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Abstract—n a co- or cross-polarized channel, the polarization extreme values. For the symmetric coherent scattering matrix
states of the transmitting and receiving antennas are the same or case, it has been known that there exist in total five pairs of
orthogonal, and the corresponding target nulls (i.e., the CO-POL - oy5 4 cteristic polarization states in general. Among these char-

Nulls or X-POL Nulls) are defined as the polarization states of L .
the transmitting antenna such that the received power equals zero. acteristic polarization states, the CO-POL Nulls and X-POL

However, no systematic studies have been carried out to solve theNUlls are very important and useful. For example, Yamaguchi
problem of the corresponding target nulls if the polarization states et al.[13]—-[16] utilized the CO-POL Nulls and X-POL Nulls of

of the transmitting and receiving antennas are independent. Inthis - clutter for polarimetric detection of objects buried in snowpack
paper, the target null theory is extended to the case of two inde- and sandy ground.

pendent polarization states. For two arbitrary independent sym-

metric scattering matrices, it is proved that there exists only one  For the cases of the co-polarized and cross-polarized chan-
pair of polarization states such that both of the received powers nels, the target nulls (i.e., the CO-POL Nulls and X-POL Nulls)
equal zero. This polarization states’ pair is called the co-null ofthe haye peen studied in detail [2]-[11], [17]-[19]. However, no

two targets, which can easily be obtained by solving an eigenvalue . . .
problem. Based on this concept and algebraic theory, the concept of systematic studies have been carried out to solve the problem

the co-null space is introduced for the symmetric scattering matrix of the corresponding target nulls if the polarization states of the
case, and many important results are presented, e.g., the relations transmitting and receiving antennas are independent. We know
between the co-null and the CO-POL/X-POL Nulls, the properties nothing except that there exist infinite pairs of transmitting and
of the co-null space, and the relation between the co-null and target receijving polarization states such that the received power equals

decomposition. Finally, the co-null for the asymmetric scattering o .
matrix case is studied. The concepts of the mono-co-null space andZ€"0 [20], [21]. Therefore, itis necessary to systematically study

the bi-co-null space are introduced, and the relations between both the target null problem for the case of two independent polariza-

spaces are presented. tion states. On the other hand, group theory has been employed
Index Terms—Polarization, radar polarimetry, scattering ma-  PY Cloude [24]-[26] to simplify the algebraic notation and gain
trix, target null. some geometrical insight into the complexities of polarimetry.

These works [24]-[26] have attracted many polarimetrists’ at-
tention. Recently, the authors introduced the concepts of the
co-null and the co-null Abelian group for extension of the target
N RADAR polarimetry, an important concept is the charaaiulls [22]. Following this work, this paper systematically studies
teristic polarization states first considered by Kennaugh [1je target nulls for the case of two independent antenna polar-
in the early 1950s. Later, Huynen [2] redeveloped Kennaughzation states.
work, and introduced his famous “polarization fork” conceptil- |5 Section 11, we succinctly state some basic results on the
lustrating that the characteristic polarization states in the co-R80-POL Nulls and X-POL Nulls which are necessary for the
larized channel form a fork on the Poincaré sphere. Since ffiowing sections. Then we present the concept of the co-null
1980s, the optimization procedures for various cases were R targets for the symmetric scattering matrix case in Sec-
sented for obtaining characteristic polarization states, notalgyn ||. It is proved that there exists only one pair of polar-
by Boerner and his collaborators [3]-{9], Mott [10], Van Zylization states such that the received powers of two indepen-
[11], [12], and Lineburg [29], [30]. In & co-polarized or crossgent targets equal zero (here, “two independent targets” means
polarized channel, the polarization states of the transmitting &gt the scattering matrices of the two targets are linearly in-
receiving antennas are the same or orthogonal, and the chaggsendent). This polarization states’ pair is called the co-null
teristic polarization states are defined as the polarization staggshe two targets, which can easily be obtained by solving an
cept, the co-null space, is introduced, and many interesting re-
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two asymmetric scattering matrices, this paper points out thidt Co-NULL OF TARGETS FOR THESYMMETRIC SCATTERING
there exist two co-nulls, which can also be obtained by solving MATRIX CASE

