a wire, sphere (or plate), and diplane. Furthermore,

is the co-null of the space . In this space,
all scattering matrices can be expressed as the combination of
two wires: and . According to Huynen’s phe-
nomenological theory [2], we know that
forms the class of the symmetric targets. Note that (sphere
or plate) belongs to every rotation space . From R10,
we show that . There-
fore, the class of the symmetric targets can also be expressed as

.
Another important space is which possesses the co-null

It is easy to prove that diplanes (with different orientation an-
gles) and helixes and belong to this space.
The general form of this space is . An inter-
esting property of this is that , where is an ar-
bitrary angle. According to Huynen’s phenomenological theory
[2], one knows that except for diplanes, all others in this space
form the class of H-targets. From the definition of the co-null, it
is easy to know that the echo from an H-target can be suppressed
by using and as the polarization states
of the transmitting and receiving antennas. This result is iden-
tical with that in [10].

C. Relations Between the CO/X-POL Nulls and Co-Null of
Targets

Now let us consider the relations between the CO/X-POL
Nulls and the co-null of targets. Note that the CO/X-POL Nulls
are defined as the polarization states of the transmitting antenna
for which the radar receives zero power, whereas the co-null of
two targets is defined as the special pair of the polarization states
of the transmitting and receiving antennas. From these defini-
tions, we conclude the following results.

R11) Let the CO-POL Nulls of be and . If and
are linearly independent, then two linearly independent
rank-1 matrices and exist such that

1) The co-null of and is .
2) The co-null of and is .
3) The co-null of and is .

From the relation between the co-null and the rank-1 matrices
[see R3)], one can easily obtain two linearly independent rank-1
matrices having the above properties.

R12) If a space has the co-null , then a rank-1 scat-
tering matrix exists such that every singular scat-
tering matrix in this space can be expressed as ,
where is a complex constant.

Proof: According to R3, one easily obtains a rank-1 scat-
tering matrix from the null . Now if there exists a
rank-1 scattering matrix in the space that cannot be expressed as

, it leads to two linearly independent rank-1 matrices in the
co-null space. From R3 and R7, one deduces that the co-null of
the space is , where and are linearly independent. This
contradicts the condition of R11, which means that every sin-
gular scattering matrix in the space can be expressed as.

From R3 and R8, we can obtain the following result:

R13) Let and denote two co-null spaces having
the co-nulls and , respectively. If and

are linearly independent, then there exists a rank-1
scattering matrix in the space and a rank-1
scattering matrix in the space such that

1) and are linearly independent.
2) Every scattering matrix in the space can be

expressed as the linear combination of and
, where denotes the co-null space which

has the co-null .
Conversely, if the spaces , , and have the

co-nulls , , and , respectively, and if and
are linearly independent, then there exist two linearly indepen-
dent rank-1 scattering matrices and in the space
such that every singular scattering matrix in the space (or

) can be expressed as (or ), where is a complex
constant.

Using R3, R12, and R13, one easily deduces the following
result.

R14) and denote two spaces that have the co-nulls
and , respectively. If and are linearly

independent, then the intersection of the space
and the space is a subspace or one-dimensional
(1-D) space. Except for , the CO-POL
Nulls of an arbitrary scattering matrix in this subspace
are and .

Next, let us consider the relations between the co-null and
the X-POL Nulls. Using the definitions of the co-null and the
CO-POL Nulls, we have the following results.

R15) Let the X-POL Nulls of be and , where
. Then two linearly independent rank-1 scat-

tering matrices and exist such that

1) The co-null of , and is .
2) .
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R16) is a co-null space that has a co-null . If
, then .

Proof: Let , then

It follows that .

R17) If , then

1) The co-null of the space is

2) An arbitrary scattering matrix in can
be expressed as

Proof:

1) Let , then we have

that is, , we therefore deduce the
result in 1.

2) According to the relation between a co-null space and its
co-null [see the proof of R7)], one easily concludes the
result in 2.

From the above result, one observes that the rank-1 scattering
matrix plays an important role in the co-null space .

In the polarization basis , all scattering matrices of
the co-null space are diagonal. Therefore, the results
R15–R17 are very interesting and important.

Example 2: Using the results of R16 and R17, one easily
obtains the following results.

1) If , then , and therefore,
.

2) If , then , and therefore,
. From R17, it is known that

the co-null of is

The pair of the left- and right-circular polarization states.
Using this pair as the polarization basis, we know that

. This result is identical with
that in [10].

D. Target Decomposition and Co-Null of Targets

R18) , , and are linearly independent. If is
decomposed into

then

and

where denotes the co-null of the scattering
matrices and , .

Proof: From , we have

Note that is the co-null of the scattering matrices
and . It follows that 0 and 0.
Therefore, we obtain that .
Similarly, we can derive that

and

Note that the co-nulls in Table I can be employed directly if
the scattering matrices in Table I are selected for target decom-
position.

R18 provides a method to find the coefficient numbers for the
general target decomposition. The advantage of this method is
that R18 affords us a concise form to express the coefficients.
From this form, one easily observes the relation between target
decomposition and the co-nulls.
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IV. CO-NULLS OF TARGETS FOR THEGENERAL SCATTERING

MATRIX CASE (INCLUDING SYMMETRIC AND ASYMMETRIC

SCATTERING MATRICES)

In this section, we extend the above results to the general scat-
tering matrix (asymmetric/symmetric scattering matrix) case.
Note that for the asymmetric scattering matrix case, the reci-
procity theorem does not hold, so if and are
independent.