ande|tgr1]ent;/.alue prltlnblem. Thzn we deftlne the mono—tc.o—nuflltspacqn this section, we only consider the symmetric scattering ma-
andtnhe |-co—tr;1u spl)atge anb E:resen SOme proper Illes ofthe W0 case. If it is not specially mentioned, the H-V polarization
Spaces, €.g., Ine refations between a mono-co-nutt Space ag &g s implied in this section. The target nulls for the asym-

bi-co-null Space, and the relat|or_1 betwee_n a co-n_uII and targﬁ&tric scattering matrix case will be studied in the next section.
decom_posmon for the asymmetric sca_ttermg matrix Case.  Note that although some results in this section have been pub-
In this paper, the proafs of some evident results are omitie hed in part [22], it seems still necessary to restate them here
for systematically developing the target null theory because we
II. CO-POL NULLS AND X-POL NULLS add some proofs and interpretations of these results which are

o _ ) ~ important for understanding the properties of the co-null.
In the polarization basis H-V (horizontal and vertical

polarizations), the Sinclair scattering matrix of a target in th& Co-Null

backscattering case is expressed as Definition [22]: Let [$;] and[S,] denote the scattering ma-

trices of target 1 and target 2. d&f andb satisfy the equations
[S1]a b =0 and[S:]a e b = 0, then we calle, b) the co-null
Shh  Shv ;
[5]= Sul Suw (1) (pair) of the targets 1 and 2, or the co-null[8f] and[S2]. Fur-

thermore, ifa andb also satisfy the equatidi¥s]a e b = 0, we

wheres,,(z, y = h, v) denotes the scattering elementyof call (a, b) the co-null of[51], [S,], and[Ss].

transmitting andr receiving polarizations. For the reciprocal From this definition, we have the following results:

backscattering case;., = s.», i.€., the scattering matrix is R1) [Si] and[S:] are linearly independenta;, a2) is the

symmetric. For the bistatic radar case, however, two coordinate co-null of [S1] and [S,] if and only if a; anda, are
systems are necessary [10], and the corresponding scattering two eigenvectors of the eigenvalue equatiSpja =
matrix of a target may be asymmetric. A[S2]a.

Let a andb denote the polarization states of the transmitting  Proof: Let (a, b) be the co-null ofS;] and[S>]. Then we
and receiving antennas, respectively. Then the received poweave from[S;]a e b = 0 and[S»]a e b = 0 that
is expressed as

i [Si]a =\ {‘1) ‘H b (6.1a)
P =|[Slaeb* = |b'[S]a] )
_ [Sala = Ao {0 ‘1} b (6.1b)
wheree denotes the dot product of vectors, and the superscript 1 0
t denotes the transpose. Without loss of generality, this paper
assumes thdla|| = ||| = 1. which leads to
In the co-polarized channel cade= a, and the CO-POL
[Sl]a = )\[Sg]a (62a)

Nulls are defined as the transmitting polarization states such that

P, = |[Sla ® a?> = 0. Usually, there exist two CO-POL Nulls. Similarly, by use of the symmetry of two scattering matrices we
For the symmetric scattering matrix case, the CO-POL Nulls gkg, e

determined by [2], [19]

[S1]b = A[S2]b. (6.2b)
.10 -1 From (6.2a) and (6.2b), we therefore derive the conclusion
[Sla= A [1 0} a. €)) R1). %

R1 provides us not only a method for obtaining the co-null of
In the cross-polarized channel cabes [(1) _é]a*, where two targets but also a new physical meaning of the eigenvalue
the superscript denotes the complex conjugate. The X-POkquation[S;]la = A[Sz]a. In particular, lettingS] = [S;1] and
Nulls are defined as the transmitting polarization states such thgi] = [ {], one observes that the eigenvector§ja = \a

P, =|[Slae [(1J “ola*|* = 0. For the symmetric scatteringform the co-null of the two targets: the target corresponding to
matrix case, there exist two X-POL Nulls in general which arthe scattering matrixS] and the sphere target (corresponding
determined by to the unit scattering matrix). This is a new interpretation of the
eigenvalue equatioftla = Aa.
[Sla = Aa™. 4) For the symmetric scattering matrix case, the order of the

transmitting and receiving polarization statesandb) in the
Leta, 1 ande, » denote the two X-POL Nulls, then it is easy toequation[Sla « b = 0 can be ignored because the reciprocity
prove that theorem holds. From this, we conclude according to R1 that
two arbitrary independent symmetric scattering matrices have
0o -1 ., and only have one co-null pafe, b) if the magnitude of the
Ge2 = { } ) polarization state is not considered.
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Using the above result, one easily obtains the co-null of two  Proof: Expresga, b) as the form
targets. Table | shows the co-nulls for some typical targets. From
the equation
1 —F 1

(r1[S1] +72[S2])ae b =v.[Si]ae b+ 12[S2]aeb  (7) VIt | g VAR —p2

itis straightforward to obtain the following result: Using R3, we can easily obtain two desired rank-1 scattering
R2) If (a, b) is the co-null of[S1] and[S;], then(a, b) is  matrices that have the co-nu, b). #
the co-null of(S1], [S2] andv1[S1] +72[S2] too, where
~1 and~, are two arbitrary complex numbers. B. Co-Null Space
According to the definition of the co-null, one easily observes

that Next, we will intr(_)duce the definition of the co-null space and
R3) The co-null of two different rank-1 scattering matricel resentlts propergeso. . . .
R5) If[So] = [y ,]isregarded as a special scattering ma-
trix, then all scattering matrices having the nidl )
[ 1 Pl} and [ 03 pﬂ form a two-dimensional (2-D) linear space, called the
pr Pt ip2 1 co-null space. In this case, the n(dl, b) is also called
the co-null of the space.
is Proof: Denote the set of the scattering matrices that have
the null(a, b) asG. From R2, one can conclude théis a linear
space. On the other hand, every scattering matrix in thé/set

— 1
1 & 1 _ satisfies[S]a e b = 0, i.e., a scattering matrix in the séthas
V14 |p1]? 1 V14 |p2|? —po on_ly two ind_ependent complex elements (variables). Therefore,
G is a 2-D linear space. #

R5 demonstrates that all targets in a co-null space share the
This result points out that there exists a simple relation bgame nul(a, b). From R5 and the definition of the linear space
tween two rank-1 scattering matrices and their co-(allld),  [27], we know that there are infinite targets in a co-null space.
whena andb are linearly independent. Furthermore, we havgwe select the co-null of the space as the polarization states of
that the transmitting and receiving antennas, then an echo from any
R4) (a, b) is the co-null of[S;1] and[S2]. If @ andb are targetin the co-null space can be suppressed. This conclusion is
linearly independent, there exist two rank-1 scatteringptentially useful for target discrimination in clutter, or polari-
matrices which also have the co-n(d, b). metric contrast enhancement.
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R6) For an arbitrary co-null space, two linearly indeperare two independent matrices that have the co{atlb). From
dent nonsingular scattering matrices exist such thR2 and R5
every scattering matrix in the space can be expressed

as the linear combination of them. 1 —p 0 —p
. . G= C1 % + Co 2 2

Proof: Let[S;] and[S;] denote two linearly independent - -
matrices in a co-null space.