R19) and are linearly independent. is a
co-null (pair) of and if and only if there
exists a constant such that and

.
Referring to the proof of R1, one can easily prove the above

conclusion. From this result, we conclude that there exist two
co-nulls for two independent asymmetric scattering matrices.

R20) If and are the co-nulls of and
, then and are the co-nulls of ,
and , too, where and are two

arbitrary complex numbers.
R21) The co-nulls of two different rank-1 scattering matrices

and are

and

This conclusion shows that there also exists a simple rela-
tion between the co-nulls and two different rank-1 scattering
matrices.

R22) If we regard as a special scattering ma-
trix, then all scattering matrices (including symmetric
and asymmetric scattering matrices) that possess the
null form a linear space, called the mono-co-null
space. In this case, the null is also called the
co-null of the (mono-co-null) space.

R23) If we regard as a special scattering
matrix, then all scattering matrices (including sym-
metric and asymmetric scattering matrices) that pos-
sess two different nulls and form a
linear space, called the bi-co-null space. In this case,
the two nulls and are also called the
co-nulls of the (bi-co-null) space.

Note: In R23, “two different nulls and ”
means that there exists no complex numbersuch that

.

R24) The intersection of two different mono-co-null spaces
is a bi-co-null space, and the co-nulls of the bi-co-null
space consists of the co-nulls of the two mono-co-null
spaces.

This conclusion demonstrates the relation between the
mono-co-null space and the bi-co-null space.

R25) and are linearly independent. If and are
the co-nulls of a bi-co-null space, then all scattering
matrices in are symmetric.

Proof: Let be an arbitrary scattering ma-
trix in the bi-co-null space . Setting and

, then we know from the given conditions that

or

Since and are linearly independent, 0. There-
fore .

R26) For an arbitrary mono-co-null space, there exist three
linearly independent nonsingular scattering matrices
such that every scattering matrix in the space can be
expressed as the linear combination of them.

From this conclusion, one observes that a
mono-co-null space is 3-D.

R26′) For an arbitrary mono-co-null space, there exist three
linearly independent rank-1 scattering matrices such
that every scattering matrix in the space can be ex-
pressed as the linear combination of them.

R27) For an arbitrary bi-co-null space, there exist two lin-
early independent nonsingular scattering matrices such
that every scattering matrix in the space can be ex-
pressed as the linear combination of them.

From this conclusion, one can find that a bi-co-null
space is 2-D.

R27′) For an arbitrary bi-co-null space, there exist two lin-
early independent rank-1 scattering matrices such that
every scattering matrix in the space can be expressed
as the linear combination of them.

R28) For an arbitrary mono-co-null space, there exists a
2-D space consisting of the symmetric scattering ma-
trices as a subspace of.

R29) For an arbitrary bi-co-null space, there exists one
symmetric scattering matrix in such that all the
symmetric scattering matrices of can be expressed
as .

R30) If and satisfy the following condi-
tions.

1) and are linearly indepen-
dent.

2) and have the co-null ;
and have the co-null ;
and have the co-null ; and
and have the co-null . An

arbitrary scattering matrix can be decomposed
into
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where

The result R30 demonstrates the relation between target de-
composition and co-nulls of targets for the general scattering
matrix case.

V. SUMMARY

The classical target null theory was founded for the cases
of the co-polarized and cross-polarized channels. In these two
channels, the polarization state of the receiving antenna depends
on that of the transmitting antenna. For fully utilizing the ad-
vantage of polarization, we need to extend the classical target
null theory to the case of two independent antenna polarization
states.

This paper has employed the concepts of the co-null and the
co-null space for developing the target null theory. These con-
cepts are very important and useful. For example, let us assume
that there exist two different undesired targets (clutter) and as-
sume that their co-null is . Then it is easy to suppress all
echoes from the two undesired targets by utilizingand as the
polarization states of the transmitting and receiving antennas,
respectively. Theoretically, this method can be applied to the
suppression of all echoes from the targets in the space that pos-
sesses the co-null . However, if and are neither the
same nor orthogonal, it is impossible to suppress all echoes from
the two undesired targets for the cases of the co- and cross-po-
larized channels.

In this paper, we have proposed a simple method to obtain
the co-null/nulls of two targets and presented a new physical in-
terpretation of an eigenvalue equation for the symmetric/asym-
metric scattering matrix case. From the proposed method, we
have proved that there exists only one co-null for two symmetric
scattering matrices and that there exist two co-nulls for two
asymmetric scattering matrices. Then using the concepts of the
co-null and the co-null space, we have obtained many interesting
and important results, e.g., the relations between the co-null and
the CO-POL/X-POL Nulls, the structure of the co-null space,
the relation between two different co-null spaces, and the re-
lation between target decomposition and co-nulls. In addition,
we have obtained two important classes of targets: the classes
of the symmetric targets and H-targets. From the presented re-
sults, one observes that the rank-1 targets play an important role
in the co-null space. Finally, the concepts of the co-null and
the co-null space were extended to the asymmetric scattering
matrix case. We have defined the mono-co-null space and the
bi-co-null space and have presented some properties of the two
spaces, e.g., the relations between the mono-co-null space and
the bi-co-null space.
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