1) If [S1] and[S2] are no_nsingular,. R6 holds evidently. _ is the co-null space which has the co-nial b). #
2) If [S1] and[S»] are singular, without loss of generality, R7 points out the simple relation between a co-null space
we assume that and its co-null(a, b) if a andb are independent. By using the

proof of R7, we can straightforwardly write the general form of
) a co-null space from its co-null. Therefore, a rank-1 scattering
[51] = [ “ clp%} and [S;] = [ch? ch?} ] matrix is very important in a co-null space.
P apf 2z 2 R8) If a space has the co-nulii, @), then there exist a
rank-1 scattering matrix and a nonsingular scattering
matrix such that every scattering matrix in the space
can be expressed as the linear combination of them.
Proof: Denote the co-null space & According to R6,
we know that there exist infinite nonsingular scattering matrices
in G. Let [S] denote one of them.

On the other hand, one can easily obtain a rank-1 scattering
matrix [S1] in G from its co-null [see the proof of R7)]. Obvi-
ously, [S] and [S;] are linearly independent. Note that the di-
mension of( is 2. So every scattering matrix in the spage
can be expressed as the linear combinatioppband[S;]. #

R9) LetG; andGs be two co-null spaces which have the
co-nulls(ay, b;) and(az, b>), respectively. If

BecausdS;] and[Ss] are linearly independent, we know
thatcico # 0 andpyp2 # 1. Consider

c1+ 6203 C1P1 + C202
c1p1 + cop2 C1p% + 2

=ciea(pripa —1)* #0

|[S1] + [S2ll =

which means thas,] + [S»] is nonsingular. Similarly,
[S1] — [S2] can also be proved to be nonsingular. Note
that[S1] + [S2] and[S1] — [S2] are linearly independent
becausdS;] and[S;] are two linearly independent ma-
trices. Therefore, R6 is true. cosf siné

3) If [S1] is nonsingular andlSs] is singular, then it is easy 42 = [ } L
to prove that there exists at least one numbsuch that gpqg

—sinfd cosé

¢[S1] + [Se] is nonsingular. SincéSi] and[S2] are lin- cos@ sind
early independentS;] andc[S1] + [S2] are also linearly by = [_Smg COS@} by
independent. It follows that R6 is true. #

Summing up the above cases, one deduces that R6 holds. then for an arbitrary scattering matfi%,] € G, there

R7) Let(a, b) be the co-null of a co-null space. &f and exists a scattering matrpé;] in G2 such that
b are linearly independent, then two rank-1 scattering
matrices exist such that every scattering matrix in the

space can be expressed as the linear combination of [Ss] = [

them.

cosf sind [51] cosf —sinf
—sinf cos# Hlsing cosf |’

Proof: Without loss of generality, we assume that . . .
In this case, the spac&; is called the rotation space

of the space&7; with the rotation anglé denoted as
_pl_ GQ = G1(9)
_ 1 R10) If a sphere belongs to a co-null spacg then

v G(=(r/2)) = G.

and S Proof: Let[S] = [J 7] be a scattering matrix in the
. [ 1T space(F. Since the sphere target belongs to the sg@cee.,
s51+s 0 ..
b=—- (p1p2 # 1). [. 0> 4 4s,) € G, we conclude from the definition of the
V14 |p2)? 05 linear space that
$3 —8o s1+ s3 0 1 82
Then it is evident that [—32 SJ = [ 0 s +33} - [32 SJ €G. (8)

1 —p d 03 —po The above result means that, for an arbitrary scattering matrix
—p1 Pl an —p2 1 [5], its rotation scattering matrix * %] with £(/2) rota-
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tion angle also belongs to the sp&eeThereforeG(+(x /2)) = R11) Let the CO-POL Nulls ofS] bea andb. If a andb
G. # are linearly independent, then two linearly independent
Conversely, ifG(+(7/2)) = G, one can easily prove that rank-1 matrice$S; | and[S,] exist such that
[; 1] € G by using the above method. 1) The co-null of($] and[S.] is (a, a).
From the assumption of R10, we know that the co-fwillb) 2) The co-null of[S] and[S,] is (b, b).
of the space~ satisfies 3) The co-null of(S;] and[S.] is (a, b).
From the relation between the co-null and the rank-1 matrices
aeb—=0 [see R3)], one can easily obtain two linearly independent rank-1

matrices having the above properties.

R12) If a space has the co-nigl, a), then a rank-1 scat-
tering matrix[.5;] exists such that every singular scat-
tering matrix in this space can be expressed[4s],
wherec is a complex constant.

0 -1 . . .
b=+ [1 0} a ) Proof: According to R3, one easily obtains a rank-1 scat-
tering matrix[S1] from the null (e, ). Now if there exists a
rank-1 scattering matrix in the space that cannot be expressed as
which means that the polarization states of the receiving ag@], it leads to two linearly independent rank-1 matrices in the
transmitting antennas have the same ellipticity angle, and hasenull space. From R3 and R7, one deduces that the co-null of
two orientation angles withr/2 difference. the space ia, b), wherea andb are linearly independent. This
Example 1: From Table I, it is known that[;], [{]) is the contradicts the condition of R11, which means that every sin-
co-null of a wire, sphere (or plate), and diplane. Furthermorgylar scattering matrix in the space can be expressefas#
([;], {])isthe co-null of the spadg, = {[§ ;1}.Inthisspace, ~ From R3 and R8, we can obtain the following result:
all scattering matrices can be expressed as the combination %13) LetG,, and Gy, denote two co-null spaces having
two wires:([é 8]) and([g ?])' According to Huynen’s phe- the cor-hulls(a, a) and (b, b), respectively. Ifa and
nomenological theory [2], We.know thal s /2<o<r/2Gs(0) b are linearly independent, then there exists a rank-1
forms the class of the symmetric targets. Note ibaﬁ] (sphere scattering matrix5] in the space3,, and a rank-1
or plate) belongs to every rotation spaGe(f). From R10, scattering matri{Ss] in the space, , such that

we show thatU_, /2<¢<0Gs(0) = Ug<ocr/2G,(6). There- ) .
fore, the class of the symmetric targets can also be expressed as 1) 151] and[5] are Ilneafly.mdependent.
2) Every scattering matrix in the spa€g , can be

Voso<(x/2)G2(0). expressed as the linear combinatior{$f] and
Another important space Sy which possesses the co-null [S5], where(, , denotes the co-nul srp[)ac]e which
has the co-nulia, b).
i 1 i 1 Conversely, if the space&, ., Gy, and G,; have the
NI AV co-nulls(a, a), (b, b), and(a, b), respectively, and i& andb
are linearly independent, then there exist two linearly indepen-
rg_ent rank-1 scattering matricgS,] and[S] in the spaceé7,
such that every singular scattering matrix in the sp@gg (or
Gy,) can be expressed &s5,] (or ¢[S;]), wherec is a complex

or

It is easy to prove that diplanes (with different orientation a
gles) and helixe$[: */Jand[', ~!]) belong to this space.
The general form of this space @& = {[} _2]}. Aninter- oo ciant
esting property of this is tha¥y (8) = Gy, wheref is an ar- |

. . . Using R3, R12, and R13, ily ded the followi
bitrary angle. According to Huynen’s phenomenological theo%susl;ng an one easily deduces the foflowing

[2], one knows that except for diplanes, all others in this space
form the class of H-targets. From the definition of the co-null, it R14) Gae andGy, denote two spaces that have the co-nulls
(a, a) and (b, b), respectively. lfa andb are linearly

is easy to know that the echo from an H-target can be suppressed

by using(l/\/i)[i] and(l/\/i)[_li] as the polarization states independent, then. the intersection of the. sp@g@

of the transmitting and receiving antennas. This result is iden- and the spacer, ; is a subspacoe or one-dimensional

tical with that in [10]. (1-D) space. Except fdiSg] = [, ], the CO-POL
Nulls of an arbitrary scattering matrix in this subspace

C. Relations Between the CO/X-POL Nulls and Co-Null of area andb.

Targets Next, let us consider the relations between the co-null and

Now let us consider the relations between the co/x-pghe X-POL Nulls. Using the definitions of the co-null and the

Nulls and the co-null of targets. Note that the CO/X-POL Null O-POL Nulls, we have the following resulti. N
are defined as the polarization states of the transmitting antenn&15) Let the X-POL Nulls ofS] bea anda—, wherea™ =

for which the radar receives zero power, whereas the co-null of [1 ola™. Then two linearly independent rank-1 scat-
two targets is defined as the special pair of the polarization states tering matricegS:] and[5;] exist such that
of the transmitting and receiving antennas. From these defini- 1) The co-null of(5], [S1] and[S:] is (a, at).

tions, we conclude the following results. 2) [S4S3]1 =10 ol
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R16) G, is a co-null space that has a co-nfl a'). If 2) If[} ' ]€G,..e,then’, ~!1€G,..,andtherefore,
(5 221 € Gaas then[_32 "] € Goge. Geer = Gy = {[¢ _’]}. From R17, it is known that
Proof: Let[S] = [} :2], then the co-null(e, ¢t) of G, .. is
1 1
¢ 0 -1| . 7 75
“is1|] To|a =0 i |v2
0 1 R I ]
571 |] g =0, vzl Lz
g0 -1 0 1] .00 -1 _ _ _ o
1 0 1 0 [57] 1 ol ® =0, The pair of the left- and right-circular polarization states.
1 1 Using this pair as the polarization basis, we know that
{{ (1) 0} [57] [(1) _0:|}aoaJ‘ =0, Geer = Gy = {[¥ °]}. This result is identical with
- that in [10].
[ S5 _8§:|O,OO,J_:0
—s3  s1 D. Target Decomposition and Co-Null of Targets

R18) [5:], [S2], and[Ss] are linearly independent. [5] is

It follows that[_§ _22] € Ggot- decomposed into
2 1

R17) If[ “A] € Gaqv, then
1) The co-null of the spac€, , . is [S] = c1[S1] + c2[S2] + e3[ 53]

, p . 1 then
<\/1+|p|2 L] V1+lol? [_p*D' [S]azs @ bos [Slais ® bis

=, Cco = ,
' [51]0:23 o b3 2 [52]0:13 b3
2) An arbitrary scattering matrijs] in G, ,. can and [Slaiz @ bio
be expressed as c3 = m
] = e [ 1 —pQ} L [(P’:_)2 Pﬂ _ where(ai;, b;;) denotes the co-null of the scattering
- P P matrices[S;] and[S;], ¢, j =1, 2, 3, @ # J.
Proof: From[S] = ¢1[S1] + ¢2[S2] + ¢3[S3], we have
Proof:
1) Leta = [‘f], then we have [S]G,Qg.bgg =c1 [51]0230b23+CQ[Sg]agg0b23+63[53]a230b23.
1 —p o 1] 0 Note that(ass, bo3) is the co-null of the scattering matricks|
—p p2 1 * —af | and[Sg]. It follows that[SQ]agg oby3 =0 and[Sg]a23 oby3 =0.

Therefore, we obtain that = ([S]azz ® be3)/([S1]azs @ baz).
Similarly, we can derive that
that is,(« — p)(1 + pa™) = 0, we therefore deduce the

result in 1.
2) According to the relation between a co-null space and its Cy = [S]‘“?’—'bl?’ and ¢z = [51“127’(’12.
co-null [see the proof of R7)], one easily concludes the [S2]ais @ bys [Ss]az ® by,
resultin 2. #
From the above result, one observes that the rank-1 scattering #
matrix plays an important role in the co-null spagg, - . Note that the co-nulls in Table | can be employed directly if

In the polarization basiga, a), all scattering matrices of the scattering matrices in Table | are selected for target decom-
the co-null space?, .. are diagonal. Therefore, the resultg,osition.

R15-R17 are very interesting and important. _ R18 provides a method to find the coefficient numbers for the
Example 2: Using the results of R16 and R17, one easiljeneral target decomposition. The advantage of this method is
obtains the following results. that R18 affords us a concise form to express the coefficients.

1) If [}J 8] € G,ot, then[g (1)] € G, .+, and therefore, From this form, one easily observes the relation between target
Goar = G5 ={[2 ]} decomposition and the co-nulls.
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IV. CO-NULLS OF TARGETS FOR THEGENERAL SCATTERING This conclusion demonstrates the relation between the
MATRIX CASE (INCLUDING SYMMETRIC AND ASYMMETRIC mono-co-null space and the bi-co-null space.
SCATTERING MATRICES) R25) aandbare linearly independent. (&, b) and(b, a) are
the co-nulls of a bi-co-null spad®, then all scattering
In this section, we extend the above results to the general scat- matrices inG; are symmetric.
tering matrix (asymmetric/symmetric scattering matrix) case. . _ ; ;
9 (asy y 9 ) Proof: Let[S] = [** *:]be an arbitrary scattering ma-

Note that for the asymmetric scattering matrix case, the reﬁjfx in the bi-co-null sp
procity theorem does not hold, $a, b) # (b, a) if @ andb are
independent.

acey. Settinga = (a1, a2)t andb =
(b1, bo)t, then we know from the given conditions that

R19) [S1] and [S2] are linearly independenta, b) is a
co-null (pair) of [S1] and [S>] if and only if there s2a1by + s3azby = saagby + szaibs
exists a constanh such that[Sila = A[S:]e and gf
[S1]'b = A[S2]'D.
Referring to the proof of R1, one can easily prove the above
conclusion. From this result, we conclude that there exist two

co-nulls for two independent asymmetric scattering matricessinceq andb are linearly independent; b, — asb; # 0. There-

Sg(albg — agbl) = 33(a1b2 — agbl).

R20) If (a1, &) and (a2, by) are the co-nulls ofS;] and foress = s3. #
[S2], then(ay, b1) and(a2, by) are the co-nulls ofs, ], R26) For an arbitrary mono-co-null space, there exist three
[So] andy; [S1] +72[S2], too, wherey; andy, are two linearly independent nonsingular scattering matrices
arbitrary complex numbers. such that every scattering matrix in the space can be
R21) The co-nulls of two different rank-1 scattering matrices expressed as the linear combination of them.
[(jl oy Jand[*2r2 2] are From this conclusion, one observes that a

mono-co-null space is 3-D.
R286) For an arbitrary mono-co-null space, there exist three

1 —p1 1 1 linearly independent rank-1 scattering matrices such
- - S — that every scattering matrix in the space can be ex-

V3itlel? | g Vitlaao | _p, pressed as the linear combination of them.
and ) R27) For an arbitrary bi-co-null space, there exist two lin-
1 —a early independent nonsingular scattering matrices such
1 1 L - o
- . — . that every scattering matrix in the space can be ex-
Vit | | Vitlw? | g pressed as the linear combination of them.
N From this conclusion, one can find that a bi-co-null
space is 2-D.

This conclusion shows that there also exists a simple rela-R27) For an arbitrary bi-co-null space, there exist two lin-

tion between the co-nulls and two different rank-1 scattering early independent rank-1 scattering matrices such that
matrices. every scattering matrix in the space can be expressed

0 o ] ) as the linear combination of them.
R22)  IfweregardSo] = [, ] as a special scattering ma- Rogy For an arbitrary mono-co-null space there exists a
trix, then all scattering matrices (including symmetric 2-D space consisting of the symmetric scattering ma-
and asymmetric scattering matrices) that possess the trices as a subspace 6%
null (a, b) form a linear space, called the mono-co-null Rog) For an arbitrary bi-co-null spac®, there exists one
space. In this case, the nul, b) is also called the symmetric scattering matripS] in G' such that all the
co-null of the (mono-co-null) space. symmetric scattering matrices 6f can be expressed

R23) If we regardSy] = [0 0] as a special scattering asc9].
matrix, then all scattering matrices (m_cludlng SYM- R30) If[Sy], [S2], [S3] and[S.] satisfy the following condi-
metric and asymmetric scattering matrices) that pos- tions.

sess two different null§a;, b;) and (a2, b;) form a
linear space, called the bi-co-null space. In this case,
the two nulls(ay, b;) and(a2, b.) are also called the
co-nulls of the (bi-co-null) space.
Note: In R23, “two different nulls(a;, b;) and (as, b2)”
means that there exists no complex numlgessuch that [51], [S5] and[Ss] have the co-nullas, bs). An

(a1, b1) = (caz, cby). arbitrary scattering matrix can be decomposed
R24) The intersection of two different mono-co-null spaces into
is a bi-co-null space, and the co-nulls of the bi-co-null
space consists of the co-nulls of the two mono-co-null
spaces. [S] = c1[S1] + e2[S2] + ¢3[Sa] + ca[S4]

1) [S1], [S2], [S3] and [S4] are linearly indepen-
dent.

2) [S2], [S3] and [S4] have the co-null(ay, b);
[S1], [S3] and [S4] have the co-null(as, bs);
[S1], [S2] and[S4] have the co-nullas, bs); and
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where
1
- [Slai e i=1,234 .
z—mv t=1, 4,9 4 2]
[3]

The result R30 demonstrates the relation between target de-
composition and co-nulls of targets for the general scattering
matrix case. 4l

V. SUMMARY

The classical target null theory was founded for the cased®]
of the co-polarized and cross-polarized channels. In these two
channels, the polarization state of the receiving antenna depends
on that of the transmitting antenna. For fully utilizing the ad- [€]
vantage of polarization, we need to extend the classical target
null theory to the case of two independent antenna polarizatior7]
states.

This paper has employed the concepts of the co-null and the
co-null space for developing the target null theory. These con-
cepts are very important and useful. For example, let us assume

that there exist two different undesired targets (clutter) and asl®l
sume that their co-null isa, b). Then it is easy to suppress all
echoes from the two undesired targets by utilizirandb asthe [

polarization states of the transmitting and receiving antennas,
respectively. Theoretically, this method can be applied to the
suppression of all echoes from the targets in the space that pds0l
sesses the co-nufk, b). However, ifa andb are neither the ;
same nor orthogonal, itis impossible to suppress all echoes from
the two undesired targets for the cases of the co- and cross-po-
larized channels. [tz
In this paper, we have proposed a simple method to obtain3]
the co-null/nulls of two targets and presented a new physical in-
terpretation of an eigenvalue equation for the symmetric/asym-
metric scattering matrix case. From the proposed method, we4]
have proved that there exists only one co-null for two symmetric
scattering matrices and that there exist two co-nulls for twg;5
asymmetric scattering matrices. Then using the concepts of the
co-null and the co-null space, we have obtained many interesting
and important results, e.g., the relations between the co-null ant’
the CO-POL/X-POL Nulls, the structure of the co-null space,
the relation between two different co-null spaces, and the rg17]
lation between target decomposition and co-nulls. In addition,
we have obtained two important classes of targets: the classes
of the symmetric targets and H-targets. From the presented rés]
sults, one observes that the rank-1 targets play an important role
in the co-null space. Finally, the concepts of the co-null andi9)
the co-null space were extended to the asymmetric scattering
matrix case. We have defined the mono-co-null space and the
bi-co-null space and have presented some properties of the tvym]
spaces, e.g., the relations between the mono-co-null space and
the bi-co-null space. [21
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